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Summary 
A common task in signal processing is to approximate adequately 
a signal. It is crucial to understand various methods to this task. 
In this paper we survey three different approximation methods: 
least squares support vector machine (LS-SVM), multiresolution 
signal approximation (MSA), and least squares approximation 
(LSA) to highlight their mathematical relationship. Based on the 
theoretical analysis, we prove that LS-SVM is identical to the 
LSA with the minimum norm solution, and MSA is identical to 
the LSA with the least squares solution. Therefore, both LS-SVM 
and MSA can be derived as specific instances of LSA. 
Key words: 
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1. Introduction 

Signal approximation is of practical importance as it is 
closely related to the signal compression as well as many 
other signal processing techniques. It has been studied 
extensively over the past decades. Traditionally, 
approximation methods such as low-order polynomials 
approximation [1], piecewise linear approximation [2], 
spline approximation [3], kernel or projection based 
approximation [4], and least squares approximation (LSA) 
[5], etc., have received considerable attention in the signal 
processing community. However, many new types of 
approximation methods, such as rough sets or neural 
network based approximation [6], support vector machines 
(SVM) [7], and MSA [8] have emerged recently that claim 
to have more flexibility and better approximation ability. 
Among these approximation methods developed, SVM 
and MSA are of the most successful methods. 
   The foundation of SVM has gained popularity due to 
its many attractive, analytic and computational features, 
and promising empirical performance [9]. It has been 
successfully extended from basic classification tasks to 
handle regression, operator inversion, density estimation 
and novelty detection. SVM used for approximation is 
introduced by Vapnik [7] and further investigated by many 
others. LS-SVM is a least square version for SVM that 
involves equality instead of inequality constraints and 
works with a least squares cost function [10]. This 
reformulation greatly simplifies the problem in such a way 
that the solution is characterized by a set of linear 

equations instead of a quadratic programming (QP). The 
equations can be efficiently solved by iterative methods 
such as conjugate gradient method [11]. 

Over the past few years, MSA has been successfully 
applied to approximate signals in many fields. It is 
formulated based on the study of wavelet analysis. MSA 
employs a coarse-to-fine strategy and provides a simple 
hierarchical approximation of the signals. At different 
resolutions level, the approximation of the signal 
characterizes different physical structures [8]. 

In this paper we look at approximation as the problem 
of recovering a signal f  from given data set, being 
closest to the underlying signal f

(
. To express the 

concept of two signals being ‘close’ some measure criteria 
need to be defined. The most general criterion is the 
minimization of the mean squares error (MSE). LSA is a 
traditional and widely applicable approximation method 
[5]. It can be formulated in terms of minimization of the 
MSE that reflects the discrepancy between f  and f

(
. 

Given so many approximation methods, it has 
become difficult for an engineer to select the most 
appropriate method for the problems under study. So it 
would be very meaningful if one can know beforehand 
how much the solution of the different approximation 
methods is close to each other. Furthermore, It is valuable 
to investigate the connections between the traditional and 
currently developed approximation methods. The primary 
interest of this paper lies in describing the close 
mathematical relationship of above-mentioned three 
approximation methods: LS-SVM, MSA, and LSA. Based 
on the theoretical analysis, we prove that LS-SVM is 
identical to the LSA with the minimum norm solution, and 
MSA is equivalent to the LSA with the least squares 
solution. Therefore, both LS-SVM and MSA can be 
derived as specific instances of LSA. 

The remainder of this paper is organized as follows. 
Sec.2 and Sec.3 are brief overviews of LS-SVM and MSA. 
Following that, in Sec.4 we review LSA. The relationship 
between LS-SVM, MSA, and LSA is proved in Sec.5. 
Finally we give some conclusions in Sec.6. 
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2. Review on LS-SVM 

Consider the following approximation problem (see Fig.1): 
let nt ( 1,2, ,n N= L ) be a set of N  samples of a signal 

that contains the underlying signal ( )f x
(

 and noise. 
Assume the signal ( )xf  satisfactorily approximates 

signal ( )f x
(

, we are asked to recover ( )xf  based on the 
samples set ( ){ }NntxD nn ,,1,, L== . 

x1x 2x nx Nx

( )xf
(2t

Nt

nt

( )nxf

( )xf

1t

 

Fig.1 The approximation problem 

LS-SVM has been developed for solving above 
problem. It allows the construction of an approximation by 
mapping the data set D  implicitly into some feature 
space F  through some mapping ϕ . Constructing a 
simple linear approximation in F  then corresponds to a 
nonlinear approximation in sample space R . All can be 
done implicitly in F  by using the kernel trick 

 
 ( ) ( ) ( )xxxxK nn ϕϕ ⋅=, .                   

