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Summary 
We propose a “Step-Function” method to detect network 
attackers from using a long connection chain to hide their 
identities when they launch attacks. The objective of the method 
is to estimate the length of a connection chain based on the 
changes in packet round trip times. The key point to compute the 
round trip time of a connection chain is to match a Send and its 
corresponding Echo packet. We propose a conservative and a 
greedy matching algorithm to match TCP/IP packets in real-time. 
The first algorithm matches fewer packets but the quality of the 
matching is high. The second one matches more packets with 
some uncertainty on the correctness. The two algorithms give us 
almost identical results in determining the length of a long 
connection chain. 
Key words: 
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1. Introduction 

Computer and network security has become more and 
more important as people depend on the Internet to 
conduct business, and the number of Internet attacks has 
increased significantly [13]. Instead of attacking a 
computer directly, most attackers launch their attacks 
through intermediary hosts that they have previously 
compromised [1] to hide themselves; those compromised 
computers are called stepping-stones. One way to stop 
such attacks is to use stepping-stone intrusion detection 
techniques, which has been being developed since 1995. 
 The first approach proposed in 1995 by 
Staniford-Chen and Heberlein [2] used the thumbprint to 
detect stepping-stone intrusion; this is the summary of the 
content of a connection. By comparing the thumbprints of 
two connections, this approach can determine if a given 
computer is being used as a stepping-stone. With the use of 
the secured shell, however, the content could be encrypted, 
thus rendering the thumbprint approach not applicable. 
Zhang and Paxson [1] then proposed a time-based method 
to detect stepping-stone intrusion on interactive sessions 
which used distinctive characteristics, such as packet size 

and timestamps to identify a connection. This method can 
be applied to encrypted sessions, and has the advantages of 
not requiring tightly synchronized clocks, and being robust 
against re-transmission variation. However, it suffers from 
a high false positive rate, is not available in real time, and 
is vulnerable to intruder manipulation, such as random 
delay and chaff perturbation. Another approach, similar to 
Zhang and Paxson’s method, was proposed in 2000 to 
detect stepping-stone intrusion by computing the deviation 
between two connections [15]. However, it suffers from 
the same problem as Zhang and Paxson’s method. 
 Yung [3] proposed a method which is time-based and 
can be applied to encrypted sessions; it detects 
stepping-stone intrusion in a long interactive connection 
chain by echo-delay round trip time (RTT) comparison. 
However, Yung’s technique can give good results only 
when network traffic is relatively uniform, and his 
algorithm cannot be implemented in real time. The 
approach tries to decrease the false positive rate by using a 
statistical mathematical method to get the minimum echo 
RTT of a whole connection chain and maximum 
acknowledgement RTT of the connection to the 
downstream neighboring host. But it suffers from a high 
false negative rate, because the method used to match 
Send and Echo packets sometimes gives us an incorrect 
match, thus computing an incorrect RTT. 
 In this paper, firstly, we propose a “Step-Function” 
approach to detect stepping-stone intrusion in real time. 
This approach uses the changing RTTs between matched 
packets to estimate the length of a connection chain. The 
idea of using the changes of RTTs to signal the 
compromised hosts is demonstrated with experimental 
results from the Internet. To compute the correct RTT of a 
packet, we need to match a Send packet with its 
corresponding Echo packet. Thus, we proposed two 
packet-matching algorithms, a conservative one and a 
greedy one, to match TCP Send and Echo packets. The 
conservative packet matching algorithm can match a 
packet precisely but only for a small subset of the packets; 
the greedy algorithm can match more packets, but with 
some RTTs whose correctness we are unsure of. We prove 
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that all the matched packets given by the conservative 
algorithm are correct matches, and then show that the 
results of the two algorithms are essentially the same for 
the purpose of determining the length of a connection 
chain. We tested these two algorithms on the Internet to 
detect long interactive connection chains with satisfactory 
results. Finally, we propose an algorithm to count the 
number of levels of RTTs of a connection chain. 
Compared to Yung’s method [3], our approach estimates 
the length of a connection chain more precisely. We have 
successfully generalized the results of [12], addressed 
most of the concerns mentioned above, and produced more 
accurate results with a zero false positive rate and a lower 
false negative rate than the previous work [1, 2, 3, 12].  
 Matching all Send-Echo packets correctly is 
impossible because of some factors that affect packet 
matching [8, 9, 10, 11]. Fortunately, we don’t need to 
match all the packets going through a TCP connection in a 
host for the purpose of detecting stepping-stone intrusion. 
All we need is enough data to establish a distinct level in 
RTTs, which are computed by matched TCP/IP packet’s 
timestamps. If the conservative algorithm fails to produce 
enough matched packet pairs, we can always use the 
greedy algorithm to do it. 
 The rest of this paper is arranged as follows. In 
Section 2, we define some notations used in this paper. 
Section 3 discusses the difficulties involved in packet 
matching. In Section 4, we discuss the conservative and 
greedy packet matching algorithms. Section 5 shows the 
results when the two algorithms are tested on the Internet 
to detect stepping-stone intrusion. Finally, in Section 6, 
conclusions and future work are presented. 
 
