
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

59

Manuscript received November 5, 2006.
Manuscript revised November 25 , 2006.

A Parallel Algorithm for Fixed Linear Crossing Number Problem

Rong-Long Wang1 and Zheng Tang2

1Faculty of Engineering, Fukui University, Fukui-shi, Japan 910-8507
2Faculty of Engineering, Toyama University, Toyama-shi, Japan 930-8555

Summary
This paper proposes a gradient ascent learning algorithm of the
Hopfield neural networks for solving fixed linear crossing
number problem. The fixed linear crossing number problem is an
important problem in printed circuit board layout, VLSI circuit
routing, and automated graph drawing. The objective of this
problem which is shown to be NP-hard is to embed the edges so
that the total number of crossings is minimized. The proposed
algorithm uses the Hopfield neural network to get a near-minimal
edge crossings, and increases the energy by modifying weights in
a gradient ascent direction to help the network escape from the
state of the near-minimal edge crossings to the state of the
minimal edge crossings or better one. The proposed algorithm is
tested on complete graph. We compare the proposed learning
algorithm with some other existing algorithms. The experimental
results indicate that the proposed algorithm could yield optimal
or near-optimal solutions and outperforms the other algorithms.
Key words:
Fixed linear crossing number problem, Graph layout, NP-
complete problem, Hopfield neural network, Gradient ascent
learning

Introduction

Fixed linear crossing number problem [1] is a
representative subproblem of graph layout problem. In this
problem, the vertex order is predetermined and fixed along
the note line and each edge is drawn as an arc in one of the
two pages. The objective of this problem is to embed the
edges so that the total number of crossings is minimized.
This problem has important applications in printed circuit
board layout, VLSL circuit routing, and automated graph
drawing. In the layout of printed circuit boards, for the
case of non-insulated wires, overlapping wires between
electrical components may cause short circuits and thus are
to be avoided as much as possible [2]. Similar
considerations also hold for the design of VLSI circuits [3].
Also, automatic graph drawing systems make use of
crossing reduction techniques to display graphs which are
aesthetically pleasing and more comprehensible [4].

The fixed linear crossing number problem is NP-hard
[1]; hence researches have focused on finding efficient
heuristics or on methods for special families of graphs.
Several heuristic have been presented. In 1984, Bhatt and
Leighton [5] proposed a bisection heuristic using a

straightforward divide-and-conquer approach. In 1996
Shahrokhi et al. [6] proposed a one-page heuristic. For
solving such problems, the Hopfield neural networks [7]-
[10] constitute an important avenue. Using the neural
network techniques, Cimikowski et al. [11] proposed a
parallel algorithm for crossing number problem.
Unfortunately, due to its inherent local minimum problem
and sensitivity to parameter values, the rate to get the
minimal crossings number using Hopfield network is very
low, and performance of the algorithm becomes poorer
with large problem. This may be improved by some more
sophisticated architecture, such as simulated annealing
(SA) [12]. It could be described as a randomized scheme,
which reduces the risk of getting trapped in local minima
by allowing moves to inferior solution. Simulated
annealing is a powerful method for solving local minima,
but it always requires more iterations than exhaustive
search to find a good solution [13].
 In this paper we present a parallel algorithm for fixed
linear crossing number problem based on gradient ascent
learning of the Hopfield networks. The learning algorithm
has two phases, the Hopfield network updating phase and
the gradient ascent learning phase. The first phase uses the
Hopfield network to decrease the energy in state domain
and find a near-minimal crossings number. The second
phase intentionally increases the energy of the Hopfield
network by modifying parameters in weight domain in a
gradient ascent direction, thus making the network escape
from the near-minimal crossings number (i.e., a local
minimum) which the network once falls into in the phase
one. The proposed algorithm is tested on complete graph
and compared with some other existing algorithms. The
experimental results indicate that the proposed algorithm
could yield optimal or near-optimal solutions and
outperform the other algorithms.

