
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

75

Using an Enhanced Ant Colony System to Solve Resource-
Constrained Project Scheduling Problem

Ruey-Maw Chen† and Shih-Tang Lo††

†Department of Computer Science and Information Engineering, National Chin-yi Institute of Technology
Taichung 411, Taiwan, ROC

††Department of Information Management, Kun-Shan University, Tainan 710, Taiwan, ROC
††Department of Engineering Science, National Cheng-Kung University, Tainan 701, Taiwan, ROC

Summary
This study presents and evaluates a modified ant colony
optimization (ACO) approach for the resource-constrained
project scheduling problems. A modified ant colony
system is proposed to solve the resource-constrained
scheduling problems. A two-dimensional matrix is
proposed in this study for scheduling activities with time,
and it has a parallel scheme for solving project scheduling
problems. There are two designed heuristic is proposed.
The dynamic rule is designed to modify the latest starting
time of activities and hence the heuristic function. In
exploration of the search solution space, this investigation
proposes a delay solution generation rule to escape the
local optimal solution. Simulation results demonstrate that
the proposed modified ant colony system algorithm
provides an effective and efficient approach for solving
project scheduling problems with resource constraints.

Key words:
Ant colony optimization, scheduling, project management

Introduction

In a project scheduling problem, given programs (tasks) of
a project with precedence relation and resource
requirements constraint are scheduled, such that the
program's execution time is minimized. In practice, project
management considers the precedence and resource
requirements constraint and finding the minimum of
maximum complete time, called the resource-constrained
project scheduling problem (RCPSP) [1]. The traveling
salesman problem (TSP) is a typical NP-complete problem,
for which obtaining an optimal solution for a tour with a
minimum distance is quite time consuming. Scheduling
has many applications in commercial, industrial and
academic fields, including avionics, communications,
signal processing, routing, industrial control, operations
research, production planning, project management,
process scheduling in operating systems, class

arrangement and grid computing. Most scheduling
problems are confirmed to be NP complete problems.
Many different schemes have been presented for solving
scheduling problems. In this study, an ACO approach for
the precedence and resource constrained projected
scheduling problem is presented and evaluated.
The rest of this study is organized as follows. Section 2
reviews the related work for the resource-constrained
project scheduling problems. Section 3 depicted the ant
colony system and the proposed ACO algorithm, which
combines the delay solution generation rule and dynamic
rule for the scheduling problem. The simulation examples
and experimental results are presented in Section 4.
Conclusions and discussions are given in Section 5.

2. Related work

Early research was concentrated mainly on the formulation
and solution of the problem as a mathematical model; such
as integer programming, branch-and-bound method and
dynamic programming [2]. But these approaches can only
be useful for small problems. The heuristic methods can
solve the small problem. The heuristic methods are usually
computationally efficient, but easily trap into local optimal
solution and no guarantee that they will find optimal
solutions. Recently, metaheuristics have been applied, such
as tabu search, simulated annealing, genetic algorithm and
ant colony optimization. Icmeli and Erenguc developed a
tabu search method for RCPSP with the objective of
optimizing the net income of the project [3]. Pinson et al.
apply tabu search for RCPSP, based on a neighborhood
search [4]. Baar et al. developed two tabu search
algorithms: the first relies on elimination of critical arcs
and list scheduling techniques, while the second relies on
schedule schemes, where neighbors are generated by
placing activities in parallel or deleting a parallelity
relation [5]. Lee and Kim used a sequence of priority
values for each task of a project as a representation scheme
and apply simulated annealing, tabu search, and a genetic

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

76

algorithm to manipulate the priority sequence [6]. Tasks of
a project are scheduled according to their priority values.
They report better results than conventional heuristics.
Naphade et al. employ problem space search, which is a
local search metaheuristic that proved effective for a
variety of combinatorial optimization problems [7]. They
report extremely encouraging results comparable in
performance to the branch and bound algorithm of
Demuelemeester and Herroelen [8].

