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Summary 
This paper proposes a gradient ascent learning algorithm of the 
Hopfield neural networks for solving fixed linear crossing 
number problem. The fixed linear crossing number problem is an 
important problem in printed circuit board layout, VLSI circuit 
routing, and automated graph drawing. The objective of this 
problem which is shown to be NP-hard is to embed the edges so 
that the total number of crossings is minimized. The proposed 
algorithm uses the Hopfield neural network to get a near-minimal 
edge crossings, and increases the energy by modifying weights in 
a gradient ascent direction to help the network escape from the 
state of the near-minimal edge crossings to the state of the 
minimal edge crossings or better one. The proposed algorithm is 
tested on complete graph. We compare the proposed learning 
algorithm with some other existing algorithms. The experimental 
results indicate that the proposed algorithm could yield optimal 
or near-optimal solutions and outperforms the other algorithms. 
Key words: 
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Introduction 

Fixed linear crossing number problem [1] is a 
representative subproblem of graph layout problem. In this 
problem, the vertex order is predetermined and fixed along 
the note line and each edge is drawn as an arc in one of the 
two pages. The objective of this problem is to embed the 
edges so that the total number of crossings is minimized. 
This problem has important applications in printed circuit 
board layout, VLSL circuit routing, and automated graph 
drawing. In the layout of printed circuit boards, for the 
case of non-insulated wires, overlapping wires between 
electrical components may cause short circuits and thus are 
to be avoided as much as possible [2]. Similar 
considerations also hold for the design of VLSI circuits [3]. 
Also, automatic graph drawing systems make use of 
crossing reduction techniques to display graphs which are 
aesthetically pleasing and more comprehensible [4]. 

The fixed linear crossing number problem is NP-hard 
[1]; hence researches have focused on finding efficient 
heuristics or on methods for special families of graphs. 
Several heuristic have been presented. In 1984, Bhatt and 
Leighton [5] proposed a bisection heuristic using a 

straightforward divide-and-conquer approach. In 1996 
Shahrokhi et al. [6] proposed a one-page heuristic. For 
solving such problems, the Hopfield neural networks [7]-
[10] constitute an important avenue. Using the neural 
network techniques, Cimikowski et al. [11] proposed a 
parallel algorithm for crossing number problem. 
Unfortunately, due to its inherent local minimum problem 
and sensitivity to parameter values, the rate to get the 
minimal crossings number using Hopfield network is very 
low, and performance of the algorithm becomes poorer 
with large problem. This may be improved by some more 
sophisticated architecture, such as simulated annealing 
(SA) [12]. It could be described as a randomized scheme, 
which reduces the risk of getting trapped in local minima 
by allowing moves to inferior solution. Simulated 
annealing is a powerful method for solving local minima, 
but it always requires more iterations than exhaustive 
search to find a good solution [13]. 
  In this paper we present a parallel algorithm for fixed 
linear crossing number problem based on gradient ascent 
learning of the Hopfield networks. The learning algorithm 
has two phases, the Hopfield network updating phase and 
the gradient ascent learning phase. The first phase uses the 
Hopfield network to decrease the energy in state domain 
and find a near-minimal crossings number. The second 
phase intentionally increases the energy of the Hopfield 
network by modifying parameters in weight domain in a 
gradient ascent direction, thus making the network escape 
from the near-minimal crossings number (i.e., a local 
minimum) which the network once falls into in the phase 
one. The proposed algorithm is tested on complete graph 
and compared with some other existing algorithms. The 
experimental results indicate that the proposed algorithm 
could yield optimal or near-optimal solutions and 
outperform the other algorithms. 

