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Summary 
The paper proposes the use a Markov chain to model and predict 
the distributional behaviour of a portfolio of returns. In particular, 
it describes an algorithm to compute the distribution of returns 
that follow a markovian tree. This approach reduces the 
computational complexity as compared to the classic markovian 
approach, since the tree recombines at each temporal step. 
Furthermore, the paper compares ex-post the assumption that 
returns follow either a geometric Brownian motion or a Markov 
chain. Finally, it discusses some possible financial applications 
of the proposed approach.  
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Introduction 

In this paper, we propose an algorithm to compute the 
return distribution at a fixed future time assuming that the 
return follows a Markov chain. Thus, we discuss the 
computational complexity of the algorithm and we 
compare its forecasting power with the classic assumption 
that continuous compounded returns follow a Brownian 
motion.  
It is well known that asset returns are not Gaussian 
distributed. However, most of the financial models used 
by institutional investors and market operators are based 
on this distributional assumption. In order to overcome the 
limits of this assumption several alternative financial 
models have been widely studied in past and recent 
literature. Most of them are based on Markov processes or 
Semi-Markov processes (see [1], [3], [4], [7], [8]). As a 
matter of fact, if we test the null hypothesis that the 
intervals of the distributional support of a given portfolio 
are independent against the hypothesis that the intervals 
follow a Markov chain, we cannot reject the markovian 
hypothesis (see [2]). Among markovian models we can 
distinguish parametric and nonparametric approaches. The 
first ones  capture the markovian behavior of asset prices 
assuming that they follow a particular diffusion process. 
While nonparametric approaches use historical time series 
to predict the probability distribution [9]. Here, we 

propose a nonparametric markovian approach to model 
asset returns.  
In the paper we assume that the interval dependence of 
portfolios of returns can be characterized by a Markov 
chain. In particular, we divide the support of the portfolio 
into N intervals each of which represents a state of the 
Markov chain. Following this procedure, we build up the 
transition matrix. In order to minimize the computational 
complexity of the model, we choose opportunely the states 
and we get that the gross returns follow a tree, whose 
number of nodes grows linearly with the time. On the 
other hand, recombining trees are typically used in option 
pricing theory. Thus we propose an algorithm with 
polynomial complexity that permits us to compute the 
distribution of the returns after k periods of time. Then we 
ex-post compare the return distributional approximation 
with the hypothesis that gross return are log normal 
distributed. (i.e., continuous compounded returns follow a 
Brownian motion). In particular, we first test the ex-post 
distributions and then we analyze the tails of the return 
distributions.  
The paper is organized as follows: in Section 2 we 
formalize the markovian nonparametric approach. Section 
3 deals with the algorithm to approximate the return 
distribution. In Section 4 we test the algorithm as 
compared to the classical geometric Brownian motion. 
Finally, we briefly summarize the paper and we describe 
further financial applications of this approach.  

2. Nonparametric markovian trees  

Let us assume that the gross return of a portfolio of assets 
zp has support on the interval , ,(min , max )p t p tt t

z z , where 

, , 1 ,/p t p t p tz S S+=  is the t-th return observation and ,p tS  is 
the value of the portfolio of securities at time t. By 
convention, through all the paper, we assume that the 
return follows a Markov chain with N states and we count 
the states beginning from that with the greatest value. 
Then we build the transition matrix as follows:  
1. we share in N intervals ( )1,i i iI a a −=  (small enough) 
the return support , ,(min , max )p t p tt t

z z where 0 ,max p tt
a z= , 

,maxi
i p tt

a u z= , , ,min / maxN p t p tt t
u z z=  and  i=1,...,N; 
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2. we assume that inside the interval ( )1,i i iI a a −=  the 
return is given by the geometric mean of the extremes, i.e., 

( ) 0.5
1 ,: maxi i

i i p tt
z a a u z−

−= = ; 

3. we build the transition matrix ,( ) 1 ,[ ]s ij s i j NP p ≤ ≤=  where 
the probability ,( )ij sp  points out the probability valued at 

time s to transit from the state ( )iz  to the state  ( )jz  
conditional of being in the i-th state. 
Considering that after k periods the gross return should be 

, ,0 ,
1

/
k

p k p p i
i

S S z
=

=∏  then we can represent the price after a 

given number of periods with a markovian tree that 
recombines at each step (see Figure 1). 