2. Preliminaries 
 
Our research began with several assumptions. First, this 
research object is limited to an interactive session, which 
is made by Telnet, rlogin, rsh, ssh, or other similar tools. 
Secondly, there is no valid reason for a user to connect 
through more than three or four connections before 
reaching a destination which could be reached directly. 
Thirdly, it makes sense to assume that any users (including 
intruders), when connecting to a host, may need to pause 
to read, think, or respond to the previous operation; the 
time gaps between two continuous operations caused by 
human interaction are measured in seconds; these gaps are 
considerably larger than a typical round trip time of a 
network. 

 Suppose a user logs in from Host 1, and eventually 
connects to Host n, which is the destination, through Host 
2, … , and Host n-1, as shown in Fig. 1. We here formally 
give definitions of the following terms: connection, chain, 
downstream, upstream, Send, Echo, Ack, and packet 
match.  
Connection: When a user from a host logs into another 
host, we call this a connection session between the two 
hosts. 
Chain: Given n hosts H1, ..., Hn, a sequence of 
connections is defined as a chain C = <C1, C2, C3, … , 
Cn-1> where Ci is a connection from Host Hi to Host Hi+1 
for i = 1, .., n-1. 
Downstream and upstream: If a direction is along a 
user’s login direction (as shown in the arrows in Fig. 1), it 
is called downstream. Otherwise, it is called upstream.  
Send: A packet is defined as Send if it propagates 
downstream and has flags both ‘Push (P)’ and 
‘Acknowledgement (A)’ or only ‘P’ [9]. 
Echo: A packet is defined as Echo if it propagates 
upstream and has flags both ‘Push (P)’ and 
‘Acknowledgement (A)’ or only ‘P’. 
Ack: A packet is defined as Ack if it propagates either 
downstream or upstream and only has flag ‘A’. 
Matched packet: If a given Echo is directly triggered by a 
Send, then the Echo is defined as a matched packet of the 
Send. The method to find matched packets is called a 
packet-matching algorithm. 
 
3. Challenges to Matching TCP/IP Packets  
 
The packet-matching problem is to find the corresponding 
Echoes for each Send in a TCP/IP packet stream. The 
packets transmitted on the Internet are complex, but they 
can be decomposed into four simple cases. The simplest 
one is that each Send is followed by exactly one Echo; it is 
trivial that the Echo is the right one to match the Send. The 
second one is that several Sends are followed by exactly 
one Echo; in this case this Echo is supposed to match with 
the first Send. The third one is that one Send is followed 
by several Echoes; the first of the Echoes is supposed to 
match the Send. The final and most complex one is that 
several Sends are followed by several Echoes, in which 
case it is not as clear how to match them, but the first Echo 
is supposed to match the first Send.  
 In the TCP/IP communication on the Internet, the first 
case presents only when the chain is short, and matching 
the whole TCP/IP packets is trivial. However, the above 