2.1 Project scheduling problems using genetic
algorithm

The Genetic Algorithm (GA) is the most popular and
widely used technique for project scheduling problem.
Crossover, mutation and selection operators are applied to
create for the new generation of schedules and find the
solution with GA. GA’s were first developed by Holland
and De Jong and are based on the mechanics of natural
selection in biological systems[9] [10]. Portmann use GA
integrated with other search techniques, and analyses the
effects of various GA characteristics, such as the encoding,
crossover, and mutation operators on the performance of
GA’s in scheduling [11]. GA generates a high quality of
output schedules in project scheduling problems, but the
scheduling times are generally much higher than with the
heuristic-based schemes. Additionally, several control
parameters in a genetic algorithm need to be determined
appropriately.

2.2 Ant system for project scheduling problems

ACO is a class of constructive meta-heuristic algorithms
that share the common approach of building a solution on
the basis of information provided by both a standard
constructive heuristic function and previously constructed
solutions [12]. This effort is mediated by exchanging
information based on the problem structure collected
concurrently by the agents, while building solutions
stochastically. Similarly, an ACO scheduling algorithm,
consisting of concurrent distributed agents, which
discovers a feasible solution, is presented. RCPSP using
ACO algorithms has recently been studied [13][14][15].
The ACO has been successfully applied to RCPSP,
combined with the different heuristics, easily obtaining a
near-optimal solution. Dorigo and Gambardella first
applied the ant colony system (ACS) to solve TSP [16].
Simulation results indicate that ACS outperforms other
nature-inspired algorithms, such as simulated annealing
and evolutionary computation. Applications of the ACO
algorithm are also involved in solving job shop scheduling
problems [17]. Besten et al. presented an application of the
ACO meta-heuristic to the single machine total weighted
tardiness problem [18]. Gajpal et al. adopted ACO to solve
the problem of scheduling in flowshop with sequence-

dependent setup times of jobs [19]. Rajendran and Ziegler
developed two ant-colony optimization algorithms for
solving the permutation flowshop scheduling problem [20].
Merkle et al. presented an ACO approach for RCPSP,
which is a schedule problem to find the minimum
makespan with resource and precedence constraints [15].
These studies indicate that ACO can work successfully in
many different scheduling applications about combination
problems. This work attempts to find optimal or near-
optimal solutions to project schedule problems with
resource and precedence constraints under restricted
scheduling times. The proposed algorithm enables fast
optimal or near-optimal solutions to be found, and is
useful in industrial environments where computational
resources and time are restricted. Therefore, the concept
can be adopted to solve project scheduling, job-shop,
flow-shop, open-shop problems and grid computing
problems.

3. Ant colony system and scheduling problem

3.1 Ant colony system

The ACO algorithm has been demonstrated to be an
effective means of solving complex combinatorial
optimization problems. In ACO, the positive feedback of
pheromone deposits on arcs comprising more optimal
node-arc tours (paths), allows the next cycle (iteration) to
progress toward an optimal solution [21][22]. ACO
mimics the behavior of foraging ants. Ants deposit
pheromones on the paths that they move along. The
pheromone level deposited on a particular path increases
with the number of ants passing along it. Ants adopt
pheromones to communicate and cooperate with each
another in order to identify the shortest paths to a
destination. ACO is applied to the TSP first, since it
enables an efficient evolution toward quality sub/optimal
solutions.
The ACO algorithm has recently been applied to
scheduling problems, such as job-shop, flow-shop, and
single machine tardiness problems [1][16][23][24].
Traditionally, the pheromone matrix τ=[τij], where the
pheromone is added to an element τij of the pheromone
matrix, finds a good solution where job j is the ith job on
the machine. The following ants of the next generation
directly use the value of τij and heuristic function to
estimate the desirability of placing job j as the ith job on
the machine when obtaining a new solution [15]. Bauer et
al. proposed ACO algorithms using a conventional
pheromone matrix [τij] to solve the single machine total
tardiness problem and the flow-shop problem [23]. This
study adopts a modified pheromone matrix [τtj], in which
the element τtj, denoting the pheromone value of activity j

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

77

is processed at time t on a specific machine. Restated, the
two-dimensional grid for scheduling activities at certain
time is a time-dependent relation structure. The element τtj
is similar to τij, which is designed to suit a dynamic
environment. The number of resource is changed by the
time; the proposed scheme is easy to reschedule the
remained activities from the time of resource changed.

