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Summary 
This paper proposes a method for cooperative perception of 
partner robots on a sensor network. While the perception of 
a robot is restricted locally, the observation from an 
environmental system is global. Therefore, the robot can 
easily perceive the environment by receiving and 
integrating the global information from the environment. 
Furthermore, the size of robot can be small because the 
robot does not equip with many sensors if the 
environmental information is easily available through a 
wireless network. In this paper, we focus on the localization 
of human and robots by the integration of camera image and 
infrared line sensor, and we apply steady-state genetic 
algorithms for extracting humans and target objects from 
camera images. Furthermore, we propose a sensor network 
based on the cooperation between partner robots and 
environmental system. The proposed method is applied for 
a navigation task of partner robots interacting with humans 
and environmental system. Finally, we show several 
experimental results based on our proposed method. 
Key words: 
Sensor Networks, Partner Robots, Computational 
Intelligence, Visual Perception, Intelligent Space. 

1. Introduction 

Various types of pet robots, amusement robots, and partner 
robots have been developed for the next generation society. 
A human-friendly partner robot requires the capabilities of 
perceiving, acting, communicating, learning, and surviving, 
while interacting with a human. Especially, the robot should 
perform human recognition, voice recognition, and gesture 
recognition in order to realize natural communication with 
a human, but it is very difficult for the robot to realize these 
functions successfully in real world conditions. Two 
different approaches have been discussed to improve these 
capabilities and functions. One approach is to use 
conventional intelligent technologies based on various 
sensors equipped with a robot. As a result, the size of a 
robot becomes large. The other is to use ambient 
intelligence technologies of environmental systems based 
on the structured information available for a robot. The 

robot directly receives the environmental information 
through a local area network without measurement by the 
robot itself.  
 The research on wireless sensor networks 
combines three components of sensing, processing, and 
communicating into a single tiny device [1]. The main roles 
of sensor networks are (1) environmental data gathering, 
(2) security monitoring, (3) and object tracking. In the 
environmental data gathering, the data measured at each 
node are periodically transmitted to a database server. 
While the synchronization of the measurement is very 
important to improve the accuracy of data in the 
environmental data gathering, an immediate and reliable 
emergency alert system is very important in the security 
monitoring. Furthermore, the security monitoring does not 
need to transmit data to the emergency alert system, but the 
information on features or situations should be transmitted 
fast. Therefore, the basic network architecture is different 
between data gathering and security monitoring. On the 
other hand, the object tracking is performed through a 
region monitored by a sensor network. Basically, objects 
can be tracked by tagging them with a small sensor node. 
Radio frequency identification (RFID) tags are often used 
for the tracking system owing to low cost and small size.  
 Sensor networks and ubiquitous computing have 
been incorporated into robotics. These researches are called 
network robotics and ubiquitous robotics, respectively [2]. 
The ubiquitous computing integrates computation into the 
environment [3]. The ubiquitous computing is conceptually 
different from sensor network, but both aim at the same 
research direction. If the robot can receive the 
environmental data through the network without the 
measurement by sensors, the size of the robot can be easily 
reduced and the received environmental data are more 
precise because the sensors equipped in the environment is 
designed suitable to the environmental conditions. On the 
other hand, network robots are divided into three types; 
visible robots, unconscious robots, and virtual robots [4]. 
The role of visible robots is to act on users with their 
physical body. The role of unconscious robots is mainly 
used to gather environmental data, and this kind of 
unconscious robot is invisible to users. A virtual robot 
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indicates a software or agent in a cyber world. A visible 
robot can easily perceive objects by receiving object 
information from RFID tags, and this technology has been 
applied for the robot navigation and the localization of the 
self-position [5,6]. Furthermore, Hashimoto et.al proposed 
Intelligent Space (iSpace) in order to achieve 
human-centered services, and developed distributed 
intelligent network devices composed of color CCD camera 
including processing and networking units [7-9]. A robot 
can be used not only as a human-friendly life-support 
system, but also as an interface connecting the physical 
world with the cyber world [10-16]. Therefore, in this 
research, we focus on cooperative perceptual systems for 
human-friendly partner robots used as a communication 
interface. The cooperative perception can share 
environmental information among robots, and each robot 
send or receives environmental information according to 
the facing situation (Fig. 1). In this paper, we propose a 
cooperative perceptual system, and apply the proposed 
method to navigation method. 
 This paper is organized as follows. Section 2 
explains the hardware architecture of partner robots, image 
processing methods, and the sensor network among robots 
and their environment. Section 3 shows several 
experimental results of the proposed system, and discusses 
the effectiveness. 
 

