
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

269

Manuscript received October 15, 2006.
Manuscript revised October 25, 2006.
.

Matching TCP/IP Packets to Detect Stepping-Stone

Intrusion

Jianhua Yang†, and Shou-Hsuan Stephen Huang††

†The Department of Mathematics and Computer Science, Bennett College, Greensboro, NC 25409, U.S.A.
††The Department of Computer Science, University of Houston, Houston, 77204 U.S.A.

Summary
We propose a “Step-Function” method to detect network
attackers from using a long connection chain to hide their
identities when they launch attacks. The objective of the method
is to estimate the length of a connection chain based on the
changes in packet round trip times. The key point to compute the
round trip time of a connection chain is to match a Send and its
corresponding Echo packet. We propose a conservative and a
greedy matching algorithm to match TCP/IP packets in real-time.
The first algorithm matches fewer packets but the quality of the
matching is high. The second one matches more packets with
some uncertainty on the correctness. The two algorithms give us
almost identical results in determining the length of a long
connection chain.
Key words:
Intrusion detection, Stepping-stone, Packet-matching,
Conservative algorithm, Greedy algorithm

1. Introduction

Computer and network security has become more and
more important as people depend on the Internet to
conduct business, and the number of Internet attacks has
increased significantly [13]. Instead of attacking a
computer directly, most attackers launch their attacks
through intermediary hosts that they have previously
compromised [1] to hide themselves; those compromised
computers are called stepping-stones. One way to stop
such attacks is to use stepping-stone intrusion detection
techniques, which has been being developed since 1995.
 The first approach proposed in 1995 by
Staniford-Chen and Heberlein [2] used the thumbprint to
detect stepping-stone intrusion; this is the summary of the
content of a connection. By comparing the thumbprints of
two connections, this approach can determine if a given
computer is being used as a stepping-stone. With the use of
the secured shell, however, the content could be encrypted,
thus rendering the thumbprint approach not applicable.
Zhang and Paxson [1] then proposed a time-based method
to detect stepping-stone intrusion on interactive sessions
which used distinctive characteristics, such as packet size

and timestamps to identify a connection. This method can
be applied to encrypted sessions, and has the advantages of
not requiring tightly synchronized clocks, and being robust
against re-transmission variation. However, it suffers from
a high false positive rate, is not available in real time, and
is vulnerable to intruder manipulation, such as random
delay and chaff perturbation. Another approach, similar to
Zhang and Paxson’s method, was proposed in 2000 to
detect stepping-stone intrusion by computing the deviation
between two connections [15]. However, it suffers from
the same problem as Zhang and Paxson’s method.
 Yung [3] proposed a method which is time-based and
can be applied to encrypted sessions; it detects
stepping-stone intrusion in a long interactive connection
chain by echo-delay round trip time (RTT) comparison.
However, Yung’s technique can give good results only
when network traffic is relatively uniform, and his
algorithm cannot be implemented in real time. The
approach tries to decrease the false positive rate by using a
statistical mathematical method to get the minimum echo
RTT of a whole connection chain and maximum
acknowledgement RTT of the connection to the
downstream neighboring host. But it suffers from a high
false negative rate, because the method used to match
Send and Echo packets sometimes gives us an incorrect
match, thus computing an incorrect RTT.
 In this paper, firstly, we propose a “Step-Function”
approach to detect stepping-stone intrusion in real time.
This approach uses the changing RTTs between matched
packets to estimate the length of a connection chain. The
idea of using the changes of RTTs to signal the
compromised hosts is demonstrated with experimental
results from the Internet. To compute the correct RTT of a
packet, we need to match a Send packet with its
corresponding Echo packet. Thus, we proposed two
packet-matching algorithms, a conservative one and a
greedy one, to match TCP Send and Echo packets. The
conservative packet matching algorithm can match a
packet precisely but only for a small subset of the packets;
the greedy algorithm can match more packets, but with
some RTTs whose correctness we are unsure of. We prove