3.2 Scheduling problem

The formal assumptions of the scheduling problem domain
are introduced in advance. Suppose that there are N
activities in a project. Based on these assumptions, let J=
{0,1,…,N,N+1 } denote the set of activities, and activities
cannot be both segmented and preemptive. Activity 0 is
the only start activity that has no predecessor and activity
N+1 is the only end activity that has no successor, and no
resource requirements and has no processing time. Q
denotes a set of renewable resource totals of k types, and
Ri≧0 is the resource quantity for resource type i, i ∈Q.
The availability of each resource type i, i ∈Q in each time
period is Ri units. Each activity j, j∈J, has a duration pj and
resource requirements rj,1…….. rjq, where rj,i denotes the
requirement for a resource type i when processing activity
j. The value of rj,i does not change with time [15]. There
are precedence relations between the activities, and
transmission time is assumed to zero from one activity
switch to the next activity. The precedence relations
between the activities can be represented by an acyclic
activity-on-vertex (AOV) network. A network G=(V,E)
comprises a set of activities (vertex) V={v1,v2,....., vn} and
a set of edges E ={(i, j)| vi , vj ∈V } representing the
precedence relation. A schedule of a project is mapping a
set of activities to meet the activity precedence relations
and resource requirements.

Figure 2 shows a basic example of the problem domain
studied, including a precedence graph and resources
constraint with 6 activities and 4 resource types. The total
utilized resources can not be more than the total available
resources for each resource type at a certain time. A two-
dimensional matrix (T×N) is adopted to denote the
scheduling result. The axes of the matrix are activity and
time, as denoted by j and t respectively. The state of a
coordinate is represented by Vtj. The value of Vtj is set to
one (Vtj=1) if activity j is processed at time t, otherwise Vtj
=0. Every Vtj is associated with one τtj and one ηtj. Thus,
unlike other approaches, the τtj and ηtj in the proposed
approach is time dependent.

(a)

(b)

Figure 1. Simulation cases for 6 activities with precedence and resource
constraints

Figure 2. Simulation result with one solution matrix.

3.3 Modified ACO algorithm for RCPSP

Figure 3 displays the steps of the scheduling algorithm for
the resource-constrained project scheduling problem by
modified ACS, which combines the dynamic rule and
delay solution generation rule, and is called a dynamic and
delay ant colony system (DDACS). DDACS begins with a
partial schedule containing activity 0 at time 0. At each
stage, a set of all eligible activities Jk(t), comprising all
candidates for successors at time t. The initial activities in
Jk(0) have in-degree=0 which refers to the number of
eligible activities at time 0. The following activities
selected from Jk(t) are applied until resource constraints is
not satisfied. An activity is selected by the ant from Jk(t) if
it satisfies resource constraints, C and Jk(t) are then
updated later, where C denotes the set of already
scheduled activities. The algorithm runs until a stopping
criterion is met, e.g., a certain number of generations have
been performed.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

78

To define the scheduling algorithm concisely, we define
two auxiliary times: the earliest and latest start times of an
activity. First, the earliest start time of activity j (Ej) is the
length of the longest path from an entry activity to activity
j. The latest start time of activity j.(Lj) is defined to be the
latest time at which activity j may start, such that activity j
and all successors of activity j have a chance to complete
as soon as possible.

⎪⎩

⎪
⎨
⎧

+
∈¬∃

=
∈

 otherwise , }{max
: if , 0

Pr jie(j)i
j pE

E(i,j)i
E (1)

⎪⎩

⎪
⎨
⎧

−

∈¬∃+
=

∈
 otherwise , }{min

: if ,

jisucc(j)i

jj

j pL

E(j,i)ipE
L (2)

 where the pre(j) (succ(j)) is the set of immediate
predecessors (successors) of activity j, if (i,j)∈E. The
earliest and latest start times of an activity is applied in η
function determination. The Lj is used to build the initial
solution. The state transition rules are governed by Eq. (3)
and (4). The next activity j is chosen from Jk(t) when q≦

q0, which flavors the choices for the next activity with the
highest pheromone times heuristic value, where the η
function is defined in Eq. (5).

