
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

69

Manuscript received November 5, 2006.
Manuscript revised November 25, 2006.

Distributional Approximation of Asset Returns with
Nonparametric Markovian Trees

Gaetano Iaquinta,† and Sergio Ortobelli Lozza††,

University of Bergamo, Department MSIA, Italy

Summary
The paper proposes the use a Markov chain to model and predict
the distributional behaviour of a portfolio of returns. In particular,
it describes an algorithm to compute the distribution of returns
that follow a markovian tree. This approach reduces the
computational complexity as compared to the classic markovian
approach, since the tree recombines at each temporal step.
Furthermore, the paper compares ex-post the assumption that
returns follow either a geometric Brownian motion or a Markov
chain. Finally, it discusses some possible financial applications
of the proposed approach.

Key words:
Computational complexity, Markov chain, return distribution,
financial applications.

Introduction

In this paper, we propose an algorithm to compute the
return distribution at a fixed future time assuming that the
return follows a Markov chain. Thus, we discuss the
computational complexity of the algorithm and we
compare its forecasting power with the classic assumption
that continuous compounded returns follow a Brownian
motion.
It is well known that asset returns are not Gaussian
distributed. However, most of the financial models used
by institutional investors and market operators are based
on this distributional assumption. In order to overcome the
limits of this assumption several alternative financial
models have been widely studied in past and recent
literature. Most of them are based on Markov processes or
Semi-Markov processes (see [1], [3], [4], [7], [8]). As a
matter of fact, if we test the null hypothesis that the
intervals of the distributional support of a given portfolio
are independent against the hypothesis that the intervals
follow a Markov chain, we cannot reject the markovian
hypothesis (see [2]). Among markovian models we can
distinguish parametric and nonparametric approaches. The
first ones capture the markovian behavior of asset prices
assuming that they follow a particular diffusion process.
While nonparametric approaches use historical time series
to predict the probability distribution [9]. Here, we

propose a nonparametric markovian approach to model
asset returns.
In the paper we assume that the interval dependence of
portfolios of returns can be characterized by a Markov
chain. In particular, we divide the support of the portfolio
into N intervals each of which represents a state of the
Markov chain. Following this procedure, we build up the
transition matrix. In order to minimize the computational
complexity of the model, we choose opportunely the states
and we get that the gross returns follow a tree, whose
number of nodes grows linearly with the time. On the
other hand, recombining trees are typically used in option
pricing theory. Thus we propose an algorithm with
polynomial complexity that permits us to compute the
distribution of the returns after k periods of time. Then we
ex-post compare the return distributional approximation
with the hypothesis that gross return are log normal
distributed. (i.e., continuous compounded returns follow a
Brownian motion). In particular, we first test the ex-post
distributions and then we analyze the tails of the return
distributions.
The paper is organized as follows: in Section 2 we
formalize the markovian nonparametric approach. Section
3 deals with the algorithm to approximate the return
distribution. In Section 4 we test the algorithm as
compared to the classical geometric Brownian motion.
Finally, we briefly summarize the paper and we describe
further financial applications of this approach.

2. Nonparametric markovian trees

Let us assume that the gross return of a portfolio of assets
zp has support on the interval , ,(min , max)p t p tt t

z z , where

, , 1 ,/p t p t p tz S S+= is the t-th return observation and ,p tS is
the value of the portfolio of securities at time t. By
convention, through all the paper, we assume that the
return follows a Markov chain with N states and we count
the states beginning from that with the greatest value.
Then we build the transition matrix as follows:
1. we share in N intervals ()1,i i iI a a −= (small enough)
the return support , ,(min , max)p t p tt t

z z where 0 ,max p tt
a z= ,

,maxi
i p tt

a u z= , , ,min / maxN p t p tt t
u z z= and i=1,...,N;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

70

2. we assume that inside the interval ()1,i i iI a a −= the
return is given by the geometric mean of the extremes, i.e.,

() 0.5
1 ,: maxi i

i i p tt
z a a u z−

−= = ;

3. we build the transition matrix ,() 1 ,[]s ij s i j NP p ≤ ≤= where
the probability ,()ij sp points out the probability valued at

time s to transit from the state ()iz to the state ()jz
conditional of being in the i-th state.
Considering that after k periods the gross return should be

, ,0 ,
1

/
k

p k p p i
i

S S z
=

=∏ then we can represent the price after a

given number of periods with a markovian tree that
recombines at each step (see Figure 1).

Fig. 1. A generic recombining markovian tree.