 
Fig. 1  The cooperative perception based on the sensor network among 

robots and their environment. 

2. Sensor Network for Partner Robots 

2.1 Partner Robots 

We developed two different types of partner robots; a 
human-like robot called Hubot [18] and a mobile PC called 
MOBiMac [19] in order to realize the social 
communication with humans (Fig. 2). Hubot is composed 
of a mobile base, a body, two arms with grippers, and a head 
with pan-tilt structure. The robot has various sensors such 
as a color CCD camera, two infrared line sensors, 
microphone, ultrasonic sensors, and touch sensors 
(Fig.3(a)). The color CCD camera can capture an image 
with the range of -30° and 30° in front of the robot. Two 
CPUs are used for sensing, motion control, and wireless 
network communication. The robot can take various 
behaviors like a human. MOBiMac is also composed of two 
CPUs used for PC and robotic behaviors (Fig.3(b)). The 
robot has two servo motors, four ultrasonic sensors, four 
light sensors, a microphone, and CCD camera. The basic 
behaviors of these robots are visual tracking [20], map 
building [21], imitative learning [22,23], human 
classification [24], gesture recognition [25], and voice 
recognition. These robots are networked, and share 
environmental data each other. Furthermore, the 
environmental system based on a sensor network provides a 
robot its environmental data measured by the equipped 
sensors. Next, we explain the detail of human detection and 
object recognition for cooperative perceptual systems based 
on image processing. 
 

 

Fig. 2  Human-like partner robots; Hubot and PC type mobile robot; 
MOBiMac. 
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(a) Hubot 

 
(b) MOBiMac 

Fig. 3  Hardware architecture of partner robots. 

2.2 Image Processing for Human Detection and 
Object Recognition 

Pattern recognition has been performed by various methods 
such as template matching, associative memory, Hopfield 
neural networks, cellular neural networks, neocognitron, 
and dynamic programming (DP) matching [26-32]. In 
general, the pattern recognition is composed of two steps of 
target detection and classification. The aim of target 
detection is to extract a target from the image, and this 
includes the figure-ground problem [33]. The aim of the 
classification is to identify the target from candidates. 
Recently, evolutionary computation [34,35] has been used 
for image processing [36,37], and image processing is 
considered as a search in images. 

An image is taken from the CCD camera attached 
on the top of the robot. The robot must detect a human face 
and objects from complex background speedily for the 
natural communication with the human. Since the image 
processing takes much time and computational cost, the 
robot detects a moving object for the fast human search. 
First, the robot selects pixels by the differential extraction, 
and K-means clustering is used for the clustering of pixels 
to reduce the search area on the image. The K-means 
clustering is one of the most popular iterative descent 
clustering methods [38]. The inputs to K-means clustering 
are the central position of templates candidates; vj (=(pj,1, 
pj,2)), j=1,2, ... , n). When the reference vector of the ith 

cluster is represented by ri, the Euclidian distance between 
the jth input vector and the ith reference vector is defined as 

dj ,i = v j − ri  (1) 
where ri=(ri,1,ri,2) and the number of reference vectors 
(output units) is l. Next, the reference vector minimizing the 
distance dj,i is selected by  

cj = arg min
i

v j − ri{ } (2) 
where cj is the cluster number of the jth input. After 
selecting the nearest reference vector to each input, the ith 
reference vector is updated by the average of the inputs 
belonging to the ith cluster. This updating process is 
continued until all reference vectors are not changed at the 
clustering process. The reference vectors of K-means 
clustering are used for the search by a steady-state genetic 
algorithm (SSGA) for human detection and object detection. 
The colors for the search are extracted from an original 
image by using thresholds on HSV (Hue, Saturation, Value) 
color space. SSGA simulates the continuous model of the 
generation, which eliminates and generates a few 
individuals in a generation (iteration) [39]. In this paper, 
SSGA for human detection is called SSGA-H, while SSGA 
for object detection is called SSGA-O. SSGA can easily 
obtain feasible solutions through environmental changes 
with low computational costs. Additionally, although many 
face detection methods deal with one image, we use two 
continuous images to detect a moving object based on the 
differential extraction and a continuous search based on 
SSGA. It reduces computational costs and improves the 
accuracy of face detection in the image with complex 
background.  