()[] ()[]{ }βα ητ ltltj
(t)Jl k

,, maxarg ⋅=
∈

　 (3)

If q>q0, then activity j is randomly selected from Jk(t)
according to the probability distribution given by Eq. (4).

()
()[] ()[]
()[] ()[]),

otherwise 0

,,
,,

,
)

(tJjltlt
jtjt

jtP k
(tJl

k
k

∈

⎪
⎪
⎩

⎪⎪
⎨

⎧

⋅
⋅

= ∑
∈

βα

βα

ητ
ητ

 (4)

where α, β denote the parameters correlating to the
importance of the pheromone and heuristic, respectively.
Concerning heuristics, this study adopts the adaptations of
priority heuristics known as the critical path method to
determine the earliest/latest starting process time; Ej /Lj for
activity j, j∈J in Eq. (1) and (2). The Ej and Lj are initially
computed under no resource considerations, hence there is
a conservative value for each activity. The Lj from the best
solution of all ants is adopted in every iteration. Finally,
the Lj is changed dynamically in the current iteration
according to dynamic rules given in Section 3.3.3.
Equation (5) shows the η function of the modified ACO.

 aluesconstant venough large are , and where

),
 if ,

)/2(
1

 if ,
)1(
1

),(

1

1

cctLd

(tJj
Lt

pcd

LtE
pd

jt

jj

k

j
c

jj

jj
c

jj

−=

∈

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≥
×−

<≤
×+

=η
(5)

Equation (5) demonstrates that activity j with the shortest
process time (shortest pj) and nearest to Lj (minimum dj)
obtains the highest η value. Activity j with the highest
probability (Pk(t,j)) is selected from Jk(t) at time t. Hence,
the activity with minimum dj and shortest pj is first when
Ej≦t<Lj,, or the activity with maximum dj and shortest pj
is first when t≧Lj.

1. Initialize
2. Loop
3. Each ant k is positioned on a starting node
4. Loop
5. Initialize t=1, C =∅ and Jk(t=0)
6. Loop
7. Select one activity j∈Jk(t) with state transition rule
8. while j≠null do
9. if activity j at time t under resource constraint satisfied
10. if the delay rule is activated then delay activity j
11. else schedule activity j at time t
12. C = C∪{ j} and Jk(t)= Jk(t)-{ j }
13. applied local update rule
14. Select next activity j∈ Jk(t) with state transition rule
15. end while
16. t=t+1
17. add the eligible activity to set Jk(t) with current in-degree=0
18. Until | C | =N
19. Until all ants have built a complete solution
20. A dynamic rule to adjust the Lj
21. A global pheromone updating rule is applied with the best solution
22. Until End_condition is reached

Figure 3. DDACS Algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

79

Once one activity j is selected according to the state
transition rule Eq. (3) and (4), then Vtj=1, t∈[Sj ,fj], where
Sj= t and fj=t+pj−1. Sj (fj) is the starting (finish) process
time of activity j in the current solution. Thus this setting
ensures that the non-preemptive requirement is satisfied.
Restated, Vtj is set to one during the time period of Sj to fj.
An unassigned activity has high η value (>1/2) when the
time t>Lj, and low η value (<1/2) when t<Lj for activities
in Jk(t). An activity with a η value of 0 is not a member of
Jk(t). The η value of an activity is close to 1/2 when Lj=t.
However, the η value of an activity is always between 0
and 1.

3.3.1 Local Update Rule

The pheromones τtj are updated by the local updating rule
after an ant has built one RCPSP solution. The modified
ACS adopts the following local updating rule to prevent
succeeding ants from searching in the neighborhood of the
current schedule of the current ant. The ants select activity
j at time t, and then modify their pheromone levels.

