
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

65

* This work is supported by NSF of Hunan Province of China (05JJ30117).

Attaching Behavioral Contracts to Binary Components
for Supporting Reliable Reuse*

Yang Luo, Xiaohua Yan and Jie Liu

School of Computer Science and Technology, Nanhua University, Hengyang Hunan, P.R. China

Summary
Component contract, as an interface specification, is a good idea
for improving software quality. This paper describes the
technique of dynamically attaching behavioral contracts a
posteriori to binary component with no explicit contracts
discipline, and presents a model based on the Common Language
Infrastructure (CLI) to organize component contracts in the form
of metadata and to perform efficient runtime verification. Our
solution also gives a common understanding of behavioral
contracts in composition even if the binary component is
originally written in different programming languages. The
added contract information, being easily retrieved, has a separate
representation that provides flexibility, and results in raised
binary component dependability and correctness on reuse and
composition phase..
Key words:
components; contracts; reuse; composition; software quality;
metadata.

Introduction

In order to increase productivity and speed up the
development process, a large software system typically
consisting of multiple interacting components, should be
built through reuse rather than rewritten [1]. The resulting
component libraries can then be reused across many
different applications in the component-based
development world, and when the software is decomposed
into independently-developed third-party components, and
both the source code for the component and the formal
specification of the component are unavailable, constituent
component quality becomes one of key factors in build a
dependable software system. It is suggested that Meyer’s
Design by ContractTM can be used to deal with the
problem.

Contract is seen as a component interface specification,
which is made of assertions - Boolean expressions stating
individual semantic properties, between the component
and its environment, specifying what the component
provides its clients and what it requires from the
environment in which it executes [2]. More precisely, four
levels of contracts have been identified. They are syntactic,
behavior, synchronization, and quantitative [3]. These

contracts guarantee that methods are called properly and
provide appropriate results.

Although it is now universally recognized that DbC is an
important approach for improving software quality,
contracts are still not a part of modern software
engineering practice. Only Eiffel [4] language
incorporates behavioral contracts. Researchers have been
trying adding DbC to other programming languages such
as Java [5, 6, 7] and C++ [8], or to other framework such
as .Net [9, 10], and application developers are encouraged
to think over contracts in the design phase. But DbC is
seldom used in practice. One reason may be that average
programmers steer clear of formal interface specification
because writing and maintaining such specifications take a
lot of time, and it does not give an immediate, tangible
payoff. Therefore, we propose a model, which
automatically attaches contracts to binary component with
no explicit contracts discipline, to deal with this problem.

Our work differs from many previous works and isn’t tie
to specific programming languages and assertion notations.
This paper intends to investigate dynamical contracts
extraction techniques from already deployed component
which has been built in the supporting CLI environment.
The proposed model is also based on CLI, to consider
contracts as an index table of metadata which separates its
representation format from original component code
blocks so as to provide flexibility and extensibility. The
Runtime check mechanism discussed in this paper
provides a common semantics of behavioral contracts in
spite of (is independent of) the component development
languages. We hope that the attached contract information
can support reliable reuse of components.

2. Related Works

First of all, a problem to ask is whether contracts are
inherent in components design; if not explicitly stated,
they are lurking anyway under the cover. Karine Arnout
and Bertrand Meyer’ works [11] answer this conjecture.
They have found some implicit program properties,
including pre- and post-conditions and invariants, through
checking ArrayList class from the .Net collections library.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

66

The discovery of hidden contracts demonstrates that there
are inherent contracts in component with no explicit
contracts. It also lays foundations for our solution.
Secondly, are there any techniques for extracting contracts
from the component with no explicit contracts discipline?
There have been some researches about manual and (or)
automated contract extraction by finding implicit
properties of program [10, 13, 12 (will change)]. Usually
there are two ways, static or dynamic analysis, to perform
contract extraction. Their static analysis which is
theoretically complete is to inspect source code and to
refine candidates. The dynamic analysis is similar to
Diakon [14] and DIDUCE [15], which is efficient, and is
dynamic likely invariant detector. Daikon tries to find
class and loop invariants as well as routine pre- and post-
conditions in the case of the source code to be available.
DIDUCE does the same but not requires the program
source code. It gives a perspective that it is possible to
generate contracts automatically. To our knowledge,
although current technologies of contracts extraction are
not guaranteed to be very sound or complete, it is not
impossible [14]. Our work is inspired by these researches.