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

270

that all the matched packets given by the conservative
algorithm are correct matches, and then show that the
results of the two algorithms are essentially the same for
the purpose of determining the length of a connection
chain. We tested these two algorithms on the Internet to
detect long interactive connection chains with satisfactory
results. Finally, we propose an algorithm to count the
number of levels of RTTs of a connection chain.
Compared to Yung’s method [3], our approach estimates
the length of a connection chain more precisely. We have
successfully generalized the results of [12], addressed
most of the concerns mentioned above, and produced more
accurate results with a zero false positive rate and a lower
false negative rate than the previous work [1, 2, 3, 12].
 Matching all Send-Echo packets correctly is
impossible because of some factors that affect packet
matching [8, 9, 10, 11]. Fortunately, we don’t need to
match all the packets going through a TCP connection in a
host for the purpose of detecting stepping-stone intrusion.
All we need is enough data to establish a distinct level in
RTTs, which are computed by matched TCP/IP packet’s
timestamps. If the conservative algorithm fails to produce
enough matched packet pairs, we can always use the
greedy algorithm to do it.
 The rest of this paper is arranged as follows. In
Section 2, we define some notations used in this paper.
Section 3 discusses the difficulties involved in packet
matching. In Section 4, we discuss the conservative and
greedy packet matching algorithms. Section 5 shows the
results when the two algorithms are tested on the Internet
to detect stepping-stone intrusion. Finally, in Section 6,
conclusions and future work are presented.

2. Preliminaries

Our research began with several assumptions. First, this
research object is limited to an interactive session, which
is made by Telnet, rlogin, rsh, ssh, or other similar tools.
Secondly, there is no valid reason for a user to connect
through more than three or four connections before
reaching a destination which could be reached directly.
Thirdly, it makes sense to assume that any users (including
intruders), when connecting to a host, may need to pause
to read, think, or respond to the previous operation; the
time gaps between two continuous operations caused by
human interaction are measured in seconds; these gaps are
considerably larger than a typical round trip time of a
network.

 Suppose a user logs in from Host 1, and eventually
connects to Host n, which is the destination, through Host
2, … , and Host n-1, as shown in Fig. 1. We here formally
give definitions of the following terms: connection, chain,
downstream, upstream, Send, Echo, Ack, and packet
match.
Connection: When a user from a host logs into another
host, we call this a connection session between the two
hosts.
Chain: Given n hosts H1, ..., Hn, a sequence of
connections is defined as a chain C = <C1, C2, C3, … ,
Cn-1> where Ci is a connection from Host Hi to Host Hi+1
for i = 1, .., n-1.
Downstream and upstream: If a direction is along a
user’s login direction (as shown in the arrows in Fig. 1), it
is called downstream. Otherwise, it is called upstream.
Send: A packet is defined as Send if it propagates
downstream and has flags both ‘Push (P)’ and
‘Acknowledgement (A)’ or only ‘P’ [9].
Echo: A packet is defined as Echo if it propagates
upstream and has flags both ‘Push (P)’ and
‘Acknowledgement (A)’ or only ‘P’.
Ack: A packet is defined as Ack if it propagates either
downstream or upstream and only has flag ‘A’.
Matched packet: If a given Echo is directly triggered by a
Send, then the Echo is defined as a matched packet of the
Send. The method to find matched packets is called a
packet-matching algorithm.

3. Challenges to Matching TCP/IP Packets

The packet-matching problem is to find the corresponding
Echoes for each Send in a TCP/IP packet stream. The
packets transmitted on the Internet are complex, but they
can be decomposed into four simple cases. The simplest
one is that each Send is followed by exactly one Echo; it is
trivial that the Echo is the right one to match the Send. The
second one is that several Sends are followed by exactly
one Echo; in this case this Echo is supposed to match with
the first Send. The third one is that one Send is followed
by several Echoes; the first of the Echoes is supposed to
match the Send. The final and most complex one is that
several Sends are followed by several Echoes, in which
case it is not as clear how to match them, but the first Echo
is supposed to match the first Send.
 In the TCP/IP communication on the Internet, the first
case presents only when the chain is short, and matching
the whole TCP/IP packets is trivial. However, the above

four cases intersect each other
along a chain that becomes
long, where matching whole
TCP/IP packets is impossible.
There are many issues [8, 9, 10,
11] to affect matching TCP/IP
packets; here we list the five