2. Hopfield Neural Network Updating Phase

We use standard graph-theoretic terminology such as that
given in [14]. In fixed linear crossing number problem, the
crossing number,)(Gυ , of a graph G(V, E) is the
minimum number of edge crossings required in any
drawing of G in the plane. This problem is similar to graph
planarization problem [15]. Figure 1 show the fixed linear

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No. 11, November 2006

60

embedding of complete graph K6. In 2-page drawing of
this problem, edge is embedded in upper page or lower
page. Then any pair of edges ij and kl cross in a drawing
iff i<k<j<l and both lie in the same page as shown in Fig. 2.
In [11] Cimikowski et al. used 2m neurons to establish a
parallel algorithm for this problem, where m is the number
of edges of graph G(V, E). In this paper, we show a new
Hopfield neural network representation for this problem.
We use neuron yij express the edge between the ith and jth
vertices. The state yij=1 indicates that the edge between the
ith and jth vertices is embedded in upper page and state
yij=0 indicates that the edge is embedded in lower page.
The number of edges in a given graph determines the
number of neurons required. Thus in our Hopfield neural
network representation, only m neurons are used, where m
is the number of graph G(V, E). Furthermore, the no
partition and the double partition violation are avoided.
Thus the fixed linear crossing number can be
mathematically stated as finding the minimum of the
following objective function:

()∑∑ −−+
ij kl

klijklijklijklijklijklij yydggyydgg)1)(1(
2
1

,,
 (1)

where
klijd ,

 is crossing condition and can be described as:

⎩
⎨
⎧ <<<<<<

=
otherwise

jlikorljkiif
d klij 0

1
,

 (2)

gij represent whether edge between vertex #i and vertex #j
exist or not.

⎩
⎨
⎧

=
otherwise

existedgeijif
gij 0

#1 (3)

Then the energy function for the fixed linear crossing
number problem is given by:

()∑∑ −−+=
ij kl

klijklijklijklijklijklij yydggyydggAe)1)(1(
2 ,,

 (4)

where A is a coefficient.
Note that the standard energy function of the Hopfield

network can be written as follow:

∑∑ ∑−−=
ij kl ij

ijijklijklij yhyywe ,2
1 (5)

where wijkl is weight of a synaptic connection from the kl#
neuron to the ij# one, hij is external input of neuron #ij and
is also called threshold.
For the fixed linear crossing number problem, the

resulting weight and threshold can now be obtained by
equating the energy specified by Eq.(5) with the energy as
in Eq.(4). The weight of the Hopfield network is

klijklijklij dgAgw ,, 2−= (6)
Using Eq.(2) and Eq.(3) we can see that wij,ij=0 and

wij,kl=wkl,ij. The thresholds become:
klijklijij dggh ,= (7)

The equations of motion are:

Fig. 1 Fixed linear embedding of the complete graph K6 with: (a) 4
crossing; (b) crossing number 3)(6 =Kv .

Fig. 2 Edge crossing condition i<k<j<l.

kl
kl

klklijij hywdtdx += ∑ ,/ (8)

The sigmoid function is used as input/output function.
()()Tx

ij
ijey /1/1 −+= (9)

where T is a parameter called temperature parameter. It is
proved by Hopfield [8] that such network could be used as
an approximate method for solving 0-1 optimization
problems because provided the weights are symmetric
(wij,kl=wkl,ij), the network converges to a minimum of
energy function. Furthermore, if there are no self-
connections (wij,ij=0), in the high-gain limit of the
activation function these minima will be at or near a vertex
of {0, 1}n.
The Hopfield network updating procedure can be viewed

as seeking a minimum in a mountainous terrain. Thus, in
the first phase we can find the solution to the fixed linear
crossing number problem simply by observing the stable
state that the Hopfield network reaches. Because in our
Hopfield network representation, the constraint condition
is avoided, the solution found in this phase is a feasible
solution. Unfortunately, the quality of solution is not very
good; since the Hopfield network will attempt to take the
best path to the nearest minimum, whether global or local.
If a local minimum is reached, the network will fail to
update. It is usually difficult for the Hopfield network to
find the minimal crossing number which corresponds to
the state of global minimum. We now propose a learning
method in order to help the network get out from a local
minimum to the global minimum or a better local
minimum.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No. 11, November 2006