() () () () jnew Stjtjtjt =Δ⋅+⋅−= ,,,1, τρτρτ (6)

where 0<ρ<1 denotes the evaporation rate as an input
parameter, where activity j progresses from Sj to fj. Δτ(t,
j)=τ0 is set in the proposed ACO method. If the
pheromone τtj is set to a low value, then activity j has a
lower probability of being chosen by another ant at time t.
In Figure 2, activity 1∈Jk(1) is the first activity in the
schedule at time 1, where Jk(1) ={1,5}. Thus, τ11
evaporates some pheromone lower than τ15, according to
the local update rule. At time 3, Jk(3) ={2,3,5}. If activities
2 and 3 are selected, the related τ value (τ32 and τ33) is
decreased. Figure 4 shows another feasible solution for the
next ant, while activity 5 is the first activity to be assigned
with the highest τ value. Such a solution has the smallest
makespan, i.e. makespan=11. The local update rule
adopted to select another activity is a strategy to avoid
being trapped in a local maximum (or minimum).

Figure 4. Simulation result of another ant after the previous ant using

the local update rule.

3.3.2 Global update rule

After all ants have built all feasible schedules, the global
update rule, Eq. (7), is used to increase the pheromone τtj
by applying the best solution so far. For all τtj, the
pheromone is increased by the global update rate if Vtj =1,
where t=Sj, and is otherwise evaporated by global
pheromone evaporation rate, as shown in Eq. (7). This is
an elitist strategy that leads ants to search near the best-
found solution.

() () () () jgbnew Stjtjtjt =Δ⋅+⋅−= ,,,1, �τδτδτ

where
()

gb

gbold

tj

tj
gb

ms
msms

ms

V
Vms

jt

}-,0max{1
 and

0 if
 1 if

, 0
,

,

+
=Δ

⎩
⎨
⎧

=
=Δ

=Δτ

(7)

 where 0<δ<1 denotes a parameter representing the global
pheromone evaporation rate, and where Δτgb(t,j) is
computed by the best schedule in the current iterations,
and the amount of pheromone added is δΔτgb(t,j) when
activity j is assigned to run in time period [Sj , fj]. The msold
and msgb denote the makespan of the best schedule in the
previous and current iterations, respectively. For each
activity, pheromone is added when an activity is being
processed in the activity schedule list of the best solution
obtained in the current generation. Otherwise, the
pheromone is evaporated if Vtj =0.

3.3.3 Dynamic rule

In the beginning, one activity’s earliest starting and latest
starting time is computed by the critical path without
considering the resource constraints. The makespan is first
assumed to be equal to the critical path length at first
iteration. Owing to the resource constraints, the makespan
may be larger than the critical path length in the solution.
The Lj is initially determined under no resource
considerations. That is, the value of Lj may be increased
along with the makespan. A schedule may contain some
activities that start to run behind Lj, while considering the
resource constraints The original Lj is a conservative value,
while the η function is computed based on the latest
starting time, as shown in Eq. (5). If the Lj can not reflect
the actual latest starting time, then the Lj is an excessively
conservative value for the state transition rule. The ants
will choice the activity under the state transition rule with
η value and pheromone τ value. Therefore, a rule is
designed to refine the latest starting time by feedback of
the best solution found in current iteration. This rule is
called a “dynamic” rule. If the activity is processed before
the Lj, then the Lj does not need to be extended later. For
those activities that have been processed later than the Lj,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

80

the new Lj is simply replaced by the Sj. Restated; this
replacement is used to acquire the most accurate value for
Lj. This rule is adopted in step 20 of the DDACS
procedure in Fig. 3. The accuracy of estimation of the η
function value rises as the accuracy of Lj increases. The Lj
dynamic adjustment rule is defined as follows:

 if ,

 if ,

⎩
⎨
⎧

<
≤<

=
jjj

jjjj
j SLS

LSEL
L (8)