2. Hopfield Neural Network Updating Phase 

We use standard graph-theoretic terminology such as that 
given in [14]. In fixed linear crossing number problem, the 
crossing number, )(Gυ , of a graph G(V, E) is the 
minimum number of edge crossings required in any 
drawing of G in the plane. This problem is similar to graph 
planarization problem [15]. Figure 1 show the fixed linear 
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embedding of complete graph K6. In 2-page drawing of 
this problem, edge is embedded in upper page or lower 
page. Then any pair of edges ij and kl cross in a drawing 
iff i<k<j<l and both lie in the same page as shown in Fig. 2. 
In [11] Cimikowski et al. used 2m neurons to establish a 
parallel algorithm for this problem, where m is the number 
of edges of graph G(V, E). In this paper, we show a new 
Hopfield neural network representation for this problem. 
We use neuron yij express the edge between the ith and jth 
vertices. The state yij=1 indicates that the edge between the 
ith and jth vertices is embedded in upper page and state 
yij=0 indicates that the edge is embedded in lower page. 
The number of edges in a given graph determines the 
number of neurons required. Thus in our Hopfield neural 
network representation, only m neurons are used, where m 
is the number of graph G(V, E). Furthermore, the no 
partition and the double partition violation are avoided. 
Thus the fixed linear crossing number can be 
mathematically stated as finding the minimum of the 
following objective function: 
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gij represent whether edge between vertex #i and vertex #j 
exist or not.  
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Then the energy function for the fixed linear crossing 
number problem is given by:  
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where A is a coefficient. 
Note that the standard energy function of the Hopfield 

network can be written as follow:  
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where wijkl is weight of a synaptic connection from the kl# 
neuron to the ij# one, hij is external input of neuron #ij and 
is also called threshold. 
For the fixed linear crossing number problem, the 

resulting weight and threshold can now be obtained by 
equating the energy specified by Eq.(5) with the energy as 
in Eq.(4). The weight of the Hopfield network is 

klijklijklij dgAgw ,, 2−=                                                       (6) 
Using Eq.(2) and Eq.(3) we can see that wij,ij=0 and 

wij,kl=wkl,ij. The thresholds become:  
klijklijij dggh ,=                                                                (7) 

The equations of motion are:  

 

Fig. 1  Fixed linear embedding of the complete graph K6 with: (a) 4 
crossing; (b) crossing number 3)( 6 =Kv . 

 

Fig. 2  Edge crossing condition i<k<j<l. 
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The sigmoid function is used as input/output function.  
( )( )Tx

ij
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where T is a parameter called temperature parameter. It is 
proved by Hopfield [8] that such network could be used as 
an approximate method for solving 0-1 optimization 
problems because provided the weights are symmetric 
(wij,kl=wkl,ij), the network converges to a minimum of 
energy function. Furthermore, if there are no self-
connections (wij,ij=0), in the high-gain limit of the 
activation function these minima will be at or near a vertex 
of {0, 1}n. 
The Hopfield network updating procedure can be viewed 

as seeking a minimum in a mountainous terrain. Thus, in 
the first phase we can find the solution to the fixed linear 
crossing number problem simply by observing the stable 
state that the Hopfield network reaches. Because in our 
Hopfield network representation, the constraint condition 
is avoided, the solution found in this phase is a feasible 
solution. Unfortunately, the quality of solution is not very 
good; since the Hopfield network will attempt to take the 
best path to the nearest minimum, whether global or local. 
If a local minimum is reached, the network will fail to 
update. It is usually difficult for the Hopfield network to 
find the minimal crossing number which corresponds to 
the state of global minimum. We now propose a learning 
method in order to help the network get out from a local 
minimum to the global minimum or a better local 
minimum. 
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3. The Gradient Ascent Learning Phase 

In the section 2, we have described the neural network 
representation for fixed linear crossing number problem. 
Using the Hopfield network updating we can find a local 
minimum or a global minimum of the energy function. 
However, it is usually difficulty for the network to find the 
global minimum because of the inherent local minimum 
problem of the network. In this section we propose a 
learning algorithm which can help the network get out 
from a local minimum to the global minimum. In order to 
explain the learning method, we use a two-dimensional 
graph (Fig. 3) of energy function with a local minimum 
and a global minimum. The energy function value is 
reflected in the height of the graph. Each position on the 
energy terrain corresponds to a possible state of the 
network. For example, if the network is initialized onto the 
mountainous terrain A, the updating procedure of the 
Hopfield network makes the state of network move 
towards a minimum position and reach a steady state B 
(Fig. 3(a)). 
Because the weights and the thresholds of the Hopfield 

network determine the energy terrain, we can change the 
weights and the thresholds to increase the energy at the 
point B so as to fill up the local minimum valley and 
finally drive the point B out of the valley. Here, suppose 
that a vector vv  corresponds to the weights and the 
thresholds of the Hopfield network. Since for a parameter 
vector vv , the learning requires the parameter change to be 
in the positive gradient direction, we take:  