Host
1

Host
i-1

Host
i

Host
i+1

Host
n

Fig. 1 A connection chain sample.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

271

main reasons: (1) lost packet re-transmission; (2) packet
cumulative acknowledgement and echo; (3) session
transmit window; (4) packets communication between
adjacent hosts (such as ignore packet, keep alive packet
sent from client side, key re-exchange, these data are not
intended for the target machine); and (5) multiple Echoes
from a server side.
 Any lost packets during transmission are retransmitted
either automatically by the sending client having not
received an acknowledgement or on request of the
receiving server. Re-transmission of the same packet
continues until either an acknowledgement is received or
until the connection timeout expires. So we are faced with
one Echo that could match with two or more Sends.
 Every TCP packet is not always individually
acknowledged; instead, cumulative acknowledgement may
take place. The most important advantage of this
mechanism is that it reduces the number of Ack messages,
thereby reducing the possibility of network congestion.
This network control mechanism benefits network traffic,
but makes one-to-one packet-matching impossible. The
same problem occurs for Echo packets too.
 To control data flow and congestion control, TCP
maintains a transmit window. The size of the window
determines how many unacknowledged octets of data the
transmitter is allowed to send before it must cease
transmission and wait for acknowledgement. In this way, if
this size is set to one, it means that each packet is sent if
and only if the previous Send has been acknowledged or
echoed. In most installation, this size is not one, so several
packets can be allowed to send continuously before
receiving any Ack. Several Send-Ack-Echo can overlap
each other, making packet-matching difficult.
 Ignore packet is a very special type packet; it is only
used as an additional protection measure against advanced
traffic analysis techniques [10, 11]. If a server side
receives an Ignore packet, it only acknowledges this
packet without any other action. If we do not process
Ignore packets well, it will affect all the subsequent
packets.
 Keep-alive and Key re-exchange are packets that
differ from the previous cases. They do not affect
packet-matching, but the packets matched in these two
cases are not what we expect because the packets are only
sent to the neighboring host, rather than to the connection
destination host. In most of a session’s time, the key used
for encryption is not changed, but it may be changed
during the data transfer. It is recommended [11] that the
key be changed and exchanged after each gigabyte of
transmitted data or after each hour of connection time,
whichever comes sooner. In this case, there would be an
extra packet sent to the neighboring host, rather than the
destination host. In this way, there is an echoed packet
coming from the downstream neighboring host, and also
there is a packet pair in which the packet is matched. This

matched packet is not what we want because it only
indicates the RTT to the nearest neighboring downstream
host, not the RTT to the target machine. It is easy to
remove packets like these by setting a filter. When a
command is executed at the target host, the result may be
sent back in several packets, which also complicates the
packet-matching.
 In summary, the problems of packet-matching are
inherited from the fact that Send and Echo packets may be
in a many-to-many relationship, not one-to-one. It is
impossible to match them deterministically even with a
complete log. Therefore, it is extremely difficult to
implement in real–time. It is significant to note that if we
made a mistake in packet-matching at one point of a
packet stream, the mistake would affect all the
packet-matching after that point. To prevent this kind of
mistake from occurring, our policy is to limit the mistake
to a certain range. That is, we divide a packet stream into
some sub-streams, one of which is the scope where we
match the packets. If we make a mistake, it only affects the
packet-matching within a specific sub-stream. Another
benefit of dividing a packet stream into sub-streams is that
in each sub-stream, there is at least one matched packet
pair, for which we are confident that its match is correct.
The third hypothesis we made in Section 2 guarantees that
it is possible to divide a packet stream into some
sub-streams online. When we are pretty sure about the
packet matching correctness in each sub-stream, we match
those packets, while discarding all those whose correctness
we are not sure about.
 This method for packet matching is called the
Conservative Algorithm. Otherwise, once when we are not
sure about the correctness of a packet-matching, we can
still match those packets based on the time order, the
sequence number, and the size of a packet. This method to
match packets is called the Greedy Algorithm.