We explain the detail of human detection. A 
human skin and hair colors are detected by using SSGA-H 
based on template matching. Figure 4 (a) shows a candidate 
solution of a template used for detecting a target. A template 
is composed of numerical parameters of gi,1

H, gi,2
H, gi,3

H, 
and gi,4

H. The number of individuals is G. In SSGA-H, only 
a few existing solutions are replaced by new candidate 
solutions generated by genetic operators in each generation. 
In this paper, the worst candidate solution is eliminated 
("delete least fitness" selection), and is replaced with the 
candidate solution generated by the crossover and the 
mutation. We use elitist crossover and adaptive mutation. 
The elitist crossover randomly selects one individual and 
generates an individual by combining genetic information 
from the randomly selected individual and the best 
individual. Next, the following adaptive mutation is 
performed to the generated individual, 

gi , j
H ← gi , j

H + α j
H ⋅

fmax
H − fi

H

fmax
H − fmin

H + β j
H⎛

⎝⎜
⎞
⎠⎟
⋅N 0,1( )

 (3) 
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where fi
H is the fitness value of the ith individual, fmax

H and 
fmin

H are the maximum and minimum of fitness values in the 
population; N(0,1) indicates a normal random value; αj

H 
and βj

H are the coefficient and offset, respectively. In the 
adaptive mutation, the variance of the normal random 
number is relatively changed according to the fitness values 
of the population. Fitness value is calculated by the 
following equation, 

fi
H = CSkin

H + CHair
H +η1

H ⋅CSkin
H ⋅CHair

H −η2
H ⋅COther

H

 (4) 
where CSkin

H, CHair
H and COther

H indicate the numbers of 
pixels of the colors corresponding to human skin, human 
hair, and other colors, respectively; η1

H and η2
H are 

coefficients. Therefore, this problem results in the 
maximization problem. By using SSGA-H, the robot 
detects a human face. Furthermore, the individuals with 
high fitness values are survived into the search of the next 
image, and this realizes a continuous search on multiple 
images.   
 

 
(a) 

 

(b) 

Fig. 4  (a) A template used for human detection in SSGA-H, (b) A template 
used for object recognition in SSGA-O. 

Next, we explain color-based object detection with 
SSGA-O based on template matching. The shape of a 
candidate template is generated by SSGA-O. We used an 
octagonal template of the angle fixed at 45° in order to 
improve the shape recognition capability. Figure 4(b) 
shows a candidate template used for detecting a target 
where the jth point gi,j

O of the ith template is represented by 
(gi,1

O+gi,j
Ocos(gi,j+1

O), gi,2
O+gi,j

Osin(gi,j+1
O)), i=1, 2, ... , n, 

j=1, ... , 2×m+2;  Oi (=(gi,1
O, gi,2

O)) is the center of a 
candidate template on the image; n and m are the number of 
candidate templates and the searching points used in a 

template, respectively. Therefore, a candidate template is 
composed of numerical parameters of (gi,1

O, gi,2
O,... , 

gi,2m+2
O). Its fitness value is calculated as follows. 
fi

O = CT arg et
O +ηO ⋅COther

O

 (5) 
where η1

O is a coefficient for penalty; CTarget
O and COther

O 
indicate the numbers of pixels of the colors corresponding 
to a target and other colors included in the template, 
respectively. This object recognition is used for detecting 
robots and landmarks in the environment. 

2.3 Cooperative Perception 

As the development of ubiquitous computing and sensor 
network, we should discuss the intelligence technologies in 
the whole system of robots and environmental systems. 
Here intelligence technologies related with measurement, 
transmission, modeling, and control of environmental 
information is called as ambient intelligence.  From the 
viewpoint of sensing, a robot is considered as a movable 
sensing device, and an environmental system is considered 
as a fixed sensing device. If the environmental information 
is available from the environmental system, the size of 
robots can be reduced, and flexible and dynamic perception 
can be realized by integrating environmental information. 