 
Fig. 1. A generic recombining markovian tree. 

 
Therefore, the number of nodes increases linearly with the 
number of the time steps. This is the main reason 
according to which we can simplify the computation of the 
probability at each node of the tree. As a matter of fact, 
with a Markov chain that does not recombine at each step 
the number of nodes of the markovian tree after k periods 
should be N2k. Thus the computation of the return 
distribution after k periods could be very complex for a 
large number of states N. With our proceeding we clearly 
reduce and control the computational complexity in 
comparison with the classic markovian approach. In 
particular, after kΔt intervals of time we have (N-1)k+1 
nodes (i.e., the multinomial tree grows linearly with the 
time). Starting to count from the highest node, after k steps 
the j-th node has: 

a) value in the interval: 
( ) ( 1) / 2 ( 3) / 2

, ,( (max ) , (max ) )k j k k j k k
j p t p tt t

I u z u z+ − + −=  

b) gross return:  
( ) 1 / 2

,(max )j j k k
k p tt

z u z− += ; 

c) stock price:  
( )

0
j

kS z    j=1,…,(N-1)k+1. 
Next we discuss an algorithm with polynomial complexity 
to get the probability at each node of the markovian tree.  

3. An algorithm to approximate the return 
distribution with a markovian tree 

One of the fundamental aspects in any financial valuation 
is the estimation of the return distribution at a given future 
time. In this section we create a recursive algorithm that 
gives us the distribution of returns after k periods of time 
with a computational complexity of O(N³k²).  
The procedure to compute the distribution function of the 
future returns is strictly connected to the Markovian 
hypothesis and the recombining feature of the tree. It 
allows us to maintain distinguishable the state of the 
provenance for each node. Clearly, once we distinguish 
the provenance state, we can easily compute the 
probabilities for the other steps using the properties that 
characterize any Markov chain. In particular, we build a 
sequence of matrixes kQ  of dimension ((N-1)k+1)×N such 
that, after k periods of time, the return probabilities in the 
(N-1)k+1 nodes of the tree are given by the vector 

1k NQ      (1) 
where 1N is the unity vector column. Note that each node 
of the tree is simultaneously achievable from different 
states. Thus, each node could be in different states and this 
depends on the provenance state. In this process we have 
that ( ), , 1 ( 1) 1

1
[ ]k k j i j N k

i N
Q q ≤ ≤ − +

≤ ≤
= , where ( ), ,k j iq  is the 

probability of being in the i-th state and in the j-th node 
(counting from the highest node) after k periods of time. 
Therefore in order to obtain the probability to move in 
other states, we have to multiply kQ  by the transition 
matrix. However, since each final node is not achievable 
from all the states, we have to take into account the null 
probability of a given node to be in a particular state. This 
step of the algorithm is performed by a “diagonalization 
process” that we explain here in the following. Suppose 
we know the initial state, say the i-th one, then the 
probabilities of each node after one period are given by 
the i-th row of the first transition matrix. Therefore, the 
first matrix is the N×N matrix with these probabilities on 
the diagonal, i.e., 1 1,(1) ,(1)( , ..., )i iNQ diag p p= . In order to 
derive the 1kQ +  matrix, we multiply the matrix kQ  by the 
transition matrix 1kP + and then we apply the following 
“diagonalization process” to the resulting matrix 1k kQ P + : 
1. we shift below the s-th column of s-1 spaces for 
s=2,…,N, creating the new matrix ((N-1)(k+1)+1)×N ; 
2. we fill all the new spaces with zeros. 
This diagonalization process is performed by a matrix 
operator that we call diagM operator, i.e.,  

1kQ + =diagM( 1k kQ P + ).   (2) 
Observe that each zero inserted in the diagonalizaton 
process represents the null probability of a given node to 
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be in a particular state. Let us consider the following 
representative example.  