4. Conservative and Greedy Packet-matching
Algorithms

Each (Send or Echo) packet between Host i and Host i+1
carries a sequence number and an acknowledgement
(receive sequence) number. The initial send sequence
number is chosen by the data sending TCP, and the initial
receive sequence number is obtained during the connection
establishing procedure [9]. Once the connection
establishing procedure is done, the connection is going to
enter the data communication phase.
 In data communication, the sender of data keeps track
of the next sequence number (SSN), which is going to be
increased only by a Send. The receiver of data keeps track
of the next sequence number, which is the
acknowledgement number (RAN) of an Echo. Similarly,
for each Echo there is a sequence number (RSN), which is
used to keep track of the next available address to send an

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

272

Echo, while the sender side acknowledgement number
(SAN) is used to keep track of the next unacknowledged
Echo. Therefore, for each Send we have an SSN and an
SAN, while for each Echo we have an RSN and an RAN.
An SSN is increased only when a Send is sent while an
SAN does not change unless there is an Ack/Echo received.
Similarly, an RSN is increased only when an Echo is sent
while an RAN does not change unless there is an
Ack/Send received. Several continuous
unacknowledged/un-echoed Sends should have the same
SAN but with a different SSN. If and only if the first Echo
satisfies the following conditions:

Send.SAN = Echo.RSN (1a)
Send.SSN < Echo.RAN (1b)

 The first Echo is going to match either some of the
Sends or all of the Sends. However, we are pretty sure that
the first Echo definitely matches with the first Send; this is
the basic idea of the Conservative Algorithm.

4.1 Conservative Algorithm

Though we have stated many challenges in matching all
TCP packets, we do not have to match 100% of these
packets to detect a new connection in the chain. If we can
match a significant portion of the packets, it is sufficient
for the purpose of estimating the length of a connection
chain. There are two choices: (1) match only those that we
are sure of their correctness; or (2) include some that we
are not completely sure about. In the first
algorithm, we collect only the matches
that we are truly confident in their
correctness and we sacrifice on the
matching rate.
 During an interactive terminal session,
it is reasonable to divide a TCP/IP packet
stream into some segments based on the
third hypothesis we made: each segment
is started with one Send. The gap between
two continuous segments is supposed to
be considerably larger than the RTT of a
network. It is also safe to assume that no
Echo packet will match a Send packet
across the segment gaps. If two
consecutive Send packets have
timestamps difference that is more than
TG (a predefined time gap threshold), we
will assume the existence of a gap. In our
experiments, TG was set to one second,
which worked well.
 We designed Algorithm 1 to match
TCP packet, based on segment gap and
the two conditions stated above. In this
algorithm, an empty Send queue, which is
used to store an unmatched Send, is
initialized. Once a packet is captured, we first need to

determine if it is a Send or an Echo. If it is a Send, we then
decide if this is the first packet of a new segment by
comparing the gap between this Send and the closest
previous Send with the predefined threshold TG. If it is not
a new segment, we simply add this Send to the end of the
Send queue. Otherwise, we clear the Send queue to
prepare for a new segment. If the packet captured is an
Echo, we extract the first packet of the Send queue to
match with the Echo by using conditions (1a) and (1b). If
they are matched, we remove the Send from the queue;
otherwise, we keep it and get to capture the next one.
 The problem of this algorithm is its matching rate
(MR) is low; MR is defined as the ratio between the
number of matched packet pairs and the number of Sends
captured. Many Sends that are supposed to be matched are
discarded by Algorithm 1 because of the strict matching
conditions (1a) and (1b). Once we get into a situation in
which we cannot determine the proper matching, we clear
the Send queue (by using the Boolean variable
CorrectMatch in the algorithm). The advantage of this
algorithm is that all the matches are correct. We are going
to prove this point.
 Suppose we use E, S to stand for Echo, and Send,
respectively, each segment is going be expressed as either
Case 1: {S1 E…..}, or Case 2: {S1 S2…Sn E…}.
Proof: In Case 1, S1 is the first Send of this segment, while
E is the first Echo after S1. When E is coming, S1 is the
only Send in the Send queue; if conditions (1a) and (1b)

are satisfied, E must match with S1. Suppose E does not

Initialize a SendQ queue;
CorrectMatch = true; //Clear match flag
while (there are more packets) {
 Capture the next packet P;
 if P is a Send packet {
 Compute Time Gaps TG since last Send;
 if(TG > Threshold){
 Reset the SendQ;
 CorrectMatch = true;
 } else {add P to SendQ;}
 } else if P is an Ack packet{// Ignore it
 } else if P is an Echo packet{
 Q = dequeue (SendQ);
 if ((Q.ack# = P.seq#) and (Q.seq# < P.ack#)
 and (CorrectMatch)){
 Packets P and Q are matched;
 Compute round-trip time between P and Q;
 } else { // No match, set confusing match flag
 CorrectMatch = false;
 }
 }
}