3. Adding Component Contracts a posteriori

First of all, a problem to ask is whether contracts are
inherent in components design; if not explicitly stated,
they are lurking anyway under the cover. Karine Arnout
and Bertrand Meyer’ works [11] answer this conjecture.
They have found some implicit program properties,
including pre- and post-conditions and invariants, through
checking ArrayList class from the .Net collections library.
The discovery of hidden contracts demonstrates that there
are inherent contracts in component with no explicit
contracts. It also lays foundations for our solution.
Secondly, are there any techniques for extracting contracts
from the component with no explicit contracts discipline?
There have been some researches about manual and (or)
automated contract extraction by finding implicit
properties of program [10, 13, 12 (will change)]. Usually
there are two ways, static or dynamic analysis, to perform
contract extraction. Their static analysis which is
theoretically complete is to inspect source code and to
refine candidates. The dynamic analysis is similar to
Diakon [14] and DIDUCE [15], which is efficient, and is
dynamic likely invariant detector. Daikon tries to find
class and loop invariants as well as routine pre- and post-
conditions in the case of the source code to be available.
DIDUCE does the same but not requires the program
source code. It gives a perspective that it is possible to
generate contracts automatically. To our knowledge,
although current technologies of contracts extraction are
not guaranteed to be very sound or complete, it is not
impossible [14]. Our work is inspired by these researches.

3.1 Contract extraction

A detector is needed to perform contracts extraction. The
detector should be similar to DIDUCE rather than to
Daikon since the source code of the independently-
developed third-party component is generally unavailable.
In the case of the binary component, we wish to benefit
from the Common Language Infrastructure (CLI)
standardized by ECMA [16] and the component metadata
in the contract extraction process. Implementation
platform of the CLI (such as Microsoft Shared Source
CLI) supports mandatory execution of components, of
which all are compiled to a Common Intermediate
Language (CIL). These components consist of CIL code
and metadata, organized in an extensible format. The IL of
any component is always available by using an IL
disassembler. Furthermore, component metadata provides
documentary information that makes it self-describing
(e.g., the name of its class, the names of its methods, the
types of its method’s parameters, etc). Reflection
mechanism supported by the CLI offers facility,
Reflection APIs, for manipulating the metadata.

The inspection of metadata for hidden contracts is also
pursued by [11, 12]. There are some possible locations to
find component contracts. Preconditions inference can be
implemented by parsing the CIL code to list the exceptions
because preconditions tend to be buried under exception
cases. A postcondition expresses properties of the state
resulting from a method’s execution. One can look for
them in return paths of exported methods. For class
invariants, constructor, interfaces and base class are good
candidates.

To look for component contracts, our prototype detector
that will be built in the CLI environment uses metadata to
examine all classes and methods in a component, without
having access to the source code. Its work principle is to
discover behavioral contracts (obtain actual values) from
execution traces, similar to Daikon, and is a dynamic
analysis technique. By using the components metadata and
reflection mechanism, the parameter information,
invocation information, dependability information and
security information can be obtained completely. Pre- and
post-condition information can be got from evaluating
metadata, attributes, and IL.

3.2 Contracts representation

We consider that the behavioral contract of a component is
the collections of behavioral properties of total methods
and modules in the component. In order to support runtime
check, the relations between contracts and its types,
methods and classes of a component are arranged into an
index table, which groups all named assertions of the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

67

component. In this table, each row, mapping an assertion,
consists of an index (to its owner method or type), name,
flag (contracts kind) and assertion (contract context itself).
This table is compiled into component metadata so that
our interceptor (explained in details below) can access it
by Reflection APIs. Many existing component models
support users to extend metadata. The scheme based on
CLI represents the added contract in the form of metadata
where it becomes part of binary components and has
common semantics regardless of the original development
languages. It is an important issue because a common
understanding of behavioral is necessary if (when) binary
components are to obey contracts of one another.

3.3 Runtime verification

To perform runtime contracts check we design an
interceptor, which inspects the interaction between a
component and its client. The interceptor includes a
component contract organized as noted above, and an
exception process mechanism. When the client delivers a
request to the component, the interceptor intercepts it; if
behavior between component and client is consistent with
contract specification, it will return directly the request to
the component, otherwise it will trigger exception process
(runtime violation of the contracts). Vice versa.

This scheme is implemented by rewriting intermediate-
code. We insert the IL of an interceptor into the IL of the
original component before a type or a method of the
component is loaded; the resulting IL of attaching
contracts is finally compiled into executable code.
Obviously, the approach doesn’t insert extra code into
method bodies at compile time or generating wrapper
methods [5, 6, 17], and doesn’t write or modify a parser,
either.