Example. Assume the return evolves following a simple 
homogeneous trinomial tree (i.e., the Markov chain is 
homogeneous and the number of states is 3). Let P be the 
transition matrix of dimension 3x3. Suppose at time zero 
the initial state is the first one. Then the first matrix is 
given by 1 (1,1) (1,2) (1,3)( , , )Q diag p p p=  and the probability 
at each node after one period is given by the vector 1 31Q . 
The second matrix of the recursive algorithm is given by 

2 1( )Q diagM Q P= = 

(1,1) (1,1) (1,2) (1,3)

(1,2) (2,1) (2,2) (2,3)

(1,3) (3,1) (3,2) (3,3)

0 0
0 0
0 0

p p p p
diagM p p p p

p p p p

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

, 

and applying the diagonalization process we get: 

(1,1) (1,1)

(1,2) (2,1) (1,1) (1,2)

(1,3) (3,1) (1,2) (2,2) (1,1) (1,3)2

(1,3) (3,2) (1,2) (2,3)

(1,3) (3,3)

0 0
0

0
0 0

p p
p p p p
p p p p p pQ

p p p p
p p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Thus, the probabilities after two periods are given by the 
vector: 

(1,1) (1,1)

(1,2) (2,1) (1,1) (1,2)

(1,3) (3,1) (1,2) (2,2) (1,1) (1,3)2 3

(1,3) (3,2) (1,2) (2,3)

(1,3) (3,3)

1

p p
p p p p

p p p p p pQ
p p p p

p p

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+ +=
⎢ ⎥

+⎢ ⎥
⎢ ⎥⎣ ⎦

.  

The following Figure 2 summarizes these first two steps of 
the algorithm of this simple homogeneous trinomial tree.  
 

Fig. 2.. Final probabilities of the nodes at the 2nd step. 
 

In the Appendix one can find the algorithm written in 
MATLAB language while in the next subsection there is 
the analysis of the computational complexity for such 
procedure. 

3.1 Computational complexity 

In order to calculate the computational complexity of the 
algorithm we count the number of primitive operations 
which has to be performed for a tree with N states and k 
steps long. First of all we observe that the maximum space 
memory used in one single step is of O(N²k) order. 
Therefore, we derive the complexity of the computation 
procedure distinguishing three kinds of operations  
1. the number of the multiplications;  
2. the number of the additions;  
3. the number of operations due to the matrix manipulation 
performed by the diagM operator.  
 
 

Table 1: This table summarizes the complexity of computing 

1 ( )k kQ diagM Q P+ =  
Computational complexity of ( )diagM A ,where A is a 

(( 1) 1)N i N− + ×  matrix and i is the number of steps. 
Micro 

operations Step 1 … Step k Total 

Memorize 
dimensions 1 … 1 k 

Add N rows of 
zeros 2N2 … 2( 1)N Nk N N− + +  

1( ( 1)
2

kk N N+
− +

2 )N N+ +  

Recompute 
dimensions 1 … 1 k 

Vectorial reshape 1 … 1 k 
Deletion last N 
elements 1 … 1 k 

Matrix reshape 1 … 1 k 

Total 
 2N2+5 … 2( 1) 5N Nk N N− + + +  

1( ( 1)
2

kk N N+
− +

+ 2 5)N N+ +

Total O(.)    O(k2N2) 
Computational complexity of 1 ( )k kQ diagM Q P+ =  

 

 
Number of 

multiplications 
Number of 
additions 

Number micro 
oper. of 
diagM 

Step 1 N3 N2(N-1) 2N2+5 

Step 2 2N3-N2 N(N-1)(2N-1) 3N2-N+5 

… … … … 

Step k N2((N-1)k+1) N(k(N-1)2+(N-1)) N((N-1)k+1)+N2

    

Total O(.) O(k2N3) O(k2N3) O(k2N2) 
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Table 1 reports the order of total complexity. In particular, 
it shows the number of operations the algorithm needs to 
perform the computation for each step. In the first part of 
the table is reported the number of operations obtained by 
the diagM operator (using the algorithm given in the 
Appendix). Observe that the "Memorize dimensions" and 
"Recompute dimensions" are assignment operations and 
they are valued one. A matrix is allocated at the physical 
level in the memory as a vector containing the sequence of 
its columns. Then we compute the complexity of the 
operation "Add N rows of zeros" as equal to a complete 
rewriting of the old matrix and the new portion of zeros. 
The "Vectorial reshape" operation values 1 because it 
changes only the addressing rule to the physical structure. 
The operation "deletion last N elements" values 1 since it 
decreases only the dimensions of the data structure. Even 
the last "Matrix Reshape" has value 1 since it changes 
another time only the addressing rule without affecting the 
data.  
Therefore, we obtain a computational complexity of the 
O(N³k²) order. In order to compare this complexity with 
the distribution valuation of a nonrecombining markovian 
tree, we use MATLAB algorithms and a notebook with 
intel centrino processor 1500 MHz, 512 MB of RAM. We 
observe that after one hour we couldn’t finish the 
computation of a 20 days return distribution with a 
nonrecombining markovian tree based on a homogeneous 
Markov chain with 50 states. Instead with our algorithm 
we can compute in few seconds the 20, 40, 60, 90, 120 
days return distributions of markovian trees based on 
Markov chains with 50, 60, 70, 80 states (see Table 2).  

