
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

29

Programming Methodologies and Software Architecture

 A Rama Mohan Reddy Dr. M M Naidu Dr. P Govindarajulu

Sri Venkateswara University College of Engineering
Tirupati – 517 502., Andhra Pradesh., India.

Abstract
 Software quality is the major issues in software
engineering discipline. The complexity of a program forces for
better software design methodologies for enhancing the quality
of software system. Researchers and practitioners proposed
many program design methodologies. In the recent years, the
software architecture is evolved as a way of software
development that mainly focuses on computational units and
overall structure of system rather than lines-code, called
components. One of the characteristics of Software architecture
is that it provides a higher level of abstraction. At higher level of
abstraction, evaluation of quality attributes like reusability,
substitutability and reliability of the software systems become
easy. Software architecture supports many modeling techniques.
Designers use these models to understand the underlying design
issues, to evaluate functional and non-functional requirements
and to communicate design decision to its stakeholders. For the
better understanding of various aspects of Software Architecture
such as evolution, description language, styles, evaluation and
applicability, are discussed. This survey starts from various
software development methodologies and goes up to software
architecture.
Key words: Methodology, Software Architecture, Reusability,
design, Implementation.

Introduction

 Software Systems are being evolved and crossed
successfully so many hurdles. Complexity of the system
increases with size. Quality is plays important role in
software development as in section 2. In this, evolution
process we noticed from its evolution the importance of
Software development design methodologies. While the
demand for software systems from different applications,
the size and complexity of systems have been increased
and opened a door for new methodologies to deal with the
size and complexity. Quality, reusability, substitutability,
and modifiability are became very important factor in
software engineering. In section 3, we considered our
ideas of deriving the program from the problem domain.

 Though concepts are not new but we put our
ideas in a different way and shown diagrammatically for
better understanding the conversion process of

requirements. In section 4, the nature of the software has
been considered its properties were discussed. Section 5
covered all the conventional and unconventional design
methods and in section, 6 and 7 the component-based
software engineering and design patterns are discussed.
From section 8, onwards architectural evolution and
subsequent development in architecture-based concepts
are presented. In conclusion, we compared all the design
methods based on the degree of abstraction they support.

2. Evolution Process

 Engineering disciplines such as Civil, Electrical
and Mechanical Engineering’s have reliable methods for
analysis, design, fabrication, and Testing and are currently
being in use. Many changes have been taken place in the
above disciplines up to 1980. Most of the effort of people
had been expended on hardware and the engineers
struggled for improving reliability, quality, efficiency, and
usability, as those were major hurdles. Hardware had been
improved its stability and people started to develop large
and complex systems and they were proved to highly fault
tolerant and reliable. Hardware was the leader and a little
amount of software was used and embedded in it.
However, software engineering was a new discipline at the
beginning of the computers era and its design
methodologies were still in its infancy and biding state.
These applications were small in size and had a less
complexity. The developers had an idea that hardware had
more functionality and greater role in controlling and
coordinating activities than Software. They considered
programming activity as an art and it is not an engineering
activity.

3. The Program Development Concepts

 In 1980’s programmers were faced lots of
problems to develop large and complex programs because
the reliability and quality were major issues. This was due
to the lack of reliable and established methodologies for
developing programs. There was a great demand from the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

30

society for large, complex, quality and reliable software
systems. Only a few methods were available for
developing applications, finding its quality, and testing of
programs. Research shows that these systems lacked an
architecture and plan. There were many specifications,
and structures, but Integrity was lost. Despite all the
specifications and structures, systems were essentially
using Code and Fix. After some time, the fundamental
design problems were addressed [2].
 The primary use of a computer in an organization
is not exactly to substitute a person but to assist him in
many aspects. As shown in Figure (1), an employee, who
is working in an organization, has the responsibility of
performing a set of activities. As shown Figure (2), a
question naturally arises that what activities are to be
assigned to the computer. Here, there is a need to
consider two different domains for better understanding
the problem. As in Figure (3), first one is problem domain,
and second, computer domain.