)(vev rv ∇=Δ ε                                                                (10) 
where ε  is a positive constant and e∇  is the gradient of 

energy function e with respect to the parameter vector vv  in 
the state B. Applying this learning rule (Eq.(10)) to the 
fixed linear crossing number problem, we then obtain:  
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where, p and q are small positive constants and yij, ykl 
correspond to the state of B. 
Now we show that after we change the weights and the 

thresholds according to Eq.(11)-Eq.(14), point B will be 
on the slope of the valley. Suppose ybij represent the state 
of point B, yPij represent the state of any point P of energy 
terrain, then the change of energy in point P by the 
learning rule (Eq.(11) - Eq.(14)) will be:  

 

Fig. 3  The conceptual graph of the relation between energy and state 
transition in the learning process of the Hopfield network. 
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Because point B is a minimum of energy function and the 
output of neuron in point B is at or near 0 or 1 [8], from 
Eq.(15), we can know easily that the change of energy is 
largest when point P is at the same point as point B, and 
the larger the difference of state between point P and point 
B is, the smaller energy changes in point P. Thus, we can 
see that the valley will be filled up in a most effective way. 
In general, point B may become a point on the slope of the 
valley. 
Thus, the learning (the second phase ) makes the previous 

stable state B becomes a point on the slope of a valley 
( B’ ). After updating of the Hopfield network with the 
new weights and the new thresholds in the Hopfield 
network updating phase again, point B’ goes down the 
slope of the valley and reaches a new stable state C (Fig. 
3(b)). Thus, the Hopfield network updating (Phase 1) and 
the gradient ascent learning (Phase 2) in turn may result in 
a movement out of a local minimum, and lead the network 
converge to a global minimum or a new local minimum 
(Fig. 3(c) and (d)). 

4. Algorithm 

The following procedure describes the proposed algorithm. 
Note that there are two kinds of conditions for end of the 
learning. One has a very clear condition, for example, the 
N-queen problem in which the energy is zero if the 
solution is the optimal. Another one has not a clear 
condition, for example, the travelling salesman problem 
and the fixed linear crossing number problem in which the 
energy is not zero even the solution is the optimal. For the 
latter case, we have to set a maximum number of the 
learning (learn_limit) in advance. Learning stops if the 
maximum number of learning is performed. In general, we 
can determine the value of learn_limit according to the 
allowable computation time and the complexity of the 
problem. For the fixed linear crossing number problem, we 
found that the network can always find good solutions 
within 5 learning times; therefore, we selected 10 as the 
maximum number of learning time in our simulations. If 
the learn_limit is supposed to be the maximum number of 
learning times for the system termination condition, we 
have,  

1. Set learn_time=0 and set A and learn_limit.  
2. Randomize the initial values of each neuron 

ijy  in the 

range of 0.0 to 1.0. 

Table 1: Simulation results on complete graphs 

Number of Crossing found by different algorithm graph
Opt 1-page Bisect Neural Learning

K5  1  1  1  1  1 
K6  3  3  4  3  3 
K7  9  9  11  9  9 
K8  18  19  19  18  18 
K9  36  36  42  36  36 
K10  60  62  75  60  60 
K11  100  100  128  100  100
K12  150  154  174  150  150
K13 Unknown  265  277  255  255

 
3. The updating procedure is performed on the Hopfield 

network with original weights and thresholds until the 
network reaches a steady state (Phase 1). 

4. Use Eq. (11)-Eq.(14) to computer the new weights 
and the new thresholds (Phase 2). 

5. The updating procedure is taken on the Hopfield 
network with the new weights and thresholds until the 
network reaches a steady state. 