 
LS-SVM aims at constructing an approximation of 

the form: 
 

( ) ( ) bxxf T += ϕw   ,             (1) 
 

where w is weight vector and b is bias term. To obtain 
w and b  one solves the following constrained 
optimization problem 

 

∑
=

+
N

n
neb

C

1

22

,, 22
1min ξw

w
  ,            (2) 

 
subject to the equality constraints 

 
( ) nn

T
n bxt ξϕ =−−w , Nn L,2,1=  ,     (3) 

 
with nξ  a error variable, C  a regularization factor and 

2
nξ  the least squares cost function.  

By constructing a Lagrange function from both 

the objective function and the corresponding 
constraints we yields the following expression 

 

min  ( ) 2 2

1

1
2 2

N

n
n

CG ξ
=

= + ∑α w               

( )( )
1

N
T

n n n n
n

t x bα ϕ ξ
=

+ − − −∑ w    

 
where nα  is Lagrange multipliers. The solution of α  
and b  is given by  

 

1

00 T

T

b
C−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ ⎣ ⎦ ⎣ ⎦⎣ ⎦

L
α TL χ χ I

             

 
where ( )1 2,,

T

Nt t t=T L , ( ) ( ) ( )( )1 2, , Nx x xϕ ϕ ϕ=χ L , 

( )1 2, , , T
Nα α α=α L ， and ( )1,1, 1 T=L L . Finally, we 

substitute w  into Eq. (1) and arrive at 
 

( ) ( )
1

,
N

n n
n

f x K x x bα
=

= +∑   .            

3. Multiresolution Signal Approximation 
(MSA) 

Suppose there is a multi-resolution analysis in ( )2L R  
such that the scale subspaces jV  and the wavelet 
subspaces jW  satisfy  

 
1j j jV V W− = ⊕  ，                  

 
( )2

j
j Z

V L R
∈

=U  ，                  

 
0j

j Z
V

∈
=I  ，                    

 
The symbol ⊕  denotes direct sum and Z  is the set of 
integers. An orthogonal compactly supported wavelet basis 
of jW  is formed by the dilation and translation of a ψ , 
called the mother wavelet function and is given by 
 

 ( ) ( )/ 22 2j j
jk x x kψ ψ− −= − .            

 
Similarly, the orthogonal basis of jV  is given by 
 

 ( ) ( )22 2
j

j
jk x x kφ φ− −= −              
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where φ  is called scaling function. The wavelet and 
scaling function satisfy the following dilation equation 
 

( ) ( )1
02 2 2j j

k
k

x h x kφ φ− − += −∑               

 
( ) ( )1

12 2 2j j
k

k
x h x kψ ψ− − += −∑              

 
The projection of a signal ( )f x

(
 onto jV  has the 

form 
 

 ( ) ( ) ( )j
j k jk

k

P f x c xφ= ∑
(

.                  

 
It can be seen as a smooth approximation of ( )f x

(
 at 

resolution level j . Hence above equation can also be 
written as 

 
( ) ( ) ( ) ( )j

j j k jk
k

f x P f x c xφ= = ∑
(

  .      (4) 

 
The coefficient ( )j

kc  is the projection of ( )f x
(

 on the 

basis function ( )jk xφ ; that is 
 

( ) ( ) ( )

( ) ( )
1

j
k jk

N

n jk n
n

c f x x dx

f x x x

φ

φ
=

=

≈ Δ

∫

∑

(

(  .          (5) 

 
where xΔ is sample rate. In practice Eq. (5) has to be 
rewritten as 

 

 ( ) ( )
1

N
j

k n jk n
n

c t x xφ
=

≈ Δ∑  ,                

 
since ( )nf x

(
 is corrupted by noise thus only corrupted 

value nt  could be obtained. 

4. Least Squares Approximation (LSA) 

When approximating an unknown signal ( )f x
(

, the signal 
is usually represented by a weighted sum of the linearly 
independent basis functions. The choice of the basis 
functions may vary depending on the application. 
Examples of basis functions are splines, complex 
exponentials, Gaussian radial basis function, or wavelets 
that have the best time frequency resolution. LSA is one of 

approximation method that represents an underlying signal 
( )f x
(

 using the basis functions ( ){ }q
kk xP 1= , that is 

 

( ) ( )∑
=

=
q

k
kk xPuxf

1

  .              

 
To estimate ku  one can minimize the mean squares error, 
that is 

 

( ) ( ) ( )( ) dxxfxfdxxe
2

2 minmin ∫ ∫ −=
(

 .    (6) 

 
Usually the set ( ){ }q

kk xP 1=  is complete in ( )2L R , which 
implies that Eq. (6) can be made arbitrarily small by 
selecting the order of the approximation q  properly. 