Thus the complexity of our algorithm is much lower than 
that presented by any nonrecombining markovian tree.  

4. Model backtesting   

In this section we compare the empirical distribution of the 
gross returns and the ex-post distributions forecasted with: 

a) the nonparametric markovian approach; 
b)  the log normal assumption typical of the Black 

and Scholes option pricing model. 

Our data consist of gross returns on the S&P500, Dow 
Jones Industrials and Nasdaq from January 1996 to 
January, 2006. From a preliminary analysis of our data we 
observe that daily log-returns are negatively skewed and 
present kurtosis significantly different from the Gaussian 
one. Therefore, a first naïve analysis of data suggests that 
there exist better approximations of gross return 
distributions.   

In order to verify which distributional hypothesis 
approximates better the return series, we propose two tests 
which are based on the whole empirical distribution. We 
consider the Kolmogorov-Smirnov (K-S) test 

sup ( ) ( )EK S F x F x− = −  
and the Anderson-Darling (A-D) statistic test 

( ) ( )
sup

( )(1 ( ))
EF x F x

A D
F x F x

−
− =

−
 

where ( )EF x  is the empirical cumulative distribution and 
F(x) is the other distribution. The A-D statistic test 
weights discrepancies appropriately across the whole 
support of the distribution and it is particularly important 
if one is interested in determining tails of return 
distributions. Therefore, we could compare the empirical 

Table 3: This table summarizes Kolmogorov-Smirnov test 
(K-S) and Anderson-Darling test (A-D) for S&P500, 
Nasdaq, and Dow Jones Industrials (20, 40, 60 days) 
return series whose distributions are forecasted either with 
the markovian approach (Markov) or assuming log normal 
distributed gross returns (B&S). 

20 days returns B&S Markov 
K-S 0,060107 0,060105 S&P500 

 A-D 0,167752 0,157602 
K-S 0,05172 0,050409 Nasdaq 

 A-D 0,523795 0,169516 
K-S 0,054981 0,060929 DowJones 

Industrials A-D 0,18401 0,14947 
40 days returns B&S Markov 

K-S 0,075152 0,075026 S&P500 
 A-D 0,19475 0,18873 

K-S 0,052786 0,056384 Nasdaq 
 A-D 0,238064 0,176513 

K-S 0,069358 0,068377 DowJones 
Industrials A-D 0,176916 0,167292 

60 days returns B&S Markov 
K-S 0,095129 0,093578 S&P500 

 A-D 0,229406 0,222491 
K-S 0,060138 0,063968 Nasdaq 

 A-D 0,225217 0,21579 
K-S 0,076256 0,076172 DowJones 

Industrials A-D 0,215183 0,205883 

Table 2: This table summarizes the number of 
seconds necessary to compute 20, 40, 60, 90, 120 
days return distributions with markovian trees 
based on Markov chains with 50, 60, 70, 80 states.

 States 
Days 50 60 70 80 

20 0,13 0,22 0,37 0,51
40 0,58 1,00 1,54 2,19
60 1,40 2,35 3,57 5,00
90 3,32 5,47 8,33 11,59

120 6 81 10 41 15 42 22 49
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cumulative distribution ( )EF x either with the markovian 
hypothesis or with log-normal distributed gross returns.  
For the Markovian approach we assume that daily gross 
returns follow an homogeneous Markov chain with 60 
states. In particular we test the different distributional 
assumptions considering the forecasted 20, 40, 60 days 
gross returns.  
Table 3 reports the results of the two tests. From almost all 
the tests we obtain a better fit with the distributions 
approximated with the markovian trees. In particular 
Anderson-Darling test suggests that we have much better 
forecasts on the distribution tails. Therefore, the proposed 
tests agree upon rejecting the hypothesis of log-normality. 

  
Fig. 3. Ex-post left tail of S&P500 20 days log-return distribution. 