61

3. The Gradient Ascent Learning Phase

In the section 2, we have described the neural network
representation for fixed linear crossing number problem.
Using the Hopfield network updating we can find a local
minimum or a global minimum of the energy function.
However, it is usually difficulty for the network to find the
global minimum because of the inherent local minimum
problem of the network. In this section we propose a
learning algorithm which can help the network get out
from a local minimum to the global minimum. In order to
explain the learning method, we use a two-dimensional
graph (Fig. 3) of energy function with a local minimum
and a global minimum. The energy function value is
reflected in the height of the graph. Each position on the
energy terrain corresponds to a possible state of the
network. For example, if the network is initialized onto the
mountainous terrain A, the updating procedure of the
Hopfield network makes the state of network move
towards a minimum position and reach a steady state B
(Fig. 3(a)).
Because the weights and the thresholds of the Hopfield

network determine the energy terrain, we can change the
weights and the thresholds to increase the energy at the
point B so as to fill up the local minimum valley and
finally drive the point B out of the valley. Here, suppose
that a vector vv corresponds to the weights and the
thresholds of the Hopfield network. Since for a parameter
vector vv , the learning requires the parameter change to be
in the positive gradient direction, we take:

)(vev rv ∇=Δ ε (10)
where ε is a positive constant and e∇ is the gradient of

energy function e with respect to the parameter vector vv in
the state B. Applying this learning rule (Eq.(10)) to the
fixed linear crossing number problem, we then obtain:

klij
klij w

epw
,

, ∂
∂

=Δ (11)

ij
ij h

eqh
∂
∂

=Δ (12)

and

klij
klij

yy
w

e
−=

∂
∂

,

 (13)

ij
ij

y
h
e

−=
∂
∂ (14)

where, p and q are small positive constants and yij, ykl
correspond to the state of B.
Now we show that after we change the weights and the

thresholds according to Eq.(11)-Eq.(14), point B will be
on the slope of the valley. Suppose ybij represent the state
of point B, yPij represent the state of any point P of energy
terrain, then the change of energy in point P by the
learning rule (Eq.(11) - Eq.(14)) will be:

Fig. 3 The conceptual graph of the relation between energy and state
transition in the learning process of the Hopfield network.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No. 11, November 2006

62

∑∑

∑∑

∑∑∑

+⋅=

−−−−

+=Δ

ij
PijBij

klij
PklPijBklBij

ij
PijBijij

klij
PklPijBklBijklij

ij
Pijij

ij kl
PklPijklijp

yyyyyyp

yqyhyyypyw

yhyywe

)()()(
2

)()(
2
1
2
1

,

,
,

,

 (15)

Because point B is a minimum of energy function and the
output of neuron in point B is at or near 0 or 1 [8], from
Eq.(15), we can know easily that the change of energy is
largest when point P is at the same point as point B, and
the larger the difference of state between point P and point
B is, the smaller energy changes in point P. Thus, we can
see that the valley will be filled up in a most effective way.
In general, point B may become a point on the slope of the
valley.
Thus, the learning (the second phase) makes the previous

stable state B becomes a point on the slope of a valley
(B’). After updating of the Hopfield network with the
new weights and the new thresholds in the Hopfield
network updating phase again, point B’ goes down the
slope of the valley and reaches a new stable state C (Fig.
3(b)). Thus, the Hopfield network updating (Phase 1) and
the gradient ascent learning (Phase 2) in turn may result in
a movement out of a local minimum, and lead the network
converge to a global minimum or a new local minimum
(Fig. 3(c) and (d)).