Fig. 1 A typical organization without computers.

Fig. 2 The same organization with computers.

Fig. 3 A Mapping from Problem domain to Computer domain

 The Problem domain has well defined
infrastructure, like a language for communication,
procedures to conduct business, and expertise to cater the
needs of the business organization. The case with
computer domain is it has also a language and methods to
execute a predefined set of activities. But these two
domains are entirely different from each other. A
computer cannot understand directly the real world
activities of various organizations. However, to solve this
problem one possible solution is, to make the computers to
read and understand real world activities directly and
processes them or a developer learns some techniques that
enable him to directly communicating his intensions to a
computer system in machine understandable form. In this
context, we are precipitating the issue as problem to
program conversion. Then, how to extract the computer
based solution from problem space. A good mapping
method is required to bridge the gap between Problem and
Program as shown in figure (4) and (5).

Fig. 4. A Program = Data, Function, & Behavior of Application

Com-2
Emp-2

Com-3
Emp-3

 Computer DomainProblem Domain

Problem

(Or)
Need

main ()
{

//Program

}

Emp-1

Emp-2

Emp-6

Emp-3

Emp-5

Emp-4

INPUT

OUTPUT

Com-1
Emp-1

Com-6
Emp-6

Com-5
Emp-5

Com-4
Emp-4

Application Domain

main ()
{

//Program

}

Mapping

 Computer Domain

Data, Function,
& Behavior

HLL

Proble

m
(Or)
Need

INPUT

OUTPUT

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

31

Fig. 5. Program = Algorithm + Data Structures

 Primarily, the conversion methodology has two
important activities to be performed; one is to understand
the business and second is, take the abstraction of it. An
higher-level of abstraction makes procedures easy to
understand and implement. How an activity and its
associated data can take a smooth transition to become
itself an algorithm and data structures. In the real world,
people and some controlling machinery are performing
activities. In a typical organization, the software engineer
actually assigns a subset of activities of an employee to a
computer. Then the computer performs the defined tasks
and assists the people.

4. Nature of the Software and demand

 The basic computer executes the instructions
sequentially from the top to the bottom of the list.
Software is intangible artifact does not have shape and feel,
so, visualization of design is hard. Therefore, it is very
difficult to assess the software product for its quality
attributes and the amount work involved in it. This is one
of the reasons for underestimating the cost, time and effort
of program frequently. The software development process
is mainly labor-intensive work, requires skilled people.
Normally it is easy to develop a piece of software but it is
very difficult to understand and modify properly without
understanding its complete functional as well as technical
designs.
 At the end of the 1980’s due to computer
revolution and the effect of computer on the society, more
and more users have had shown interest for using the
computers in their areas, i.e., in business organizations,
scientific and engineering, had created a lot of demand for
both the software and hardware. Number people had
involved for developing large, complex, and qualitative
applications and caused to increase development cost. The
actual cost of software had become many more times than
hardware. The same hardware could be used differently in

different situations to meet various needs of the user using
different programs, e.g., Engineering, Scientific, Business,
Communication, Multimedia and Data Base Applications.
The aspect of software in a computer system was
becoming many times more important and demanded
careful attention. This intern demanded good and effective
methodologies to develop programs. Developing more
robust, complex, quality, error free and reliable programs
are posing many challenges on software development
methodologies and on developers.

 Researchers and Industry people proposed a
number of methodologies for developing large and
complex systems with high quality, and low-cost. Changes
in Business process, errors in the software, portability,
advancements in technology are some of the reasons for
modifications in software. Modifications are mandatory in
the long-lived and green software. Program modifications
with out much understanding of the business process and
its development methodology other wise they create chaos
in the application. The change must be managed properly.

 5. Program Design Methodologies

5. 1 Functional Programming

 The functional programming, in which a program
is viewed as a set of mathematical functions and equations,
describing a relation between input and output. Prolog
[Widstrm, 1987; Leler, 1987] supports this perspective.
This programming method has different levels of
abstraction as shown in figure (6).