6. In order to avoid the shift of the state of the global 
minimum to a specific problem, the updating 
procedure on the Hopfield network may be re-
performed with original weights and thresholds until 
the network reaches a new steady state. 

7. If the new steady state is better than the old one then 
the old state is replaced by the new state using the 
steady state obtained from step 6. 

Increment the learn_time by 1. If learn_time=learn_limit 
then terminate this procedure, otherwise using the new 
steady state obtained from step 5, go to the step 4 

5. Simulation and Results 

The proposed learning algorithm was experimented on PC 
Station (Pentium4, 1500MHz) to several complete graphs. 
Simulations refer to parameter set at A=1.0. In the 
experiments learn_limit was set to 10. The initial values of 
neurons were randomized in the range of 0.0 to 1.0. To 
evaluate our results, bisection heuristic [5], one-page 
heuristic [6] and Cimikowski et al’s parallel algorithm [11] 
were also executed for comparison. 
The simulation results were shown in Table 1. From this 

table, we can know that both Cimikowski et al’s algorithm 
and the proposed learning method found optimal solution 
or near-optimal solution. But in our simulations we found 
that the rate to find good solution of Cimikowski et al’s 
algorithm is very low. On the other hand, the proposed 
learning algorithm can find one hundred percent good 
solution.  
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Table 2: Simulation results for complete graph in 100 runs with different initial value 
Crossing Number found by 

Cimikowski et al’s Algorithm Crossing Number found by the proposed Learning Algorithm 
Graph 

Worst Avg Best Rate Worst Avg Best Rate Average 
Learning Times CPU Time(s) 

K5 1 1 1 100% 1 1 1 100% 0 0.01 
K6 4 3.58 3 42% 3 3 3 100% 0 0.01 
K7 11 10.01 9 37% 9 9 9 100% 0 0.01 
K8 24 19.77 18 19% 18 18 18 100% 0.65 0.01 
K9 46 38.91 36 44% 36 36 36 100% 0.45 0.01 

K10 72 63.6 60 12% 60 60 60 100% 1.11 0.01 
K11 118 108.48 100 29% 100 100 100 100% 1.02 0.01 
K12 184 165.76 150 13% 150 150 150 100% 1.05 0.01 
K13 267 239.23 225 18% 225 225 225 100% 1.36 0.02 

 
Table 2 shows the detail simulation results found by 

Cimikowski et al’s algorithm and the proposed learning 
algorithm in 100 runs with different initial value of neuron, 
where the worst solution, the average solution, the best 
solution and the rates of best solution were summarized. 
We also showed the average learning times and the CPU 
time of proposed algorithm to find the minimal crossing 
number. From this table, we can say that the proposed 
learning algorithm works better than Cimikowski et al’s 
algorithm. The reason why the proposed algorithm works 
better than Cimikowski et al’s algorithm are: (1) In [11] 
Cimikowski et al. used 2m neurons to establish their 
parallel algorithm, where m is number of edges of graph 
G(V, E). But in the proposed algorithm, we used only m 
neurons actually. Furthermore, in the proposed algorithm 
the no partition and the double partition violation were 
avoided. (2) In the proposed algorithm, we used the 
gradient ascent learning on the Hopfield network to help 
the network get out from the local minima. But in 
Cimikowski et al’s algorithm, if a local minimum is 
reached, their network will fail to update. 

6. Conclusions 

We have proposed a Hopfield network learning algorithm 
for fixed linear crossing number problem and showed its 
effectiveness by simulation experiments. The learning 
algorithm which is designed to minimize the crossing 
number, has two phases, the Hopfield network updating 
phase and the gradient ascent learning phase. In the first 
phase we implemented the Hopfield network for 
optimizing the energy function in state space. In the 
second phase we intentionally increased the energy of the 
Hopfield network by modifying parameters in weight 
domain in a gradient ascent direction, thus making the 

network get out from the near-minimal edge crossings (i.e., 
a local minimum). The proposed algorithm was tested on 
complete graph and compared with some other best 
existing algorithms. The experimental results indicated 
that the proposed algorithm could yield optimal or near-
optimal solutions and outperform the other algorithms. 
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