4. Algorithm

The following procedure describes the proposed algorithm.
Note that there are two kinds of conditions for end of the
learning. One has a very clear condition, for example, the
N-queen problem in which the energy is zero if the
solution is the optimal. Another one has not a clear
condition, for example, the travelling salesman problem
and the fixed linear crossing number problem in which the
energy is not zero even the solution is the optimal. For the
latter case, we have to set a maximum number of the
learning (learn_limit) in advance. Learning stops if the
maximum number of learning is performed. In general, we
can determine the value of learn_limit according to the
allowable computation time and the complexity of the
problem. For the fixed linear crossing number problem, we
found that the network can always find good solutions
within 5 learning times; therefore, we selected 10 as the
maximum number of learning time in our simulations. If
the learn_limit is supposed to be the maximum number of
learning times for the system termination condition, we
have,

1. Set learn_time=0 and set A and learn_limit.
2. Randomize the initial values of each neuron

ijy in the

range of 0.0 to 1.0.

Table 1: Simulation results on complete graphs

Number of Crossing found by different algorithm graph
Opt 1-page Bisect Neural Learning

K5 1 1 1 1 1
K6 3 3 4 3 3
K7 9 9 11 9 9
K8 18 19 19 18 18
K9 36 36 42 36 36
K10 60 62 75 60 60
K11 100 100 128 100 100
K12 150 154 174 150 150
K13 Unknown 265 277 255 255

3. The updating procedure is performed on the Hopfield

network with original weights and thresholds until the
network reaches a steady state (Phase 1).

4. Use Eq. (11)-Eq.(14) to computer the new weights
and the new thresholds (Phase 2).

5. The updating procedure is taken on the Hopfield
network with the new weights and thresholds until the
network reaches a steady state.

6. In order to avoid the shift of the state of the global
minimum to a specific problem, the updating
procedure on the Hopfield network may be re-
performed with original weights and thresholds until
the network reaches a new steady state.

7. If the new steady state is better than the old one then
the old state is replaced by the new state using the
steady state obtained from step 6.

Increment the learn_time by 1. If learn_time=learn_limit
then terminate this procedure, otherwise using the new
steady state obtained from step 5, go to the step 4

5. Simulation and Results

The proposed learning algorithm was experimented on PC
Station (Pentium4, 1500MHz) to several complete graphs.
Simulations refer to parameter set at A=1.0. In the
experiments learn_limit was set to 10. The initial values of
neurons were randomized in the range of 0.0 to 1.0. To
evaluate our results, bisection heuristic [5], one-page
heuristic [6] and Cimikowski et al’s parallel algorithm [11]
were also executed for comparison.
The simulation results were shown in Table 1. From this

table, we can know that both Cimikowski et al’s algorithm
and the proposed learning method found optimal solution
or near-optimal solution. But in our simulations we found
that the rate to find good solution of Cimikowski et al’s
algorithm is very low. On the other hand, the proposed
learning algorithm can find one hundred percent good
solution.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No. 11, November 2006

63

Table 2: Simulation results for complete graph in 100 runs with different initial value
Crossing Number found by

Cimikowski et al’s Algorithm Crossing Number found by the proposed Learning Algorithm
Graph

Worst Avg Best Rate Worst Avg Best Rate Average
Learning Times CPU Time(s)

K5 1 1 1 100% 1 1 1 100% 0 0.01
K6 4 3.58 3 42% 3 3 3 100% 0 0.01
K7 11 10.01 9 37% 9 9 9 100% 0 0.01
K8 24 19.77 18 19% 18 18 18 100% 0.65 0.01
K9 46 38.91 36 44% 36 36 36 100% 0.45 0.01

K10 72 63.6 60 12% 60 60 60 100% 1.11 0.01
K11 118 108.48 100 29% 100 100 100 100% 1.02 0.01
K12 184 165.76 150 13% 150 150 150 100% 1.05 0.01
K13 267 239.23 225 18% 225 225 225 100% 1.36 0.02