We explain how to share and exchange the 
information for cooperative perception among partner 
robots and environmental systems. Because it is very 
difficult to localize the self-location of the robot by the 
dead-reckoning using the internal sensors, the 
environmental system informs the robot of the position by 
detecting it in the environment. The robots send the 
information of the color and shape used for the detection by 
the environmental system, and also send its task to the 
environmental system. According to the task, the 
environmental system generates a plan and sends it back to 
the robot. In the following, we assume the navigation of a 
robot as one of important tasks.  

The robot receives the information on the colors 
and shapes of landmarks for visual navigation to the target 
point from the environmental system. The robot can reach 
the target point by sequentially tracing the landmarks one 
by one. Furthermore, a robot can directly receive the data 
measured by other robots, and the environmental system 
integrates these data to improve the quality of the 
observation. Actually, the environmental system updates 
the environmental map according to the data gathered by 
sensor nodes. 

3. Experimental Results 

This section shows several experimental results of the 
cooperative perception in the navigation of a partner robot; 
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MOBiMac through the interaction with its environment and 
other partner robot; Hubot. A color CCD camera is 
equipped with the ceiling of a room (Fig.5), and an infrared 
line sensor of a partner robot is used for localizing the 
position of human and robot (see Fig.14, 15). The line 
sensor can measure the distance up to 5,000 [mm] in 180 
directions. 

The number of reference vectors in K-means 
clustering after the differential extraction is 10. The 
population sizes of SSGA-H and SSGA-O are 50 and 40, 
respectively. The iteration (evaluation) times of SSGA-H 
and SSGA-O are 500 and 300, respectively. The threshold 
of the fitness value for detecting a human is set at 800. 
These parameters are decided by preliminary experiments. 
In the following, we show preliminary experimental results 
of human detection and object recognition, and an 
experimental result of navigation of the partner robot 
interacting with other robot and the environmental system. 
 

 

Fig. 5  The ceiling view from a color CCD camera. 

3.1 Human Detection and Object Recognition by 
SSGA 

We show experimental results of the image processing, first 
of all. The human detection is performed by the series of 
differential extraction, K-means clustering, and SSGA-H. 
Figure 6 shows human detection results from the robot view. 
In this figure, two people are detected from the time series 
of images. The fitness values of the best individuals in these 
results are 17296 and 13894, respectively. These values are 
larger than the predefined threshold for the human 
detection.  
 

 

Fig. 6  Human detection results from the robot view by SSGA-H. 

 

Fig. 7  Human detection results from the ceiling view by SSGA-H. 

 

Fig. 8  The history of the fitness value of the best individual in SSGA-H. 

 Next, Figs.7 and 8 show human detection results 
form the ceiling view and the history of the fitness value of 
the best individual in SSGA-H, respectively. In Fig.7 (a), 
because nobody is in the room, the fitness value of the best 
individual is 0 (Fig. 8). Afterward, when a person appears 
on the image (Fig.7 (b)), the fitness value is gradually 
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increasing, but the fitness value does not reach the 
threshold. As a result, a person is not yet recognized in this 
stage. Although the person is very small on the image 
(Fig.7 (c)), the person is successfully detected. By using the 
time series of images, a human is easily detected and the 
environmental map is sequentially updated.  

Next, we show experimental results of landmark 
recognition and object recognition. Since the aim of the 
robot is to reach a target point, we use simple landmarks for 
the robot navigation. We prepare 6 different types of 
landmark patterns with different color sets. These 
landmarks are put on walls or the plain side of desks and 
partitions for the localization. Figures 9 and 10 show 
several landmark recognition results and the history of 
fitness value of the best individual in each frame, 
respectively. First, since the robot does not detect the target 
landmark on the image (Fig.9 (a)), the fitness value of the 
best individual is still 0. Figure 11 shows object recognition 
results of the robot from the ceiling view. The leftmost to 
the rightmost images are an original image, differential 
extraction, human detection, object recognition, and total 
results, respectively. The experimental result shows that the 
environmental system can successfully detect both of 
human and robot at the same time. 