Therefore, the number of nodes increases linearly with the
number of the time steps. This is the main reason
according to which we can simplify the computation of the
probability at each node of the tree. As a matter of fact,
with a Markov chain that does not recombine at each step
the number of nodes of the markovian tree after k periods
should be N2k. Thus the computation of the return
distribution after k periods could be very complex for a
large number of states N. With our proceeding we clearly
reduce and control the computational complexity in
comparison with the classic markovian approach. In
particular, after kΔt intervals of time we have (N-1)k+1
nodes (i.e., the multinomial tree grows linearly with the
time). Starting to count from the highest node, after k steps
the j-th node has:

a) value in the interval:
() (1) / 2 (3) / 2

, ,((max) , (max))k j k k j k k
j p t p tt t

I u z u z+ − + −=

b) gross return:
() 1 / 2

,(max)j j k k
k p tt

z u z− += ;

c) stock price:
()

0
j

kS z j=1,…,(N-1)k+1.
Next we discuss an algorithm with polynomial complexity
to get the probability at each node of the markovian tree.

3. An algorithm to approximate the return
distribution with a markovian tree

One of the fundamental aspects in any financial valuation
is the estimation of the return distribution at a given future
time. In this section we create a recursive algorithm that
gives us the distribution of returns after k periods of time
with a computational complexity of O(N³k²).
The procedure to compute the distribution function of the
future returns is strictly connected to the Markovian
hypothesis and the recombining feature of the tree. It
allows us to maintain distinguishable the state of the
provenance for each node. Clearly, once we distinguish
the provenance state, we can easily compute the
probabilities for the other steps using the properties that
characterize any Markov chain. In particular, we build a
sequence of matrixes kQ of dimension ((N-1)k+1)×N such
that, after k periods of time, the return probabilities in the
(N-1)k+1 nodes of the tree are given by the vector

1k NQ (1)
where 1N is the unity vector column. Note that each node
of the tree is simultaneously achievable from different
states. Thus, each node could be in different states and this
depends on the provenance state. In this process we have
that (), , 1 (1) 1

1
[]k k j i j N k

i N
Q q ≤ ≤ − +

≤ ≤
= , where (), ,k j iq is the

probability of being in the i-th state and in the j-th node
(counting from the highest node) after k periods of time.
Therefore in order to obtain the probability to move in
other states, we have to multiply kQ by the transition
matrix. However, since each final node is not achievable
from all the states, we have to take into account the null
probability of a given node to be in a particular state. This
step of the algorithm is performed by a “diagonalization
process” that we explain here in the following. Suppose
we know the initial state, say the i-th one, then the
probabilities of each node after one period are given by
the i-th row of the first transition matrix. Therefore, the
first matrix is the N×N matrix with these probabilities on
the diagonal, i.e., 1 1,(1) ,(1)(, ...,)i iNQ diag p p= . In order to
derive the 1kQ + matrix, we multiply the matrix kQ by the
transition matrix 1kP + and then we apply the following
“diagonalization process” to the resulting matrix 1k kQ P + :
1. we shift below the s-th column of s-1 spaces for
s=2,…,N, creating the new matrix ((N-1)(k+1)+1)×N ;
2. we fill all the new spaces with zeros.
This diagonalization process is performed by a matrix
operator that we call diagM operator, i.e.,

1kQ + =diagM(1k kQ P +). (2)
Observe that each zero inserted in the diagonalizaton
process represents the null probability of a given node to

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

71

be in a particular state. Let us consider the following
representative example.

Example. Assume the return evolves following a simple
homogeneous trinomial tree (i.e., the Markov chain is
homogeneous and the number of states is 3). Let P be the
transition matrix of dimension 3x3. Suppose at time zero
the initial state is the first one. Then the first matrix is
given by 1 (1,1) (1,2) (1,3)(, ,)Q diag p p p= and the probability
at each node after one period is given by the vector 1 31Q .
The second matrix of the recursive algorithm is given by

2 1()Q diagM Q P= =

(1,1) (1,1) (1,2) (1,3)

(1,2) (2,1) (2,2) (2,3)

(1,3) (3,1) (3,2) (3,3)

0 0
0 0
0 0

p p p p
diagM p p p p

p p p p

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

,

and applying the diagonalization process we get:

(1,1) (1,1)

(1,2) (2,1) (1,1) (1,2)

(1,3) (3,1) (1,2) (2,2) (1,1) (1,3)2

(1,3) (3,2) (1,2) (2,3)

(1,3) (3,3)

0 0
0

0
0 0

p p
p p p p
p p p p p pQ

p p p p
p p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

Thus, the probabilities after two periods are given by the
vector:

(1,1) (1,1)

(1,2) (2,1) (1,1) (1,2)

(1,3) (3,1) (1,2) (2,2) (1,1) (1,3)2 3

(1,3) (3,2) (1,2) (2,3)

(1,3) (3,3)

1

p p
p p p p

p p p p p pQ
p p p p

p p

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+ +=
⎢ ⎥

+⎢ ⎥
⎢ ⎥⎣ ⎦

.