Table 2 shows the detail simulation results found by

Cimikowski et al’s algorithm and the proposed learning
algorithm in 100 runs with different initial value of neuron,
where the worst solution, the average solution, the best
solution and the rates of best solution were summarized.
We also showed the average learning times and the CPU
time of proposed algorithm to find the minimal crossing
number. From this table, we can say that the proposed
learning algorithm works better than Cimikowski et al’s
algorithm. The reason why the proposed algorithm works
better than Cimikowski et al’s algorithm are: (1) In [11]
Cimikowski et al. used 2m neurons to establish their
parallel algorithm, where m is number of edges of graph
G(V, E). But in the proposed algorithm, we used only m
neurons actually. Furthermore, in the proposed algorithm
the no partition and the double partition violation were
avoided. (2) In the proposed algorithm, we used the
gradient ascent learning on the Hopfield network to help
the network get out from the local minima. But in
Cimikowski et al’s algorithm, if a local minimum is
reached, their network will fail to update.

6. Conclusions

We have proposed a Hopfield network learning algorithm
for fixed linear crossing number problem and showed its
effectiveness by simulation experiments. The learning
algorithm which is designed to minimize the crossing
number, has two phases, the Hopfield network updating
phase and the gradient ascent learning phase. In the first
phase we implemented the Hopfield network for
optimizing the energy function in state space. In the
second phase we intentionally increased the energy of the
Hopfield network by modifying parameters in weight
domain in a gradient ascent direction, thus making the

network get out from the near-minimal edge crossings (i.e.,
a local minimum). The proposed algorithm was tested on
complete graph and compared with some other best
existing algorithms. The experimental results indicated
that the proposed algorithm could yield optimal or near-
optimal solutions and outperform the other algorithms.

References
[1] S. Masuda, K. Nakajima, T. Kashiwabara, T. Fujisawa,
“Crossing minimization in linear embeddings of graphs,” IEEE
Trans. Comput. Vol.39, no.1, pp.124-127, 1990.
[2] F. W. Sinden, “Topology of thin film circuits,” Bell Sys.
Tech. J. XLV, pp.1639-1666, 1966.
[3] F. T. Leighton, “New lower bound techniques for VLSI,”
Math. Sys. Theory, vol.17, pp.47-70, 1984.
[4] R. Tamassia, G. Di Battista and C. Batini, “Automatic graph
drawing and readability of diagrams,” IEEE Trans. Sys., Man,
and Cyber., vol.18, pp.61-79, 1988.
[5] S. N. Bhatt and F. T. Leighton, “A framework for solving
VLSI graph layout problem,” J. Comput. & Sys. Sci. vol.28,
pp.300-343, 1984.
[6] F. Shahrokhi, L. A. Szekely, O. Sykora and I. Vrto,
“The book crossing number of a graph,” J. Graph Theory,
vol.21, no.4, pp.413-424, 1996.
[7] J.J. Hopfield, “Neural networks and physical systems
with emergent collective computational abilities.” Proc.
Nat. Acad. Sci. U.S., vol.79, pp.2554-2558, 1982.
[8] J.J. Hopfield, “Neurons with graded response have
collective computation properties like those of two-state
neurons.” Proc. Nat. Acad. Sci. U.S., vol.81, pp.3088-
3092, 1982.
[9] J.J. Hopfield and D.W.Tank, “ ‘Neural’ computation of
decisions in optimization problems,” Bio. Cybern., no.52,
pp.141-152, 1985.
[10] J.J. Hopfield and D.W.Tank, “Computing with neural
circuits: A model.” Science, vol.233, pp.625-633, Aug.8, 1986.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No. 11, November 2006

64

[11] R. Cimikowski and P. Shope, “A neural network algorithm
for a graph layout problem,” IEEE Trans on Neural Network,
vol.7, no.2, pp.341-345, 1996.
[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,
“Optimisation by Simulated Annealing,” Science, Vol.220,
pp.671-680, 1983.
[13] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated
Annealing: Theory and Applications. Kluwer, Dordrecht, 1988.
[14] F. Harary, Graph Theory, Reading, MA: Addison-wesley,
1969.
[15] R.Jayakumar, K.Thulasiraman, and M.N.S.Swamy,
“)(2nO algorithms for graph planarization,” IEEE Trans.
Computer Aided Design, Vol.8, No.3, pp.257-267, (1989).