four cases intersect each other 
along a chain that becomes 
long, where matching whole 
TCP/IP packets is impossible. 
There are many issues [8, 9, 10, 
11] to affect matching TCP/IP 
packets; here we list the five 
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Fig. 1  A connection chain sample. 
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main reasons: (1) lost packet re-transmission; (2) packet 
cumulative acknowledgement and echo; (3) session 
transmit window; (4) packets communication between 
adjacent hosts (such as ignore packet, keep alive packet 
sent from client side, key re-exchange, these data are not 
intended for the target machine); and (5) multiple Echoes 
from a server side.  
 Any lost packets during transmission are retransmitted 
either automatically by the sending client having not 
received an acknowledgement or on request of the 
receiving server. Re-transmission of the same packet 
continues until either an acknowledgement is received or 
until the connection timeout expires. So we are faced with 
one Echo that could match with two or more Sends.  
 Every TCP packet is not always individually 
acknowledged; instead, cumulative acknowledgement may 
take place. The most important advantage of this 
mechanism is that it reduces the number of Ack messages, 
thereby reducing the possibility of network congestion. 
This network control mechanism benefits network traffic, 
but makes one-to-one packet-matching impossible. The 
same problem occurs for Echo packets too. 
 To control data flow and congestion control, TCP 
maintains a transmit window. The size of the window 
determines how many unacknowledged octets of data the 
transmitter is allowed to send before it must cease 
transmission and wait for acknowledgement. In this way, if 
this size is set to one, it means that each packet is sent if 
and only if the previous Send has been acknowledged or 
echoed. In most installation, this size is not one, so several 
packets can be allowed to send continuously before 
receiving any Ack. Several Send-Ack-Echo can overlap 
each other, making packet-matching difficult.  
 Ignore packet is a very special type packet; it is only 
used as an additional protection measure against advanced 
traffic analysis techniques [10, 11]. If a server side 
receives an Ignore packet, it only acknowledges this 
packet without any other action. If we do not process 
Ignore packets well, it will affect all the subsequent 
packets.  
 Keep-alive and Key re-exchange are packets that 
differ from the previous cases.  They do not affect 
packet-matching, but the packets matched in these two 
cases are not what we expect because the packets are only 
sent to the neighboring host, rather than to the connection 
destination host. In most of a session’s time, the key used 
for encryption is not changed, but it may be changed 
during the data transfer. It is recommended [11] that the 
key be changed and exchanged after each gigabyte of 
transmitted data or after each hour of connection time, 
whichever comes sooner. In this case, there would be an 
extra packet sent to the neighboring host, rather than the 
destination host. In this way, there is an echoed packet 
coming from the downstream neighboring host, and also 
there is a packet pair in which the packet is matched. This 

matched packet is not what we want because it only 
indicates the RTT to the nearest neighboring downstream 
host, not the RTT to the target machine. It is easy to 
remove packets like these by setting a filter. When a 
command is executed at the target host, the result may be 
sent back in several packets, which also complicates the 
packet-matching.  
 In summary, the problems of packet-matching are 
inherited from the fact that Send and Echo packets may be 
in a many-to-many relationship, not one-to-one. It is 
impossible to match them deterministically even with a 
complete log. Therefore, it is extremely difficult to 
implement in real–time. It is significant to note that if we 
made a mistake in packet-matching at one point of a 
packet stream, the mistake would affect all the 
packet-matching after that point. To prevent this kind of 
mistake from occurring, our policy is to limit the mistake 
to a certain range. That is, we divide a packet stream into 
some sub-streams, one of which is the scope where we 
match the packets. If we make a mistake, it only affects the 
packet-matching within a specific sub-stream. Another 
benefit of dividing a packet stream into sub-streams is that 
in each sub-stream, there is at least one matched packet 
pair, for which we are confident that its match is correct. 
The third hypothesis we made in Section 2 guarantees that 
it is possible to divide a packet stream into some 
sub-streams online. When we are pretty sure about the 
packet matching correctness in each sub-stream, we match 
those packets, while discarding all those whose correctness 
we are not sure about.  
 This method for packet matching is called the 
Conservative Algorithm. Otherwise, once when we are not 
sure about the correctness of a packet-matching, we can 
still match those packets based on the time order, the 
sequence number, and the size of a packet. This method to 
match packets is called the Greedy Algorithm. 
 
4. Conservative and Greedy Packet-matching 
Algorithms 
 
Each (Send or Echo) packet between Host i and Host i+1 
carries a sequence number and an acknowledgement 
(receive sequence) number. The initial send sequence 
number is chosen by the data sending TCP, and the initial 
receive sequence number is obtained during the connection 
establishing procedure [9]. Once the connection 
establishing procedure is done, the connection is going to 
enter the data communication phase.  
 In data communication, the sender of data keeps track 
of the next sequence number (SSN), which is going to be 
increased only by a Send. The receiver of data keeps track 
of the next sequence number, which is the 
acknowledgement number (RAN) of an Echo. Similarly, 
for each Echo there is a sequence number (RSN), which is 
used to keep track of the next available address to send an 
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Echo, while the sender side acknowledgement number 
(SAN) is used to keep track of the next unacknowledged 
Echo. Therefore, for each Send we have an SSN and an 
SAN, while for each Echo we have an RSN and an RAN. 
An SSN is increased only when a Send is sent while an 
SAN does not change unless there is an Ack/Echo received. 
Similarly, an RSN is increased only when an Echo is sent 
while an RAN does not change unless there is an 
Ack/Send received. Several continuous 
unacknowledged/un-echoed Sends should have the same 
SAN but with a different SSN. If and only if the first Echo 
satisfies the following conditions: 