The interceptor is seen as a proxy which is transparent for
the client (as is shown in Figure 1). This separate
representation of contracts enables correct and more
efficient runtime verification; Moreover, separate contract
code blocks lend themselves to easy retrieval; What’s
more, flexibility in deciding whether verification are
performed is provided when runtime verification can be
expensive.

Fig. 1 Runtime check.

4. Conclusion

To achieve component quality, a common behavioral
contracts system is essential. However, as stated in the
introduction section, DbC is rarely applied in practice
even in the presence of mission-critical tasks. Therefore,
some tools, such as automatically generating component
contracts based on program runs, are expected to develop.
We also argue that it will become a mainstream direction
in this research area. In this paper, we explore a possible
way of attaching behavioral contracts a posteriori to binary
component, and present a model to organize components
contracts and to perform runtime check.

Using proposed model, we can improve software quality,
make its reuse safer, and can facilitate in comparing and
choosing among similar components. In our contract
model, the contracts specification has not worked at
source level except for following the DbC approach. We
showed that the contract extraction is possibility of
automation because of dynamic techniques. The added
contracts has common semantics and representation which
is independent of the source codes languages as long as
the binary component has been built in CLI.

References
[1] D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural

Description of Component-Based Systems. Foundations of
Component-Based Systems, (Leavens G. and Sitaraman M.,
eds.) Cambridge University Press, pages 47–67, 2000.

[2] B. Meyer, Contracts for Components. Software
Development, July, 2000.

[3] A. Beugnard, J.-M. Jezequel, N. Plouzeau, D. Watkins.
Making components contract aware. Computer, 32(7), July
1999.

[4] B. Meyer. Eiffel: The Language. Object-Oriented Series.
Prentice Hall, New York, NY, 1992.

[5] R.Kramer. iCountract-The Java Design by Contract Tool.
IEEE Computer Society, Tools 26,1998

[6] D. Bartetzko, C. Fischer, M. Moller, et al. Jass - Java with
assertions. In Workshop on Runtime Verification, 2001,
held in conjunction with the 13th Conference on Computer
Aided Verification, CAV'01.

[7] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby , et al.
JML: notations and tools supporting detailed design in Java.
In OOPSLA 2000 Companion, pages 105-106, 2000.

[8] P.J. Maker, GNU Nana: improved support for assertions and
logging in C and C++. Available from
http://www.gnu.org/software/nana/manual/nana.html.

[9] K.Arnout, R. Simon. The .NET Contract Wizard: Adding
Design by Contract to languages other than Eiffel. IEEE
Computer Society, Tools 39, 2001, 4-23.

[10] M. Barnett, W. Schulte. Contracts, Components, and their
Runtime Verification on the .NET Platform. Technical
Report MS-TR-2002-38, Microsoft Research, April 2002.
Available from http://research.microsoft.com/ research
/pubs.

Respond

Request

Implementation

Interceptor
Code

Component
Code Client

Extended
Metadata

Implementation

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

68

[11] K.Arnout, B.Meyer. Uncovering Hidden Contracts:
The .NET Example. IEEE Computer, Nov. 2003, 36(11):
48-55.

[12] N.Milanovic, M.Malek. Extracting functional and non-
functional contracts from Java classes and enterprise java
beans. Proceedings of the Workshop on Architecting
Dependable Systems (WADS 2004) at the International
Conference on Dependable Systems and Networks (DNS
2004), Florence, Italy, 2004.

[13] J.Henkel, A.Diwan. Discovering algebraic specifications
from Java classes. In L. Cardelli, editor, 17th European
Conference on Software Engineering, 2003: 60-71.

[14] M. D. Ernst, J. Cockrell, W. G. Griswold, et al.
Dynamically discovering likely program invariants to
support program evolution. IEEE Transactions on Software
Engineering, 2001, 27(2): 1-25.

[15] S. Hangal, M. S. Lam. Tracking down software bugs using
automatic detection. In Proceedings of the 24th international
conference on software engineering, 2002: 291-301.

[16] ECMA, Standard ECMA-335: The Common Language
Infrastructure, December 2001.

[17] C.D.T. Cicalese and S. Rotenstreich. Behavioral
Specification of Distributed Software Component Interfaces.
Computer, July 1999.

Yang Luo is associate professor of
School of Computer Science and
Technology, NHU. He received the B.S.
and M.S. degrees in Hunan Normal
University and Central South University
respectively. Since 1985, he stayed in
Nanhua University to study software
engineering and digital image processing.