Eq. (6) takes a discrete form as following 
 

( ) ( ) xxfxPu
N

n

q

k
nnkkuk

Δ⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∑ ∑

= =

2

1 1

min
(

 ,    (7) 

 
since we need to be able to use it on the underlying signal 
( )f x
(

, which is only specified by the values it takes at the 

discrete set of points { }N
nnx 1= . Take into account that 

deserting xΔ has no influence on estimating ku , and 

( )nf x
(

 is corrupted by noise thus only corrupted value nt  
could be obtained, Eq. (7) can be rewritten as 

 

( )
2

1 1

min∑ ∑
= = ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

N

n

q

k
nnkku

txPu
k

  .       (8) 

 

5. Relationship between LS-SVM, MSA, and 
LSA 

Let A be a qN ×  matrix with the element ( )nknk xPa = , 

( )TNN ttt ,,, 21 L=t  and ( )Tquuu L,, 21=U  are two 
vectors. Arranging Eq. (8) in matrix form we have the 
following constrained optimization problem 
 

EE
E

Tmin   ,                 (9) 

 
subject to 

 
EtAU =− N   .              (10) 
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The above optimization program exists two kinds of 
solutions by adding different constrains: 
(i) The minimum norm solution 

 
 ( ) N

TT tAAAU
1−

= ,                
 

obtained by adding the constrain  2min U , when 

NtAU =  is an under-determined system. 
(ii) The least squares solution 

 
 ( ) N

TT tAAAU
1−

= ,               
 

obtained by adding the constrain EETmin , when 

NtAU =  is an over-determined system. 
Now we firstly discuss the relationship between 

LS-SVM and LSA. To eliminate bias term b in Eq. (3) we 
implement coordinate transformation in the feature space 
F [12]. Consequently, Eq. (3) is reformulated as 

 

nn
T

nt ξ=− zw ,  Nn L,2,1=  ,       (11) 
 

where ( )Tnpnnn zzz L,, 21=z  is the transformation vector 
of ( )nxϕ  with the dimension p . For simplicity we 
assume C  be 1, thus Eq. (2) can be rewritten as 

 

( )22

, 2
1min ξw

ξw
+   ,           (12) 

 
with ( )TNξξξ ,,, 21 L=ξ . 

We suppose that ( )TnzzzZ L,, 21= , ( )IZAs ,= , 

( )TξwUs ,= , and I  is a unit matrix with rank p . Then 
Eq. (12) and (11) have the following equivalent expression 

 
2

2
1min sU   ,            (13) 

 
subject to 

 
NtUA ss =  .             (14) 

 
It is notable that Eq. (14) has the same form as Eq. (10) 
except the term E . Furthermore, Eq. (14) is an 
under-determined system since sA  is a ( )pNN +×  
matrix. Motivated by Eq. (9) and (10), we can obtain a 
minimum norm solution to Eq. (14) by adding constrain 
(13). Therefore, it is quite logical to conclude that 

LS-SVM is identical to LSA with the minimum norm 
solution. 

Similarly we can discuss the relationship between 
MSA and LSA. It has pointed out that MSA is an optimal 
approximation in the sense of minimal mean square error 
[8]. Hence the coefficient j

kc  obtained by Eq. (5) makes 
the mean square error reaching a minimum, i.e. 

 

( ) ( )
2

1

N
j

k jk n
n k

c n tφ
=

⎡ ⎤−⎢ ⎥⎣ ⎦
∑ ∑                        

( )

( ) ( )
*

2
*

1

min
j

k

N
j

k jk n
c n k

c n tφ
=

⎡ ⎤= −⎢ ⎥
⎣ ⎦

∑ ∑  .  (15) 

 
Given the length of sequence j

kc  be K , we have NK <  
since there is an extraction process in Eq. (5) when the 
condition 0>j  is fulfilled. Now let ( )j

rA  be a 

KN × matrix with the element ( ) ( )na jk
j

nk φ=  and 

( ) ( ) ( ) ( )( )1 2, , ,
Tj j j

Kc c c=j
rU L  be a 1×K  vector, Eq. (15) can 

be arranged in the following constrained optimization 
problem 

 
( ) ( )j

r
j

r EE T
min   ,                  (16) 

 
subject to 

 
( ) ( ) ( )j

r
j

r
j

r EtUA =− N   .                   
 

A quick inspection of Eq. (16) shows it has the same 
form as Eq. (9). Furthermore, there exist a least squares 
solution to Eq. (16) since we can infer that ( ) ( )

NtUA j
r

j
r =  

is an over-determined system from the fact ( )j
rA  is a 

KN ×  matrix. It is nature to conclude that MSA is 
identical to LSA with the least squares solution. 