Send.SAN = Echo.RSN     (1a) 
Send.SSN < Echo.RAN     (1b) 

 The first Echo is going to match either some of the 
Sends or all of the Sends. However, we are pretty sure that 
the first Echo definitely matches with the first Send; this is 
the basic idea of the Conservative Algorithm. 
 
4.1 Conservative Algorithm 
 
Though we have stated many challenges in matching all 
TCP packets, we do not have to match 100% of these 
packets to detect a new connection in the chain. If we can 
match a significant portion of the packets, it is sufficient 
for the purpose of estimating the length of a connection 
chain. There are two choices: (1) match only those that we 
are sure of their correctness; or (2) include some that we 
are not completely sure about. In the first 
algorithm, we collect only the matches 
that we are truly confident in their 
correctness and we sacrifice on the 
matching rate.  
 During an interactive terminal session, 
it is reasonable to divide a TCP/IP packet 
stream into some segments based on the 
third hypothesis we made: each segment 
is started with one Send. The gap between 
two continuous segments is supposed to 
be considerably larger than the RTT of a 
network. It is also safe to assume that no 
Echo packet will match a Send packet 
across the segment gaps. If two 
consecutive Send packets have 
timestamps difference that is more than 
TG (a predefined time gap threshold), we 
will assume the existence of a gap. In our 
experiments, TG was set to one second, 
which worked well. 
 We designed Algorithm 1 to match 
TCP packet, based on segment gap and 
the two conditions stated above. In this 
algorithm, an empty Send queue, which is 
used to store an unmatched Send, is 
initialized. Once a packet is captured, we first need to 

determine if it is a Send or an Echo. If it is a Send, we then 
decide if this is the first packet of a new segment by 
comparing the gap between this Send and the closest 
previous Send with the predefined threshold TG. If it is not 
a new segment, we simply add this Send to the end of the 
Send queue. Otherwise, we clear the Send queue to 
prepare for a new segment. If the packet captured is an 
Echo, we extract the first packet of the Send queue to 
match with the Echo by using conditions (1a) and (1b). If 
they are matched, we remove the Send from the queue; 
otherwise, we keep it and get to capture the next one.  
 The problem of this algorithm is its matching rate 
(MR) is low; MR is defined as the ratio between the 
number of matched packet pairs and the number of Sends 
captured. Many Sends that are supposed to be matched are 
discarded by Algorithm 1 because of the strict matching 
conditions (1a) and (1b). Once we get into a situation in 
which we cannot determine the proper matching, we clear 
the Send queue (by using the Boolean variable 
CorrectMatch in the algorithm). The advantage of this 
algorithm is that all the matches are correct. We are going 
to prove this point.  
 Suppose we use E, S to stand for Echo, and Send, 
respectively, each segment is going be expressed as either 
Case 1: {S1 E…..}, or Case 2: {S1 S2…Sn E…}. 
Proof: In Case 1, S1 is the first Send of this segment, while 
E is the first Echo after S1. When E is coming, S1 is the 
only Send in the Send queue; if conditions (1a) and (1b) 

are satisfied, E must match with S1. Suppose E does not 

Initialize a SendQ queue; 
CorrectMatch = true;   //Clear match flag 
while (there are more packets) { 
   Capture the next packet P; 
   if P is a Send packet { 
      Compute Time Gaps TG since last Send; 
      if(TG > Threshold){ 
       Reset the SendQ; 
       CorrectMatch = true; 
    } else {add P to SendQ;} 
   } else if P is an Ack packet{// Ignore it 
   } else if P is an Echo packet{ 
      Q = dequeue (SendQ); 
      if ((Q.ack# = P.seq#) and (Q.seq# < P.ack#)  
            and (CorrectMatch)){ 
         Packets P and Q are matched; 
         Compute round-trip time between P and Q; 
      } else { // No match, set confusing match flag 
         CorrectMatch = false; 
      } 
   } 
} 