 
From a graphical point of view this results can be 
appreciated in Figure 3 where we show the ex-post 
comparison among the empirical, the markovian and 
Gaussian left tail of S&P500 20 days log-return 
distribution.  

5. Concluding remarks 

The paper proposes an algorithm to approximate long time 
return distributions with nonparametric markovian trees. 
The algorithm presents a polynomial complexity and the 
proposed approximation is generally better than the 
classical one used in financial applications. Moreover we 
show several further financial applications of the above 
algorithm that we report here in the following: 

a) in portfolio theory: Suppose an investor with 
temporal horizon T and utility function u wants to 
invest his/her initial wealth W0 in n risky assets. 
Using historical data on daily gross returns we 
can apply the previous algorithm assuming that 
each portfolio of gross returns 'x z  follows a 
homogeneous Markov chain with N states, where 

1[ , ..., ] 'nz z z= is the vector of gross returns and 

1[ , ..., ] 'nx x x=  is the vector of the positions 
taken in the n risky assets. Therefore, the investor 
should maximize his/her expected utility 
considering the portfolio gross return distribution 
at time T, i.e., he/she should choose the portfolio 
composition x solution of the optimization 
problem: 

01

max ( ( ' ))

0;
x

n
i ii

E u x z

x x W
=

≥ =∑
, 

where the expected value is computed with the 
forecasted distribution at time T. Since the 
transition matrix P depends on portfolio 
composition x and it is valued on the portfolio 
historical series, it is not easy to solve the above 
optimization problem. However, with our 
algorithm we simplify the computational 
complexity of the problem and we propose a 
distribution strictly linked to historical series of 
gross returns. 

b) in risk management theory: In order to forecast 
the risk position of a given portfolio, the 
managers generally compute the Value at Risk 
(VaR) of their investment positions. The VaR is 
the θ percentile of the future profit/loss 
distribution.  Therefore, assuming that daily gross 
returns follow a Markov chain, we can easily 
estimate the percentile of future wealth 
considering the previous algorithm to compute 
the wealth distribution.   

c) in option pricing theory: The value of any 
European contingent claim is simply given by the  
risk neutral expected value of a discounted 
contingent claim priced at the maturity. Therefore, 
given an evolution of the underlined with a 
markovian tree, we can compute the risk neutral 
valuation of contingent claim distribution at the 
maturity (see [6], [9]) and then value the option 
price with the discounted expected value.  

We refer to [5], [6], [8], [10] for further possible financial 
applications. 

Appendix:The algorithm in MATLAB 
language 

The following algorithm describes in MATLAB language 
the computation of the final probabilities of the nodes at 
the T-th step using the recursive formulas (1), (2) when we 
assume a homogeneous Markov chain with transition 
matrix P. 

 
 function 

[Final_Prob]=NonparamMKV_Density(State0,P,T); 
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  [N,N]=size(P);Q=diag(P(State0,:));  
  if T>=2 
     for level=2:T 
        Q=DiagM(Q*P); 
     end 
  end 
Final_Prob= (Q*ones(N,1)); 
end 
  

The function DiagM shifts the columns of the matrix 
given in input by an increasing number of elements 
starting by the second column. It is realized using matrix 
manipulation operators offered by the MATLAB language 
that are faster in comparison to manipulations performed 
using loops such as “For…”. Very useful is the reshape 
operator which changes the dimensions of a matrix by 
refilling a new matrix of different dimensions with the 
same elements of the previous.  
 

 function [Mshifted]=DiagM(M); 
    % Memorize initial dimensions 
    [Mrows,N]=size(M); 
    % Add N rows of zeros; 
    M=[M;zeros(N,N)]; 
    % Recompute new dimensions 
    Mrows=Mrows+N; 
    % Transform the matrix in a column vector 
    M=reshape(M,Mrows*N,1); 
    % Delete the last N elements of the vector 
    M=M(1:Mrows*N-N); 
    % Reshape the matrix shifted 
    Mshifted=reshape(M,Mrows-1,N); 
end; 
  

The following few lines of code compute the final 
distribution. The “cumsum operator” applied to a vector of 
returns gives us another vector with the cumulative sum of 
the elements of the original vector: 

 
 function 
[Final_Distrib]=NonparamMKV_Density(State0,P,T); 

    Final_Prob=NonparamMKV_Density(State0,P,T); 
    Final_Distrib=cumsum(Final_Prob);   

end 
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