Fig. 6. Functional Programming and its mapping

Mapping Program
{
Program is
Viewed as
Mathematical
functions

}

 Computer DomainApplication Domain

Problem

(Or)
 Need

Set of Equations
describing a relation
between input and
output

Algorithm and
Data Structures

Problem

(Or)
 Need

HLL
main ()
{

//Program

}

 Computer DomainApplication Domain

Mapping

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

32

5. 2 Procedural Programming

 In this methodology, “A program execution
is regarded as sequence of procedure calls and
manipulation of variables”, shown in figure (7).

Fig. 7 Procedural Programming transformations

5. 3 Structured Analysis & Design (SA / SD)

 In the 1970s, much attention was paid to the
notion of structured programming. The analysis consists
of interpreting the system concept or real-world
environment into data and control. Data flow diagrams are
used to represent its design as shown in figure (8). This
approach of designing software has limitations and not
fully catering the needs of the designers. Because of the
increased size and complexity of the program. One more
reason is that the designing and developing programs were
becoming a very large-scale activity in the software
development.

Fig. 8 Structured Analysis and Structured design

5. 4 The Jackson System Development (JSD)

 In this method, the software development
focuses on to construct a physical model of the real world.
According to requirements, the functions can be added or
changed but the physical model remains the same. As in
figure (9) a program execution is regarded as a physical
model, simulating the behavior of either a real or an
imaginary part of the world.

Fig. 9 The concept Jackson System Development

5. 5 Formal Methods

 Formal Methods (FM) consists of a set of
techniques and tools based on mathematical modeling and
formal logic. Those are used to specify, verify
requirements and design of a computing systems. Some
developers find that it can reduce overall development life
cycle cost by eliminating many costly defects prior to
coding. The concept is shown in figure (10).

Fig. 10 The principle behind the Formal Methods

Mappin Program
{
Emphasis
more on
functionalit
y than data
}

 Computer DomainApplication Domain

Problem

(Or)
 Need

Mapping Program {
Program is
viewed as
sequence of
procedure
calls and
manipulation
of variables
}

 Computer DomainApplication

Problem

(Or)
Need

Interpreting real-
world into data,
function and control

Mapping Program {

Simulating the
behavior of
either a real
world or
Imaginary part
of the world

}

 Computer DomainApplication Domain

Problem

(Or)
Need

Software
development focuses
on Construction of a
physical model of
the real world

Mapping Program
{
Mathematic
al modeling
techniques
to design
programs
}

 Computer DomainApplication Domain

Problem

(Or)
 Need

Techniques based
on mathematical
modeling and
formal logic

Set of Variables
and Set of
Procedures

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

33

5. 6 Object-Oriented Analysis and Design

 Software development requires an introduction of
a way of thinking that is how to solve the problem using
the underlying conceptual framework. The primary
advantages of OOP are real world apprehension, stability,
reusability of designs and implementations. The OOP is
close to the natural perception of real world [Krogdahl and
Olsen, 1986]. If the programs are implemented in a natural
way that they are much closer to the real world aspects,
then programs are easy to write, understand and modify.
This methodology has higher level of abstraction. Software
activities and its types of artifacts are software
architecture elements and reusable design aspects. The
analysis first finds objects in the problem space, describes
them with attributes, adds relationships, refines them into
super, sub-types, and then defines associative objects

 The Object-Oriented programming provides a
natural framework for modeling the application domain.
Object-Orientation is a new paradigm that is viewed by
many as the best solution to most large and complex
problems. Advantages of modeling are the real world into
objects is thought to follow a more natural human thinking
process shown in figure (11).

Fig. 11 Object Oriented Programming

5. 7 Aspect-Oriented Programming (AOP)

 AOP is merely another patch to cover one of
OOP's numerous shortcomings. First, isolate everything
into a tiny package, relate and share things and make
dynamic tags at runtime [7].