The following Figure 2 summarizes these first two steps of
the algorithm of this simple homogeneous trinomial tree.

Fig. 2.. Final probabilities of the nodes at the 2nd step.

In the Appendix one can find the algorithm written in
MATLAB language while in the next subsection there is
the analysis of the computational complexity for such
procedure.

3.1 Computational complexity

In order to calculate the computational complexity of the
algorithm we count the number of primitive operations
which has to be performed for a tree with N states and k
steps long. First of all we observe that the maximum space
memory used in one single step is of O(N²k) order.
Therefore, we derive the complexity of the computation
procedure distinguishing three kinds of operations
1. the number of the multiplications;
2. the number of the additions;
3. the number of operations due to the matrix manipulation
performed by the diagM operator.

Table 1: This table summarizes the complexity of computing

1 ()k kQ diagM Q P+ =
Computational complexity of ()diagM A ,where A is a

((1) 1)N i N− + × matrix and i is the number of steps.
Micro

operations Step 1 … Step k Total

Memorize
dimensions 1 … 1 k

Add N rows of
zeros 2N2 … 2(1)N Nk N N− + +

1((1)
2

kk N N+
− +

2)N N+ +

Recompute
dimensions 1 … 1 k

Vectorial reshape 1 … 1 k
Deletion last N
elements 1 … 1 k

Matrix reshape 1 … 1 k

Total
 2N2+5 … 2(1) 5N Nk N N− + + +

1((1)
2

kk N N+
− +

+ 2 5)N N+ +

Total O(.) O(k2N2)
Computational complexity of 1 ()k kQ diagM Q P+ =

Number of

multiplications
Number of
additions

Number micro
oper. of
diagM

Step 1 N3 N2(N-1) 2N2+5

Step 2 2N3-N2 N(N-1)(2N-1) 3N2-N+5

… … … …

Step k N2((N-1)k+1) N(k(N-1)2+(N-1)) N((N-1)k+1)+N2

Total O(.) O(k2N3) O(k2N3) O(k2N2)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

72

Table 1 reports the order of total complexity. In particular,
it shows the number of operations the algorithm needs to
perform the computation for each step. In the first part of
the table is reported the number of operations obtained by
the diagM operator (using the algorithm given in the
Appendix). Observe that the "Memorize dimensions" and
"Recompute dimensions" are assignment operations and
they are valued one. A matrix is allocated at the physical
level in the memory as a vector containing the sequence of
its columns. Then we compute the complexity of the
operation "Add N rows of zeros" as equal to a complete
rewriting of the old matrix and the new portion of zeros.
The "Vectorial reshape" operation values 1 because it
changes only the addressing rule to the physical structure.
The operation "deletion last N elements" values 1 since it
decreases only the dimensions of the data structure. Even
the last "Matrix Reshape" has value 1 since it changes
another time only the addressing rule without affecting the
data.
Therefore, we obtain a computational complexity of the
O(N³k²) order. In order to compare this complexity with
the distribution valuation of a nonrecombining markovian
tree, we use MATLAB algorithms and a notebook with
intel centrino processor 1500 MHz, 512 MB of RAM. We
observe that after one hour we couldn’t finish the
computation of a 20 days return distribution with a
nonrecombining markovian tree based on a homogeneous
Markov chain with 50 states. Instead with our algorithm
we can compute in few seconds the 20, 40, 60, 90, 120
days return distributions of markovian trees based on
Markov chains with 50, 60, 70, 80 states (see Table 2).

Thus the complexity of our algorithm is much lower than
that presented by any nonrecombining markovian tree.

4. Model backtesting

In this section we compare the empirical distribution of the
gross returns and the ex-post distributions forecasted with:

a) the nonparametric markovian approach;
b) the log normal assumption typical of the Black

and Scholes option pricing model.

Our data consist of gross returns on the S&P500, Dow
Jones Industrials and Nasdaq from January 1996 to
January, 2006. From a preliminary analysis of our data we
observe that daily log-returns are negatively skewed and
present kurtosis significantly different from the Gaussian
one. Therefore, a first naïve analysis of data suggests that
there exist better approximations of gross return
distributions.