                    Algorithm 1. The Conservative Algorithm 
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match with S1; it is supposed to match a Send before S1, 
and this packet should belong to another sub-stream. This 
is in conflict with the assumption that each Echo in one 
segment only matches with the Send in this segment. So 
we proved E must match with S1 in Case 1, whatever we 
have after E. 
 In Case 2, there are n Sends before E, for which we 
are not sure how to match the n Sends, but E must match 
with the first Send if (1a) and (1b) are satisfied. Suppose E 
does not match the first Send; then it is going to match any 
one after or before the first one. As we already proved, it is 
impossible to match the Send before the first Send, so the 
only possibility is to match the Send after the first Send. 
The first Send will not have any Echoes because any Echo 
after E is supposed to match the Send after the matched 
Send, rather than the first Send. This conflicts with the 
assumption that any Send is supposed to have at least one 
Echo. So we have proved E must match with S1 in Case 2.  
 
4.2 Greedy Algorithm 
 
The main reason that Algorithm 1 gives us low MR is that 
once we are confused about how to match the Send in a 
Send queue, we are going to discard all the Sends of the 
queue. Let us modify the packet matching policy in the 
following way. Once we get into confusion on which one 
in the Send queue is supposed to match, we are going to 
match the very first Send, and the following conditions 
must be satisfied: 

Send.SAN < Echo.RSN                    (2a) 

Send.SSN < Echo.RAN    (2b) 
These two conditions guarantee that 
the Echo is after the Send and it is not 
the first Echo.  
 We call this algorithm the Greedy 
Algorithm; Algorithm 2 gives more 
details and is presented in the 
following. Most of Algorithm 2 is 
similar to Algorithm 1, but when an 
Echo does not match the first Send of 
a Send queue using conditions (1a) 
and (1b), instead of discarding the 
Echo, we are going to match the first 
Send if conditions (2a) and (2b) are 
satisfied. The advantage of Algorithm 
2 is that we can get a higher MR than 
Algorithm 1, but the problem is that 
we are not sure about the correctness 
of each matched pair unless 
conditions (1a) and (1b) are satisfied. 
 The Greedy Algorithm tends to 
give us a higher RTT when it was 
confused in matching the packets in a 
send queue. Let me give an example 
to explain this. Suppose there is a 
segment, {S1 S2 S3 …Sn E1 Sn+1 E2 

….}, in which we already know that E1 matches with S1, 
and E2 matches with S3. But after processing by the 
Greedy Algorithm, the result should be that E1 is going to 
match with S1 using conditions (1a) and (1b), while E2 is 
going to match S2 using conditions (2a) and (2b). The RTT 
between E2 and S2 obtained by the Greedy Algorithm is 
larger than it is supposed to be because S2 is before S3. The 
higher RTT does not hurt the purpose for stepping-stone 
intrusion detection; we are going to explain the detailed 
reason for this in Section 5. 
 
4.3 Justification for Greedy Algorithm 
 
We have proved that the matched packet pairs by the 
Conservative Algorithm are correct. However, we cannot 
claim the same for the Greedy Algorithm. In case we do 
not collect enough data points, we can use the later 
because it gives us a high matching rate.  
 In this section, we are going to evaluate the 
performance of the Greedy Algorithm by comparing its 
results with those of the Conservative Algorithm in an 
experiment which is designed with the both algorithms 
running on the same host concurrently. We concern with 
two benchmarks: MR, and accuracy rate (AR), which is 
the ratio between the number of correctly matched packet 
pairs and the number of the whole matched pairs. The 
problem is how to determine which matched pair is the 
correct one. In the experiment of this paper, we use Telnet 
results to examine the correctness of the Greedy algorithm 

Initialize a SendQ queue; 
while (there are more packets) { 
   Capture the next packet P; 
   if P is a Send packet { 
      Compute Time Gap TG; 
      If (TG > Threshold){ Reset the SendQ;} 
      else {add P to SendQ;} 
   } else if P is an Ack packet{ 
        // Ignore it 
   } else if P is an Echo packet{ 
      Q = dequeue (SendQ); 
      if ((Q.ack# = P.seq#) and (Q.seq# < P.ack#)){ 
         Packets P and Q are matched; 
         Compute round-trip time between P and Q; 
      } else if(((Q.ack# =< P.seq#)  
             and (Q.seq# < P.ack#)){ 
         Packets P and Q are matched; 
         Compute RTT between P and Q; 
      } else {//No match;} 
   } else {Return;} 
} 