6. Component-based Software development

 . The idea of component-based software
engineering has been driven to the point of advocating
construction of systems by simply assembling existing
commodity components. Others develop those
components for general use [8, 9, and 10]. For the same
reasons there is also a growing interest in middleware
solutions, either Object-Oriented ones [11, 12, 13, 14, 15,
16] or message-oriented ones [17]. The conversion process
has been shown in figure (12).

Fig. 12 Component-Based System Development

7. Design patterns

 Object-Oriented approach is one of the best
software design methodologies, are suitable for designing
small scale and very large-scale programs. It has the
features of extending data types and reuse of code and
data structures. Object-Oriented approach has greater
support for reuse and reusability. Designing frameworks
promote reuse. Designing frameworks addresses a
specific problem domain at code level. Further, as shown
in figure (13), one-step ahead designing reusable design
aspects is challenging one. Some of the design problems
in very large-scale programming are solved by using the
design patterns as building blocks. Design patterns allow
developers for reusing successful designs and architectural
designs in their new design solutions [18].

Mapping Program
{
Components
and its
interfaces and
code for
integration
}

 Computer DomainApplication Domain

Problem
(Or)
 Need

Mapping
Program
{
Object creation,
manipulation.
Objects carry
data and
responsibilities
}

Computer Domain Application Domain

Problem

(Or)
 Need

Identification of
Objects and
allocation of
functions and data

Assembling
existing
commodity
components-
Reuse - COTS

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

34

Fig. 13 Design patterns in Software Development

8. Evolution of Software Architecture

 Software architecture is a composition of
software structural elements, i.e., Components, connectors
and Constraints and the rationale. It includes the
organization of components, component interactions, the
granularity of interactions and the basis for software
architecture to form a system. An architectural style is
characterized by type of fundamental patterns of control
and data flows, functions allocated to various components,
types of connectors [19], and types of constraints. The
conceptual separation between what and the how applies
to the software architecture. Software architecture is
concerned with the what. The notion of architecture is a
common description of a class of systems [6].

 In 1968, Edsger Dijkstra stated, “How software is
partitioned and structured as opposed to simply
programming to produce a correct result” [Dijkstra, 1968].
Dijkstra introduced the idea of a layered structure. David
Parnas called it as information hiding [20]. The principle
of using an element via its interface only and some
observations of the various structures to be found in
software systems [Parnas, 20, 74, 76, 21]. Parnas [1976]
recognized that the structure of a system influences the
qualities of that system. What exactly constitutes the
interface to software elements are names of the programs
and parameters, they take. Architectures cannot be

understood except in light of the business issues that
spanned there and see the ways to analyze architectures
without waiting for the system to be built. The software
architecture provides a higher level of abstraction for
dealing with the complexity of the systems very easily. In
1972, Parnas [36] described the use of modularization and
Information hiding as a means of high-level system
decomposition to improve flexibility and
comprehensibility. In 1974, Stevens et al, introduced the
notions of module coupling and cohesion to evaluate
alternatives for program decomposition.

9. Software Architecture

 Most early research on software architecture was
concentrated on design methodologies. Object-Oriented
Design [3] advocates a way to structure problems that
leads naturally to an object-based architecture. One of the
first design methodologies to emphasize design at the
architectural level is the Jackson System Development [4].
There has been some initial work at investigating
methodologies for the analysis and development of
architectures, Kazman et al., have described design
methods for eliciting the architectural trade-off analysis
via ATAM[1999].

 A shown in figure (14), Perry and Wolf [22]
define software architecture as set of architectural
elements and rationale. The rationale provides the
underlying basis for the software architecture for choice of
architectural style, the choice of elements and the form [6].
Rationale is an important aspect of software architecture
research and of architectural description in particular.
Perry, Wolf [22], Garlan, and Mary Shaw in 1993,
described software architecture as system structure.
Software architecture is collection of components, and
connectors. Mary Shaw et al [23] defined software
architecture as s system in terms of components and their
interactions

Mapping Program
{
Reusable
designs to
Algorithms
and data
structures
}

 Computer DomainApplication Domain

Problem
(Or)
 Need

Designing reusable
design aspects of
Programs

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

35

Fig. 14 Architecture-Based Software Development

Fig. 15. Software Development Life Cycle and Architectural Systems

Mapping

Program
{

Run-time
functional

Units

}

Application Domain

Problem
(Or)
 Need

 Identification and
Design of
Components,
Connectors and
Configurations

 Computer Domain

Architecture Requirements,
Analysis, Design, evaluation

and assessing Quality
Attribute

Business Analysis Design Construction Testing

Algorithms And
Data Structures Then
Components, Connectors.