6. Conclusion 

In this paper we survey two currently developed 
approximation method–––LS-SVM and MSA, and one 
traditional method–––LSA. As described in above sections, 
it is not surprising that close mathematical relationship 
between LS-SVM, MSA, and LSA exist. We prove that 
LS-SVM is identical to the LSA with the minimum norm 
solution, and MSA is identical to the LSA with the least 
squares solution. Therefore, both LS-SVM and MSA can 
be derived as specific instances of LSA. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006 
 
 

 

5

 

Acknowledgment 

The authors would like to express their cordial thanks to 
Dr. Xiaohe Li for his valuable advice. 
 
References 
[1] D. Natale, G. S. Desoli, D. D. Giusto, and G. Vernazza, 

“Polynomial approximation and vector quantization: a 
region-based integration,” IEEE Trans. Communications, 
vol.43, pp.198-206, 1995. 

[2] T. B. Nguyen and B. J. Oommen, “Moment-preserving 
piecewise linear approximations of signals and images,” 
IEEE Trans. PAMI, vol.19, pp.84-91, 1997. 

[3] Y. V. Zakharov and T. C. Tozer. Local spline approximation of 
time-varying channel model. Electronics Letters, vol.37, pp. 
1408-1409, 2001. 

[4] D. Donoho and I. Johnstone, “Projection-based 
approximation and a duality with kernel methods,” Ann. 
Statist., vol. 17, pp. 58-106, 1989. 

[5] S. Celebi and J. C. Principe, “Parametric least squares 
approximation using Gamma bases,” IEEE Trans. Signal 
Processing, vol.43, pp.781-784, 1995. 

[6] D. Wedge, D. Ingram, and C. Mingham, “On global local 
artificial neural networks for function approximation,” IEEE 
Trans. Neural Networks, vol.17, pp.942-952, 2006. 

[7] V. Vapnik, S. Golowich, and A. J. Smola, “Support vector 
method for function approximation, regression estimation, 
and signal processing,” In: M. J. Jordan and S. A. Solla 
(eds.): Neural information processing system (NIPS), MIT 
press, Cambridge MA, pp.322-327, 1997. 

[8] S. Mallat, “A theory for multiresolution signal 
decomposition: The wavelet representation,” IEEE Trans. 
PAMI, vol.11, pp.674-693, 1989. 

[9] V. Vapnik, The nature of statistical learning theory, Springer 
Verlag, New York, 1998. 

[10] J. A. K. Suykens and J. Vandewalle, “Recurrent least squares 
support vector machines,” IEEE Trans. Circuits and System, 
vol. 47, pp.1109-1114, 2000. 

[11] J. A. K. Suykens, L. Lukas, and P. Dooren, “Least squares 
support vector machine classifiers: a large scale algorithm,” 
In: S. Golowich and A. J. Smola (eds.): European 
Conference on Circuit Theory and Design (ECCTD), Stresa, 
Italy, pp.839-842, 1999. 

[12] H. Yan, X. G. Zhang, and Y. D. Li, “Relation between a 
support vector machine and the least square method,” J. 
Tsinghua Univ. (Sci. & Tech.), vol.41, pp.77-80, 2001 (in 
Chinese). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Yatong Zhou    received the B.E. 
and M.E. degrees, from Chengdu Univ. 
of Technology in 1995 and 1999, 
respectively. He is currently pursuing the 
Ph. D. degree in the Dept. of 
Information and Information 
Engineering, Xi’an Jiaotong University, 
China. He is author or co-author of 18 
publications. His current research 

interests include machine learning, pattern recognition, and 
adaptive signal processing. He is a student member of IEICE. 
 
 
 

Taiyi Zhang    received the B.E. 
and M.E. degrees, from Xi’an Jiaotong 
University in 1967 and 1981, 
respectively. He went on to work at 
Xi’an Optics and Precision Mechanics, 
Academia Sinica, where he was a senior 
researcher on image processing and 
communication system until 1998. He 
started work as a professor in mobile 

communication and WLAN at Xi’an Jiaotong University in the 
spring of 1998. He is author or co-author of 106 publications. His 
current research interests include digital mobile communications, 
pattern recognition, and image processing. 
 
 
 
Liejun Wang   received the B.E. and M.E. degrees, from 
Xinjiang Univ. in 1994 and 2003, respectively. He is currently 
pursuing the Ph. D. degree in the Dept. of Information and 
Information Engineering, Xi’an Jiaotong University, China. He is 
author or co-author of 8 publications. His current research 
interests include digital wireless communications, OFDM 
systems, and signal detection.  