In order to verify which distributional hypothesis
approximates better the return series, we propose two tests
which are based on the whole empirical distribution. We
consider the Kolmogorov-Smirnov (K-S) test

sup () ()EK S F x F x− = −
and the Anderson-Darling (A-D) statistic test

() ()
sup

()(1 ())
EF x F x

A D
F x F x

−
− =

−

where ()EF x is the empirical cumulative distribution and
F(x) is the other distribution. The A-D statistic test
weights discrepancies appropriately across the whole
support of the distribution and it is particularly important
if one is interested in determining tails of return
distributions. Therefore, we could compare the empirical

Table 3: This table summarizes Kolmogorov-Smirnov test
(K-S) and Anderson-Darling test (A-D) for S&P500,
Nasdaq, and Dow Jones Industrials (20, 40, 60 days)
return series whose distributions are forecasted either with
the markovian approach (Markov) or assuming log normal
distributed gross returns (B&S).

20 days returns B&S Markov
K-S 0,060107 0,060105 S&P500

 A-D 0,167752 0,157602
K-S 0,05172 0,050409 Nasdaq

 A-D 0,523795 0,169516
K-S 0,054981 0,060929 DowJones

Industrials A-D 0,18401 0,14947
40 days returns B&S Markov

K-S 0,075152 0,075026 S&P500
 A-D 0,19475 0,18873

K-S 0,052786 0,056384 Nasdaq
 A-D 0,238064 0,176513

K-S 0,069358 0,068377 DowJones
Industrials A-D 0,176916 0,167292

60 days returns B&S Markov
K-S 0,095129 0,093578 S&P500

 A-D 0,229406 0,222491
K-S 0,060138 0,063968 Nasdaq

 A-D 0,225217 0,21579
K-S 0,076256 0,076172 DowJones

Industrials A-D 0,215183 0,205883

Table 2: This table summarizes the number of
seconds necessary to compute 20, 40, 60, 90, 120
days return distributions with markovian trees
based on Markov chains with 50, 60, 70, 80 states.

 States
Days 50 60 70 80

20 0,13 0,22 0,37 0,51
40 0,58 1,00 1,54 2,19
60 1,40 2,35 3,57 5,00
90 3,32 5,47 8,33 11,59

120 6 81 10 41 15 42 22 49

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

73

cumulative distribution ()EF x either with the markovian
hypothesis or with log-normal distributed gross returns.
For the Markovian approach we assume that daily gross
returns follow an homogeneous Markov chain with 60
states. In particular we test the different distributional
assumptions considering the forecasted 20, 40, 60 days
gross returns.
Table 3 reports the results of the two tests. From almost all
the tests we obtain a better fit with the distributions
approximated with the markovian trees. In particular
Anderson-Darling test suggests that we have much better
forecasts on the distribution tails. Therefore, the proposed
tests agree upon rejecting the hypothesis of log-normality.

Fig. 3. Ex-post left tail of S&P500 20 days log-return distribution.

From a graphical point of view this results can be
appreciated in Figure 3 where we show the ex-post
comparison among the empirical, the markovian and
Gaussian left tail of S&P500 20 days log-return
distribution.

5. Concluding remarks

The paper proposes an algorithm to approximate long time
return distributions with nonparametric markovian trees.
The algorithm presents a polynomial complexity and the
proposed approximation is generally better than the
classical one used in financial applications. Moreover we
show several further financial applications of the above
algorithm that we report here in the following:

a) in portfolio theory: Suppose an investor with
temporal horizon T and utility function u wants to
invest his/her initial wealth W0 in n risky assets.
Using historical data on daily gross returns we
can apply the previous algorithm assuming that
each portfolio of gross returns 'x z follows a
homogeneous Markov chain with N states, where

1[, ...,] 'nz z z= is the vector of gross returns and

1[, ...,] 'nx x x= is the vector of the positions
taken in the n risky assets. Therefore, the investor
should maximize his/her expected utility
considering the portfolio gross return distribution
at time T, i.e., he/she should choose the portfolio
composition x solution of the optimization
problem:

01

max (('))

0;
x

n
i ii

E u x z

x x W
=

≥ =∑
,

where the expected value is computed with the
forecasted distribution at time T. Since the
transition matrix P depends on portfolio
composition x and it is valued on the portfolio
historical series, it is not easy to solve the above
optimization problem. However, with our
algorithm we simplify the computational
complexity of the problem and we propose a
distribution strictly linked to historical series of
gross returns.

b) in risk management theory: In order to forecast
the risk position of a given portfolio, the
managers generally compute the Value at Risk
(VaR) of their investment positions. The VaR is
the θ percentile of the future profit/loss
distribution. Therefore, assuming that daily gross
returns follow a Markov chain, we can easily
estimate the percentile of future wealth
considering the previous algorithm to compute
the wealth distribution.

c) in option pricing theory: The value of any
European contingent claim is simply given by the
risk neutral expected value of a discounted
contingent claim priced at the maturity. Therefore,
given an evolution of the underlined with a
markovian tree, we can compute the risk neutral
valuation of contingent claim distribution at the
maturity (see [6], [9]) and then value the option
price with the discounted expected value.