Lines-Of-Code to Computational
Units. Run-Time Architecture and
Components, Connectors

Conventional
SDLC

Software Architecture Building Blocks
 Components Connectors and

configuration

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

36

Fig. 16 Software Architecture Development Life Cycle (S A D L C)

 In addition to specifying the structure and
topology of the system, the architecture shows the
intended correspondence between the system requirements
and element of the constructed system [22 and 6]. Shaw
and Garlan [24] further elaborated this definition.
Additional rationale for distinguishing configurations
within architectural description languages is presented in
Medvidovic and Taylor [25]. Perry and Wolf [22] define
processing elements as “transformers of data,” while Shaw
et al. [1995] describe components as “the locus of
computation and state.” This is further clarified in Shaw
and Clements [1997]. A component is a unit of software
that performs some function at run-time.

 In figures (15) and (16), we have not considered
the formal representation of process models like Waterfall
model or linear sequential model approaches, but a life-
cycle view of implementing different phases of software
development considered generally. We are trying to show
and understand software architecture and it is Life-Cycle
in the Software Development Process as Software
Architecture Development Life Cycle (SADLC).

10. Architectural Description Languages
(ADL)

 An ADL is, according to Medvidovic and Taylor
[25], a language that provides features for the explicit
specification and modeling of a software system’s
conceptual architecture, including at a minimum;
components, component interfaces, connectors, and
architectural configurations. Darwin’s interesting qualities

are that it allows the specification of distributed
architectures and dynamically composed architectures [26].
Like design methodologies, ADLs often introduce specific
architectural assumptions that may affect their ability to
describe some architectural styles, and may conflict with
the assumptions in existing middleware [27].

11. Software Architectural Styles

 An Architectural Styles increase the abstraction.
A software architecture description defines the structure
(high-level design) of a software system in terms of
components and relationships. Styles are mechanisms for
categorizing architectures and for defining their common
characteristics [27].

12. Conclusion

We have discussed briefly the evolution of
methodologies. First extension of this work is detailed
survey on software architectures. In functional
programming the activities and data are considered from
problem domain. In Object-Orientation the data object are
considered as main computational units. Similarly to
Object-Orientation in case of software architecture we are
trying to understand and study how to identify and
extract the architectural elements from real world problem
domain so that the real world components reflect in
Analysis, Design and Code. In this direction we are
proposing a Software Architecture Development Life
cycle (SADLC) in order to study and understand the
Architectural issues in problem domain and
implementation of architectures. In each methodology

Implementation of Architectures

Analysis of Architectural Requirements

Business Architectures

 Design of Architectures

Testing of Architectures

 From SDLC

Proposed
Concept of

SADLC

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

37

every author directly or indirectly tried to enhance the
abstraction for making programming job easy. Parts of the
material have been considered from research article, and
from the World Wide Web. I express sincerely my thanks

to all of the authors of the article for their guidance in
understanding properly the software architecture.

Table 1. Summary of Methodologies

METHODOLOGY/ PROGRAMMING

ABSTRACTION LEVELS DEGREE OF
ABSTRACTION

Functional Programming The level of abstraction is low.. 3
Procedural Programming The level of abstraction has been increased to procedures. 4
Structured Analysis and Design Interpreting the real world into data and control flow. 6
Jackson System Development Simulated - abstraction 5
Formal methods mathematical abstractions 3
Object-Orientation The programs are closer to the real world 7
Component-based Software Development Assembling from existing components. 7
Design patters Designing reusable design aspects. 4

Software Architectures
8

ADLs Description of Architectures in UML 6
Styles Interfaces and connections form a style. 6
Views Increase the abstraction 7
Quality attributes Abstraction specification aspects -
*** Assuming that an abstraction rating is given on a scale from 1 to 10 and 1 indicates the lowest. This is not formal but to understand
we used the above convention. This measurement is not based on any scientific method.