1.1                 Algorithm 2. Greedy Algorithm 
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because there is no content encryption for TCP packets 
from Telnet session, and thus make it possible to examine 
the correctness of packet-matching. 
 In this experiment, our connection chain spanned from 
Houston to Mexico and California: 
UH1 Mex UH2 Epic UH3 Mex, where UH1, 
UH2, UH3 are located in Houston, Texas, Mex is located 
in Mexico, and Epic is located in California. We collect 
and match TCP packets at UH1. From the experiment, we 
confirmed that (1) the Greedy Algorithm produces 
significantly more RTTs; (2) all pairs matched in the 
Conservative Algorithm are also matched in the Greedy 
Algorithm; and (3) the MR and AR depend on the number 
of hosts; longer RTT means more hosts connected. Table 1 
shows the MRs and ARs of a typical experiment with five 
connections in the chain. As the RTT increased for the 
Conservative Algorithm, the MR dropped from 100% to 
about 21% while the AR did not change; for the Greedy 
Algorithm, which has a very high MR, the MR dropped a 
little while AR changed significantly, from 99% to 86%. 
 

Table 1: Comparison of MR and AR between the Conservative and 
Greedy algorithms 

 
 

5. Application to Stepping-stone Intrusion 
Detection 

 
5.1 Detecting long interactive connection chain on 
the Internet 
 
If we start monitoring the packet transmission from the 
beginning when the chain is established through Host i, we 
should see an increase of the RTT as the user connects to 
more and more hosts (see Fig. 2). In other words, we can 
use the changes of the RTTs to signal the change in the 
connection chain [12]. If we monitor the chain 
continuously, we should get a step function with each step 
corresponding to one host connection. If we can count how 
many steps we have, we should exactly know how many 
hosts are connected in the downstream chain. The question 
is whether we can get a step-function by monitoring all the 
packets passing through Host i, where a RTT is computed 
by the Conservative and Greedy Algorithms. We 
conducted an experiment to verify this point and compare 
the results obtained by the two algorithms.  
 In our experiment, we connected to five hosts from 
local host UH1. The connection chain, UH1  UH2  
Mex  UH3  Epic  UH4, is a typical setup. We 
varied the setup and included other hosts, but the results 
were consistent with those presented side-by-side for 
comparison in Fig. 2. It can be seen that most of the 
additional data points from the Conservative Algorithm are 
very close to the data points collected from the Greedy 
Algorithm, even though there are a few exceptions, and all 
of them are higher than “normal” data points at different 
levels. 
 We monitored the packets (using both Algorithms 1 
and 2) at UH2 for about twenty minutes. We captured the 
Send and Echo packets of outgoing connection of UH2. 
The numbers shown in Fig. 2 and Table 1 are based on 
experiments with minimum keystrokes, i. e., we logon to a 
host and immediately Telnet/SSH to another machine. We 

Conservative (%) Greedy (%) Number of 
Hosts 
connected 
from UH1 

 
RTT  
(ms) 

MR AR MR AR 

1 61 100.0 100.0 100.0 98.7
2 120 70.0 100.0 100.0 96.1
3 172 38.1 100.0 100.0 92.3
4 222 27.5 100.0 98.6 90.0
5 282 21.6 100.0 96.0 85.5

Fig. 2  Apply the algorithms to detect the length of connection chains. 
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were able to obtain enough data points in Fig. 2 to 
establish distinct levels. In case the data points are not 
enough (because of the number of connections or hacker 
manipulation), the Greedy Algorithm can be used to obtain 
more data points (with less quality). Using the matching 
algorithms, we were able to collect an array of packet 
roundtrip times, such as the one showed in Fig. 2.  In this 
figure, we can clearly confirm our conjecture that the 
roundtrip time is "almost" a step-function. Four steps can 
be seen, formed by the lower bound of the four segments.  
For obvious reasons, Fig. 2 is not a perfect step-function. 
 It is clear that the “steps” on the two curves in Fig. 2 
are almost identical. There are some data points that are 
considerably higher than their neighbors. The first group is 
at the beginning of the Greedy Algorithm curve; these are 
probably due to synchronization of the hosts. The second 
group of these fluctuations occurs at level four on the 
right; they represent the incorrect matching of the 
Send/Echo packets, which are corresponding to what we 
predicted. 
 