We refer to [5], [6], [8], [10] for further possible financial
applications.

Appendix:The algorithm in MATLAB
language

The following algorithm describes in MATLAB language
the computation of the final probabilities of the nodes at
the T-th step using the recursive formulas (1), (2) when we
assume a homogeneous Markov chain with transition
matrix P.

 function

[Final_Prob]=NonparamMKV_Density(State0,P,T);

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

74

 [N,N]=size(P);Q=diag(P(State0,:));
 if T>=2
 for level=2:T
 Q=DiagM(Q*P);
 end
 end
Final_Prob= (Q*ones(N,1));
end

The function DiagM shifts the columns of the matrix
given in input by an increasing number of elements
starting by the second column. It is realized using matrix
manipulation operators offered by the MATLAB language
that are faster in comparison to manipulations performed
using loops such as “For…”. Very useful is the reshape
operator which changes the dimensions of a matrix by
refilling a new matrix of different dimensions with the
same elements of the previous.

 function [Mshifted]=DiagM(M);
 % Memorize initial dimensions
 [Mrows,N]=size(M);
 % Add N rows of zeros;
 M=[M;zeros(N,N)];
 % Recompute new dimensions
 Mrows=Mrows+N;
 % Transform the matrix in a column vector
 M=reshape(M,Mrows*N,1);
 % Delete the last N elements of the vector
 M=M(1:Mrows*N-N);
 % Reshape the matrix shifted
 Mshifted=reshape(M,Mrows-1,N);
end;

The following few lines of code compute the final
distribution. The “cumsum operator” applied to a vector of
returns gives us another vector with the cumulative sum of
the elements of the original vector:

 function
[Final_Distrib]=NonparamMKV_Density(State0,P,T);

 Final_Prob=NonparamMKV_Density(State0,P,T);
 Final_Distrib=cumsum(Final_Prob);

end

Acknowledgments

The authors thank for grants COFIN 60% 2005, 2006 and,
for helpful comments an anonymous referee, seminar
audiences at AMASES 2005 (Palermo, Italy) and at
IDEAL 2006 (Burgos, Spain).

References
[1] R. Bhar, and S. Hamori, Hidden Markov models:

Applications to financial economics. Kluwer Academic
Publishers, Dordrecht, 2004.

[2] P. Christoffersen, “Evaluating interval forecasts”,
International Economic Review 39 (4), 841—862, 1998.

[3] G. D'Amico, J. Janssen, and R. Manca, “Non-homogeneous
backward semi-Markov reliability approach to downward
migration credit risk problem”, Proc. 8th Italian Spanish
Meeting on Financial Mathematics, Verbania, June 2005.

[4] R. Elliott, and J. Van der Hoek, “An application of hidden
Markov models to asset allocation problems” Finance and
Stochastics 1, 229-238, 1997.

[5] A. Leccadito, S. Ortobelli L., E. Russo and G. Iaquinta,
"Financial Risk Modeling with Markov Chains" Lecture Notes
in Computer Science 4284, 1275-1282, 2006.

[6] G. Iaquinta, and S. Ortobelli L. " Option pricing with non-
parametric markovian trees", Technical Report, Department
MSIA University of Bergamo, 2006.

[7] N. Limnios, and G. Oprisan, Semi-Markov processes and
reliability modeling. World Scientific, Singapore, 2001.

[8] S. Rachev, and S. Mittnik, Stable Paretian Models in Finance.
John Wiley & Sons, New York, 2000.

[9] M. J. Stutzer, "A Simple Nonparametric Approach to
Derivative Security Valuation," Journal of Finance 51,
December 1996.

[10] W. Ziemba, and J. Mulvey, World Wide Asset and Liability
Modeling. Cambridge University Press, 1999.

Gaetano Iaquinta currently is Ph.D.
student at University of Bergamo (Italy) in
“Computational methods for financial and
economic forecasting and decisions” and
Visiting Ph.D. student in “Finance” at
University of Lugano (Switzerland). His
research interests include computational
finance, option pricing theory and risk
management.

Sergio Ortobelli Lozza Professor at
University of Bergamo (Italy). Currently
he works in “Lorenzo Mascheroni”
Department of Mathematics, Statistics,
Computer Science and Applications. His
research interests include mathematical
finance, stochastic processes and
computational finance.