Reference:

[1] David Garlan and Mary Shaw. An Introduction to
Software Architecture, School of Computer science,
Carnegie Mellon University, Pittsburgh, PA 15213-
3890, January, 1994.

[2] Composition of Software Architectures. Ph.D.
Dissertation, University of Rennes I, France, Feb.
2002.

[3] G. Booch. Object-Oriented development. IEEE
Transactions on Software Engineering, 12(2), Feb.
1986, pp.211-221.

[4] J. R. Cameron. An overview of JSD. IEEE
Transactions on Software Engineering, 12(2), Feb.
1986, 222-240.

[5] M. Shaw. Comparing architectural design styles.
IEEE Software, 12(6), Nov. 1995, pp. 27-41.

[6] Roy T. Fielding. Software Architectural Styles for
Network-Based Applications. University of
California, Irvine. Phase II Survey, 1999.

[7] Object-Oriented beta Hand book. Www reference.
[8] Alan W. Brown and Kurt C. Wallnau. The current

state of CBSE, IEEE Software, 15(5):37-46,

September / October 1998.
[9] Paul C. Clements. From Subroutines to

Subsystems: Component-Based software
Development. The American programmers, 8(11),
November 1995. Also available from
http://www.sei.cmu.edu/publications/articals/cb-sw-
dew.html. This journal is now called “The Journal
of Information Technology Management”, and can
be found at http://www.cutter.com/itjournal.

[10] Oscar Nierstrasz, Simon Gibbs, and Dennis
Tsichritzis. Component-Oriented Software
Development. Comm. ACM, 35(9):160-165,
September 1992.

[11] David Krieger and Richard M. Adler. The
Emergence of Distributed component Platforms.
Computer, 31(3):43-53, March 1998.

[12] Microsoft Corporation. COM: Technical Overview.
[Online] Available at http:
//www.microsoft.com/com/wpaper/[2001 March
14], March 2001.

[13] Microsoft Corporation. DCOM: Technical
Overview. [Online] Available at

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

38

http://www.microsoft.com/com/wpaper/[2001,
March 14], March 2001.

[14] Object Management Group. The Common Object
Request Broker: Architecture and Specification –
Revision 2.3.1 [Online] Available at
http://cgo.omg.org/library/c2indx.html[2001, March
14], October 1999. Document formal /99-10-07.

[15] Object Management Group. CORBA Services.
[Online] Available at
http://www.omg.org/thchnology/documents/formal/
corba_services_available_electro.htm, [2001,
March 14], October 2000.

[16] Sun Microsystems. Enterprise JavaBeans
Technology. [Online] Available at http://
java.sum.com /products/ejb [2001, March 14],
March 2001.

[17] IBM Corporation. MQSeris Version 5. [Online]
Available at http://www-
4.ibm.com/software/ts/mqseries/v5/ [2000, March
4], March 2000.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software. PEARSON Education,
Eleventh Indian Reprint, 2003.

[19] Nenad Medvidovic, and Nikunj R. Mehta,
Understanding Software Connector Compatibilities
Using A Connector Taxonomy, SoDA’02
December 21-22, 2002, Bangalore, India.

[20] D. L. Parnas. On the criteria to be used in
decomposing systems into modules.
Communications of the ACM, 15(12), Dec. 1972,
pp.1053-1058.

[21] D. L. Parnas. Designing software for ease of
extension and contraction. IEEE Transactions on
Software Engineering, SE-5(3), Mar. 1979.

[22] D. E. Perry and A. L Wolf. Foundations for the
study of software architecture. ACM SIGSOFT
Software Engineering Notes, 17(4), Oct. 1992,
pp.40-52.