 Algorithm 1. The Conservative Algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

273

match with S1; it is supposed to match a Send before S1,
and this packet should belong to another sub-stream. This
is in conflict with the assumption that each Echo in one
segment only matches with the Send in this segment. So
we proved E must match with S1 in Case 1, whatever we
have after E.
 In Case 2, there are n Sends before E, for which we
are not sure how to match the n Sends, but E must match
with the first Send if (1a) and (1b) are satisfied. Suppose E
does not match the first Send; then it is going to match any
one after or before the first one. As we already proved, it is
impossible to match the Send before the first Send, so the
only possibility is to match the Send after the first Send.
The first Send will not have any Echoes because any Echo
after E is supposed to match the Send after the matched
Send, rather than the first Send. This conflicts with the
assumption that any Send is supposed to have at least one
Echo. So we have proved E must match with S1 in Case 2.

4.2 Greedy Algorithm

The main reason that Algorithm 1 gives us low MR is that
once we are confused about how to match the Send in a
Send queue, we are going to discard all the Sends of the
queue. Let us modify the packet matching policy in the
following way. Once we get into confusion on which one
in the Send queue is supposed to match, we are going to
match the very first Send, and the following conditions
must be satisfied:

Send.SAN < Echo.RSN (2a)

Send.SSN < Echo.RAN (2b)
These two conditions guarantee that
the Echo is after the Send and it is not
the first Echo.
 We call this algorithm the Greedy
Algorithm; Algorithm 2 gives more
details and is presented in the
following. Most of Algorithm 2 is
similar to Algorithm 1, but when an
Echo does not match the first Send of
a Send queue using conditions (1a)
and (1b), instead of discarding the
Echo, we are going to match the first
Send if conditions (2a) and (2b) are
satisfied. The advantage of Algorithm
2 is that we can get a higher MR than
Algorithm 1, but the problem is that
we are not sure about the correctness
of each matched pair unless
conditions (1a) and (1b) are satisfied.
 The Greedy Algorithm tends to
give us a higher RTT when it was
confused in matching the packets in a
send queue. Let me give an example
to explain this. Suppose there is a
segment, {S1 S2 S3 …Sn E1 Sn+1 E2

….}, in which we already know that E1 matches with S1,
and E2 matches with S3. But after processing by the
Greedy Algorithm, the result should be that E1 is going to
match with S1 using conditions (1a) and (1b), while E2 is
going to match S2 using conditions (2a) and (2b). The RTT
between E2 and S2 obtained by the Greedy Algorithm is
larger than it is supposed to be because S2 is before S3. The
higher RTT does not hurt the purpose for stepping-stone
intrusion detection; we are going to explain the detailed
reason for this in Section 5.

4.3 Justification for Greedy Algorithm

We have proved that the matched packet pairs by the
Conservative Algorithm are correct. However, we cannot
claim the same for the Greedy Algorithm. In case we do
not collect enough data points, we can use the later
because it gives us a high matching rate.
 In this section, we are going to evaluate the
performance of the Greedy Algorithm by comparing its
results with those of the Conservative Algorithm in an
experiment which is designed with the both algorithms
running on the same host concurrently. We concern with
two benchmarks: MR, and accuracy rate (AR), which is
the ratio between the number of correctly matched packet
pairs and the number of the whole matched pairs. The
problem is how to determine which matched pair is the
correct one. In the experiment of this paper, we use Telnet
results to examine the correctness of the Greedy algorithm