5.2 Counting the steps in a chain 
 
We needed to use a 
method to detect when 
the “jump” (up or 
down) happened in the 
roundtrip time array, 
and eventually to count 
the number of the steps. 
The up-jump represents 
an additional connection 
in the (downstream) 
chain. We designed 
Algorithm 3 to detect 
“jumps” in the packet 
roundtrip array found in 
Algorithms 1 or 2. 
Algorithm 3 can be used 
in real-time as the 
values in the array are 
filled.  It only 
examines the last 2*w 
elements in determining 
whether there is a jump 
in the round-trip time.  
Intuitively, we split the 
2*w elements into two 
windows (left and right) 
of size w each.  Within 
the windows, we 
selected the minimum 
of w values to eliminate 

the network fluctuations.  If the difference between the 
two minima exceeds a threshold, we declare there is a 
jump between the left and right windows.   

Algorithm 3 uses a window of size 6 (w = 3 on each 
side) that worked reasonably well in our experiments.  
The larger the window size, the better the algorithm.  In 
Section 4.2, we note that if we occasionally get some 
higher RTTs, it does not hurt the purpose for 
stepping-stone detection. From Algorithm 3, we already 
know the only case that this algorithm gives us a wrong 
number on counting the steps in a round trip time array is 
under the situation that there are w (here, we select w=3) 
consecutive higher RTTs, but this probability is very low. 
On the other hand, suppose we have w consecutive higher 
RTTs; the mistake can only make us overestimate the 
length of a chain, unlike the case with w consecutive lower 
RTTs; we will not lose any intrusion.  

Algorithm 3 above was simplified to find only one 
jump.  It can be generalized to find all jumps in the array.  
We claim that the algorithm is real-time because we have 
to look ahead w packet data in order to determine whether 
a jump occurs.  If we accumulate all the jumps, we can 
easily determine the number of intermediate hosts.  This 

estimate can then be used to terminate a telnet or ssh 
session if the chain exceeds a predefined size. 
 

 
// The simplified algorithm below finds only one (the first) 

“jump” 
// Given: Packet roundtrip time array rtt[]  
// 
threshold = average of some randomly selected values in array 

rtt[]; 
for (each element artt, i>=5) { 
   minLeft = min(rtt[i-5], rtt[i-4], rtt[i-3]); 
   minRight = min(rtt[i-2], rtt[i-1], rtt[i]); 
   diff = minRight – minLeft; 
   if (diff > 0) { 
      jumpDir="up";    // login on to a new host 
   } else { 
      diff *= -1;  
      jumpDir = "down";   // logout from host 
   } 
   if (diff > threshold) { 
      if (jumpDir == "down") { 
         there is a jump down between rtt[i-3] and rtt[i-2];
      } else {  
         there is a jump up between rtt[i-3] and rtt[i-2]; 
      } 
   } 
} 

         Algorithm 3: Computing jumps in a roundtrip time. 
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6. Conclusions and Future Work 
 
We have described a Step-Function method that uses RTTs 
to estimate the length of a long interactive connection 
chain by counting the number of steps. An algorithm used 
to examine the RTT array to count the steps has been 
proposed; it can work in real time and worked well on the 
Internet with the experiments we did by selecting window 
size w=3. We also have proposed the Conservative and the 
Greedy Algorithms to match TCP/IP packets online for 
computing the RTTs of a TCP interactive session. The 
Conservative Algorithm can give us correct matches, 
which have been proved, but with lower MR. The Greedy 
Algorithm can give us more matched packets but for some 
we are not confident about their correctness. We evaluated 
the performance of the Greedy Algorithm, and the results 
showed that this algorithm is more useful and practical 
than the conservative one for the purpose of stepping-stone 
intrusion detection.  
 The approach used here to detect stepping-stone 
intrusion by observing the changes of RTTs to determine 
the number of hosts in an interactive connection chain is 
different from that of previous methods [1, 2, 3]. Our 
approach has the following advantages: (i) the ability to 
detect intruders in real-time, (ii) the ability to handle 
encrypted terminal sessions, (iii) the ability to estimate the 
length of a chain accurately, and (iv) the ability to tolerate 
network traffic fluctuation, network load, and workload of 
chained hosts.  
 There are still some limitations and restrictions. We 
must be able to monitor a packet throughout a connection 
session in order for this approach to work. If the 
fluctuation of a connection is higher than the additional 
time to connect to the next host, we will need a better 
approach to detect the additional host.  
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