[23] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D.
M. Young, and G. Zelesnick. Abstractions for
software architecture and tools to support them.
IEEE Transactions on Software Engineering, 21(4),
Apr. 1995, pp. 314-335.

[24] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an emerging discipline. Prentice-
Hall, 1996.

[25] N. Medvidovic and R. N. Taylor. A framework for
classifying and comparing architecture description
Languages. In Proceedings of the 6th European
Software Engineering Conference held jointly with
the 5th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Zurich,
Switzerland, Sep. 1997, pp. 60-76.

[26] J. Magee and J. Kramer, Dynamic Structure in
software architectures. In Proceedings of the Fourth
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (SIGSOFT’96), San
Francisco, Oct. 1996, pp. 3-14.

[27] E. Di Nitto and D. Rosenblum. Exploiting ADLs to
specify architectural styles induced by middleware
infrastructures. In Proceedings of the 1999
International Conference on Software Engineering,
Los Angeles, May 16-22, 1999, pp. 13-22.

[28] M. Shaw. Toward higher-level abstractions for
software systems. Data & Knowledge Engineering,
5, 1990, pp. 119-128.

[29] D. Garlan and M. Shaw. An intro-duction to
software architecture. Ambriola & Tortola (eds.),
Advances in Software Engineering & Knowledge
Engineering, vol. II, World Scientific Pub Co.,
Singapore, 1993, pp.1-39.

[30] D. Garlan R. Allen, and J. Ockerbloom,. Exploiting
an architectural design environments. In
Proceedings of the Second ACM SIGSOFT
Symposium on the Foundations of Software
Enginee-ring (SIGSOFT’94), New Orleans, Dec.
1994, pp.175-188.

[31] M. Shaw and P. Clements. A field guide to box
logy; Preliminary classification of architectural
styles for software systems. In Proceedings of the
Twenty-First Annual International Computer
Software and Applications Conference
(COMPSAC’97),Washington, D. C, Aug; 1997, pp.
6-13.

[32] N. L. Kerth and W. Cunningham. Using patterns to
improve out architectural vision. IEEE Software,
14(1), Jan. 1997, pp. 53-59.

[33] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison Wesley, Trading,
Mass., 1998.

[34] P. B. Kruchten, The 4+1 View Model of
architecture. IEEE Software, 12(6), Nov. 1995, pp.
42-50

[35] C. Alexander, S. Ishikawa, M, Silver-stein, M.
Jacobson, I. Fiksdahl-King, and S. Angel. A Pattern
Language. Oxford University Press, New York,
1997.

[36] D. L. Parnas. On the criteria to be used in
decomposing systems into modules.
Communications of the ACM, 15(12), Dec, 1972,
pp. 339-344.

[37] D. Garlan, R. Allen, and J. Ockerbloom.
Architectural Mismatch or Why it is Hard to Build
Systems out of Existing Parts. In Proceedings of
the 17th International Conference on Software
Engineering, pages 179-185, April
1995. Also available from
http://www.cs.cmu.edu/afs,www://cs.cmu.edu/proje
ct/ able/paper-abstracts/arh-mismatch-icse17.html

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

39

[38] http://www.csl.sri.com/neumann.html.

About Authors

• A Rama Mohan Reddy, Associate Professor of
Computer Science and Engineering, Sri Venkateswara
University College of Engineering, TIRUPATI.
Completed His M.Tech computer Science from NIT
Warangal and His doing his PhD in Software
Architecture that is the sub field of Software
Engineering, in Sri Venkateswara University, Tirupati.,
India

• Dr. M M Naidu, Professor of Computer Science and

Engineering, Sri Venkateswara University college of
Engineering, TIRUPATI. He completed PhD from IIT,
Delhi, India.

• Dr. P Govindarajulu, Professor of Computer Science, Sri
Venkateswara University, TIRUPATI., INDIA. He completed
his PhD from IIT Mumbai., India