Initialize a SendQ queue;
while (there are more packets) {
 Capture the next packet P;
 if P is a Send packet {
 Compute Time Gap TG;
 If (TG > Threshold){ Reset the SendQ;}
 else {add P to SendQ;}
 } else if P is an Ack packet{
 // Ignore it
 } else if P is an Echo packet{
 Q = dequeue (SendQ);
 if ((Q.ack# = P.seq#) and (Q.seq# < P.ack#)){
 Packets P and Q are matched;
 Compute round-trip time between P and Q;
 } else if(((Q.ack# =< P.seq#)
 and (Q.seq# < P.ack#)){
 Packets P and Q are matched;
 Compute RTT between P and Q;
 } else {//No match;}
 } else {Return;}
}

1.1 Algorithm 2. Greedy Algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

274

because there is no content encryption for TCP packets
from Telnet session, and thus make it possible to examine
the correctness of packet-matching.
 In this experiment, our connection chain spanned from
Houston to Mexico and California:
UH1 Mex UH2 Epic UH3 Mex, where UH1,
UH2, UH3 are located in Houston, Texas, Mex is located
in Mexico, and Epic is located in California. We collect
and match TCP packets at UH1. From the experiment, we
confirmed that (1) the Greedy Algorithm produces
significantly more RTTs; (2) all pairs matched in the
Conservative Algorithm are also matched in the Greedy
Algorithm; and (3) the MR and AR depend on the number
of hosts; longer RTT means more hosts connected. Table 1
shows the MRs and ARs of a typical experiment with five
connections in the chain. As the RTT increased for the
Conservative Algorithm, the MR dropped from 100% to
about 21% while the AR did not change; for the Greedy
Algorithm, which has a very high MR, the MR dropped a
little while AR changed significantly, from 99% to 86%.

Table 1: Comparison of MR and AR between the Conservative and
Greedy algorithms

5. Application to Stepping-stone Intrusion
Detection

5.1 Detecting long interactive connection chain on
the Internet

If we start monitoring the packet transmission from the
beginning when the chain is established through Host i, we
should see an increase of the RTT as the user connects to
more and more hosts (see Fig. 2). In other words, we can
use the changes of the RTTs to signal the change in the
connection chain [12]. If we monitor the chain
continuously, we should get a step function with each step
corresponding to one host connection. If we can count how
many steps we have, we should exactly know how many
hosts are connected in the downstream chain. The question
is whether we can get a step-function by monitoring all the
packets passing through Host i, where a RTT is computed
by the Conservative and Greedy Algorithms. We
conducted an experiment to verify this point and compare
the results obtained by the two algorithms.
 In our experiment, we connected to five hosts from
local host UH1. The connection chain, UH1 UH2
Mex UH3 Epic UH4, is a typical setup. We
varied the setup and included other hosts, but the results
were consistent with those presented side-by-side for
comparison in Fig. 2. It can be seen that most of the
additional data points from the Conservative Algorithm are
very close to the data points collected from the Greedy
Algorithm, even though there are a few exceptions, and all
of them are higher than “normal” data points at different
levels.
 We monitored the packets (using both Algorithms 1
and 2) at UH2 for about twenty minutes. We captured the
Send and Echo packets of outgoing connection of UH2.
The numbers shown in Fig. 2 and Table 1 are based on
experiments with minimum keystrokes, i. e., we logon to a
host and immediately Telnet/SSH to another machine. We

Conservative (%) Greedy (%) Number of
Hosts
connected
from UH1

RTT
(ms)

MR AR MR AR

1 61 100.0 100.0 100.0 98.7
2 120 70.0 100.0 100.0 96.1
3 172 38.1 100.0 100.0 92.3
4 222 27.5 100.0 98.6 90.0
5 282 21.6 100.0 96.0 85.5

Fig. 2 Apply the algorithms to detect the length of connection chains.