 

 

Fig. 9  Landmark recognition results by the robot using SSGA-O. 

 

Fig. 10  History of fitness value of the best individual in each frame in 
Fig.9 in 140 frames. 

 

Fig. 11  Human detection and object recognition results of the robot from 
the ceiling view. 

3.2 Navigation of The Partner Robot 

MOBiMac moves toward its target point by integrating the 
sensed data and the received data from the environmental 
system (Fig. 12). The environment system updates the 
environmental map according to the gathered data. Figure 
13 shows the update of the environmental map. The degree 
of color of squares corresponding to humans and robots is 
dark as the time step passes by. The map is updated 
according to human position and MOBiMac position 
detected by the CCD camera. The environmental system 
sends MOBiMac the landmark information based on the 
robot position by referring the environmental map. 
However, the position of a robot calculated by the CCD 
camera is not exact, because some occlusion may exist on 
the image. Therefore, we use the infrared line sensor of 
Hubot to improve the localization of MOBiMac. Figure 14 
shows the measurement result of the infrared line sensor. 
Here a black circle indicates the average distance of five 
times of measurement used as a steady state when the 
differential extraction does not detect moving objects. A 
red circle is depicted if the different between the measured 
distance and the steady state is larger than the threshold, 
which is considered as moving objects. The rightmost 
figure of Fig.15 shows the recognition result of person 
where the red large square and red small square indicate the 
position detected by image processing and the infrared line 
sensor, respectively. While the recognition results in fail 
owing to the separate use of image processing and the 
infrared line sensor in Figs.15(a) and (b), the integrated 
recognition by both sensors is successful in Fig.15 (c). By 
using this position information, the environmental system 
updates the environmental map for the robot navigation. 
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Fig. 12  Network between the environmental system and robots. 

 

Fig. 13  Environmental map and trajectory of MOBiMac. 

 

Fig. 14  Measurement result of the infrared line sensor. 

 

Fig. 15  Human detection and localization by image processing and the 
infrared line sensor. 

 Figure 16 shows experimental results of the robot 
navigation. The task given to MOBiMac is to deliver a 
letter to a target person. After sending the task information 
to the environmental system, MOBiMac receives a path to 
reach the target person (Fig.16 (a)). At first, MOBiMac 
searches for the first target landmark (Fig.16 (b)), and 
reaches it (Fig.16 (c)). And then, MOBiMac searches for 
the second target landmark, and approaches it (Figs.16 (d), 
(e)). After reaching the third target landmark (Figs.16 (f), 
(g)), MOBiMac finds the target person and delivers a letter 
to the person (Fig.16 (h), (i)). Figure 17 shows the 
trajectory of MOBiMac. On the other hand, the 
environmental system sequentially updates the 
environmental map (Fig.13). MOBiMac receives the 
self-position information by asking the environmental 
system about the self-position. 

4. Concluding Remarks 

In this paper, we proposed a method for cooperative 
perception in the sensor network based on the relationship 
between robots and environmental systems. First, we 
discussed the sensor network in distributed sensing of 
robots and environmental systems. Basically, a robot is 
considered as a movable sensing device, while an 
environmental system is considered as a fixed sensing 
device. By integrating these sensing data, the flexible and 
dynamic monitoring is realized. In the experimental result, 
we used the infrared line sensor of Hubot as a movable 
sensing device to make up for the accuracy of the 
localization by the color CCD camera equipped with the 
ceiling. These experimental results support the 
effectiveness of the proposed method. Finally, these results 
on the navigation task are not new in the field of robotics, 
and actually path planning and navigation can be performed 
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by the robot itself without help of the environmental system 
[40-42]. In this paper, we discussed the importance of the 
cooperation between robots and environmental systems, the 
design of robot in ambient intelligence, and the flexible and 
dynamic search of environmental information. 

As future works, we intend to develop the behavior 
coordination of multiple robots for the cooperative 
perception through interaction with the environmental 
system. Furthermore, we will discuss the communication 
method of a human with the environment in detail. 
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