0

50000

100000

150000

200000

250000

300000

350000

Matched Packets

RT
T

(m
ic

ro
se

co
nd

)

961 1 171

Conservative

Greedy

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

275

were able to obtain enough data points in Fig. 2 to
establish distinct levels. In case the data points are not
enough (because of the number of connections or hacker
manipulation), the Greedy Algorithm can be used to obtain
more data points (with less quality). Using the matching
algorithms, we were able to collect an array of packet
roundtrip times, such as the one showed in Fig. 2. In this
figure, we can clearly confirm our conjecture that the
roundtrip time is "almost" a step-function. Four steps can
be seen, formed by the lower bound of the four segments.
For obvious reasons, Fig. 2 is not a perfect step-function.
 It is clear that the “steps” on the two curves in Fig. 2
are almost identical. There are some data points that are
considerably higher than their neighbors. The first group is
at the beginning of the Greedy Algorithm curve; these are
probably due to synchronization of the hosts. The second
group of these fluctuations occurs at level four on the
right; they represent the incorrect matching of the
Send/Echo packets, which are corresponding to what we
predicted.

5.2 Counting the steps in a chain

We needed to use a
method to detect when
the “jump” (up or
down) happened in the
roundtrip time array,
and eventually to count
the number of the steps.
The up-jump represents
an additional connection
in the (downstream)
chain. We designed
Algorithm 3 to detect
“jumps” in the packet
roundtrip array found in
Algorithms 1 or 2.
Algorithm 3 can be used
in real-time as the
values in the array are
filled. It only
examines the last 2*w
elements in determining
whether there is a jump
in the round-trip time.
Intuitively, we split the
2*w elements into two
windows (left and right)
of size w each. Within
the windows, we
selected the minimum
of w values to eliminate

the network fluctuations. If the difference between the
two minima exceeds a threshold, we declare there is a
jump between the left and right windows.

Algorithm 3 uses a window of size 6 (w = 3 on each
side) that worked reasonably well in our experiments.
The larger the window size, the better the algorithm. In
Section 4.2, we note that if we occasionally get some
higher RTTs, it does not hurt the purpose for
stepping-stone detection. From Algorithm 3, we already
know the only case that this algorithm gives us a wrong
number on counting the steps in a round trip time array is
under the situation that there are w (here, we select w=3)
consecutive higher RTTs, but this probability is very low.
On the other hand, suppose we have w consecutive higher
RTTs; the mistake can only make us overestimate the
length of a chain, unlike the case with w consecutive lower
RTTs; we will not lose any intrusion.

Algorithm 3 above was simplified to find only one
jump. It can be generalized to find all jumps in the array.
We claim that the algorithm is real-time because we have
to look ahead w packet data in order to determine whether
a jump occurs. If we accumulate all the jumps, we can
easily determine the number of intermediate hosts. This

estimate can then be used to terminate a telnet or ssh
session if the chain exceeds a predefined size.

// The simplified algorithm below finds only one (the first)

“jump”
// Given: Packet roundtrip time array rtt[]
//
threshold = average of some randomly selected values in array

rtt[];
for (each element artt, i>=5) {
 minLeft = min(rtt[i-5], rtt[i-4], rtt[i-3]);
 minRight = min(rtt[i-2], rtt[i-1], rtt[i]);
 diff = minRight – minLeft;
 if (diff > 0) {
 jumpDir="up"; // login on to a new host
 } else {
 diff *= -1;
 jumpDir = "down"; // logout from host
 }
 if (diff > threshold) {
 if (jumpDir == "down") {
 there is a jump down between rtt[i-3] and rtt[i-2];
 } else {
 there is a jump up between rtt[i-3] and rtt[i-2];
 }
 }
}

 Algorithm 3: Computing jumps in a roundtrip time.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

276

6. Conclusions and Future Work

We have described a Step-Function method that uses RTTs
to estimate the length of a long interactive connection
chain by counting the number of steps. An algorithm used
to examine the RTT array to count the steps has been
proposed; it can work in real time and worked well on the
Internet with the experiments we did by selecting window
size w=3. We also have proposed the Conservative and the
Greedy Algorithms to match TCP/IP packets online for
computing the RTTs of a TCP interactive session. The
Conservative Algorithm can give us correct matches,
which have been proved, but with lower MR. The Greedy
Algorithm can give us more matched packets but for some
we are not confident about their correctness. We evaluated
the performance of the Greedy Algorithm, and the results
showed that this algorithm is more useful and practical
than the conservative one for the purpose of stepping-stone
intrusion detection.
 The approach used here to detect stepping-stone
intrusion by observing the changes of RTTs to determine
the number of hosts in an interactive connection chain is
different from that of previous methods [1, 2, 3]. Our
approach has the following advantages: (i) the ability to
detect intruders in real-time, (ii) the ability to handle
encrypted terminal sessions, (iii) the ability to estimate the
length of a chain accurately, and (iv) the ability to tolerate
network traffic fluctuation, network load, and workload of
chained hosts.
 There are still some limitations and restrictions. We
must be able to monitor a packet throughout a connection
session in order for this approach to work. If the
fluctuation of a connection is higher than the additional
time to connect to the next host, we will need a better
approach to detect the additional host.

References
[1] Yin Zhang and Vern Paxson, “Detecting Stepping Stones,”

Proc. 9th USENIX Security Symposium, Denver, CO, 2000,
pp.67-81.

[2] Stuart Staniford-Chen and L. Todd Heberlein, “Holding
Intruders Accountable on the Internet,” Proc. 1995 IEEE
Symposium on Security and Privacy, Oakland, CA, 1995,
pp.39-49.

[3] Kwong H. Yung, “Detecting Long Connecting Chains of
Interactive Terminal Sessions,” Proc. International
Symposium on Recent Advance in Intrusion Detection,
Zurich, Switzerland, 2002, pp.1-16.

[4] Z. J. Tang, Designing and Implementing of Network Intrusion
Detection System, Publishing House of Electronics Industry
of China, Beijing, China, 2002.

[5] Behrouz Forouzan, TCP/IP Protocol Suite (Second
Edition) ,McGraw-Hill, New York, 2002.

[6] Lawrence Berkeley National Laboratory (LBNL), “The
Packet Capture library,” ftp://ftp.ee.lbl.gov/libpcap.tar.z,
accessed March 2004.

[7] Data Nerds Web Site, “Winpcap and Windump,”
http://www.datanerds.net, accessed July 2004.

[8] T. Ylonen, “SSH Protocol Architecture, draft IETF
document,”http://www.ietf.org/internet-drafts/draft-ietf-secs
h-architecture-16.txt, accessed June 2004.

[9] University of Southern California, Transmission Control
Protocol, RFC 793, 1981.

[10] Martin P. Clark, Data Networks, IP and the Internet
Protocols, Design and Operation, Wiley, New York, 2003.

[11] T. Ylonen, “SSH Transport Layer Protocol, draft IETF
document,”http://www.ietf.org/internet-drafts/draft-ietf-secs
h-transport-18.txt, accessed June 2004.

[12] Jianhua Yang and Shou-Hsuan Stephen Huang, “A
Real-Time Algorithm to Detect Long Connection Chains of
Interactive Terminal Sessions,” Proc. 3rd International
Conference on Information Security (Infosecu’04),
Shanghai, China, 2004, pp.198-203.

[13] CERT, “Explosion of Incidents,” http://www.cert.org,
accessed July 2004.

[14] David L. Donoho, Ana Geogina Flesia, et al., “Multiscale
Stepping-Stones Detection: Detecting Pairs of Jittered
Interactive Streams by Exploiting Maximum Tolerable
Delay,” Proc. International Symposium on Recent Advance
in Intrusion Detection, Zurich, Switzerland, 2002, pp.49-64.

[15] K. Yoda and H. Etoh, “Finding Connection Chain for
Tracing Intruders,” Proc. 6th European Symposium on
Research in Computer Security (LNCS 1985), Toulouse,
France, 2000, pp.31-42.

Jianhua Yang received the
B.E. and M.E. degrees, from
Shandong Univ., China in 1987
and 1990, respectively. He
received his Ph.D. from Univ. of
Houston, U.S.A. in 2006. He is
currently an assistant professor in
the Dept. of Mathematics and
Computer Science, Bennett
College, U.S.A. His research
interest includes computer,

network, and information security. He is a member of IEEE
Computer Society.

Shou-Hsuan Stephen
Huang is professor of Computer
Science at the University of Houston.
His research interests include Data
Structures and Algorithms, Intrusion
Detection and computer security.
Stephen Huang received his Ph. D.
degree from the University of
Texas-Austin. He is a senior member
of the IEEE Computer Society. Dr.
Huang can be reached at

shuang@cs.uh.edu.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

277