3.3.4 Delay solution generation rule

The delay solution generation rule (called the delay rule
for short) is indicated in step 10 of DDACS. This rule
enables some activities to be assigned later on purpose to
escape the local optimal solution. The delayed activity is
excluded from in Jk(t) for a certain delay length, which is a
uniform distribution of [0, Lj – t] as demonstrated in Eq.
(9). The delay is not allowed to later than Lj, hence the Sj
of activity j cannot be greater than Lj. This rule is enable
one activity can be processed later to let the other
activities be processed ahead to yield different solution
under the resource constraints. For instance, if one activity
is selected to schedule which require many resources at
time t, then some other activities requiring same resources
are prohibited from being processed for some time.
Accordingly, these activities result in a larger makespan
than the optimal solution.
Figure 6 depicts an example of this situation. Based on the
proposed method without delay strategy, two activities in
Jk(1)={1,2,3} are schedule to run at t=1. Suppose that
activities 1 and 2 are assigned for processing, and Jk(2)
={3,4,5} at time 2. In this case, activity 2 needs two R3
resources and activity 5 needs three R3 resources. The total
amount of R3 resources available is 4, which is not
sufficient for processing activities 2 and 5 concurrently at
t=2. The solution is never optimal if activity 2 is scheduled
at t=1. If activities 2 and 3 are delayed to process, then the
other activities (activity 4 and 5) can be executed earlier,
and the successor activities of activities 4 and 5 can start
to run as soon as possible. Hence, an optimal solution is
obtained, since activity 7 is a critical path activity and
processed earlier. The comparison between cases without
delay strategy and with delay strategy is shown in Figures
6 and 7.
The “delay” rule deliberately delays an eligible activity, as
shown in Eq. (9). This rule enables an undiscovered
solution to be found. The delay time is defined as follows.

 otherwise , 0

 and if ,)-(1

⎩
⎨
⎧ ≤>×

= jj LtqqtLq
delaytime (9)

where q is a random number uniformly distributed in [0,1].
The q1 (0<q1<1) is a predetermined parameter that
determines the probability of changing the influence on

the decisions of the ants. The rule in Eqs. (3) and (4) are
adopted when q ≦q1. Otherwise, this delay strategy is
applied when q>q1 and t< Lj. The q1 value increases along
with the iteration. The q1 value is close to one after certain
iterations. Restated, the possibility of delaying activities is
decreased as the iteration increase.
The DDACS combines the above described rules to
explore the search space of a feasible solution. The
following simulations indicate these rules are suitable for
resource-constrained project scheduling problems.

4. Experimental simulations

The simulations involved different sets of scheduling
problems with different activities, from 10 to 30 activities,
then later with 30 to120 activities. All simulation cases
assumed that three or four different resource types were
available and 10 ants were adopted. The simulations used
various set of weighting factors. The q0 value was set in
the range of [0.8, 0.95]. The initial q1 value was set in the
[0.7, 0.95] range. Other settings were: iterationmax=1000,
τ0.=0.01, c=10 and c1=50. Moreover, δ=0.1, ρ=0.1, α=1,
β=1, q0 =0.9 and q1 =0.95 were set in the simulation, if no
other values are mentioned.
Figure 5 shows the 10 activities case with the given
precedence and resource constraints. Figures 6 and 7
indicate the scheduling results. Figures 6 show the results
of the no-delay rule used in the modified ACO. Figures 7
display scheduling results of using the delay rule in the
algorithm.
Figure 8 show the corresponding optimal schedule
obtained using the proposed ant approach. The allocation
profiles of three types of resources are reflectively
described in the schedule.

(a)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

81

(b)

Figure 5. Simulation cases for 10 activities with precedence and resource
constraint.

Figure 6. The solution matrix with no delay rule

Figure 7. The solution matrix with delay rule

Figure 8. Resource allocation for one simulation result

The makespan of the optimal solution case is 10; thus the
proposed approach with the delay rule can obtain the
optimal solution in less than 10 iterations.
The following simulation cases are PSLIB cases. The
PSLIB library has cases with 30 to 120 activities; each
case is with at least 480 instances. Thus, suggested
DDACS applied to solve the PSLIB problems. The
following simulations were used to test the proposed
DDACS to check whether the optimal solutions can be
found as listed in PSLIB. The other purpose of solving
PSLIB using DDACS is to verify the designed dynamic
rule and delay solution generation rule in obtaining a near-
optimal (optimal) solution. The following simulation
results indicate that the DDACS finds a near-optimal
(optimal) solution under a certain number of iterations.
Table 1 show the simulation results (activity number,
average, best, worst makespan, standard deviation of
makespan and execution time) by proposed scheme. Each
case was simulated 10 times; each simulation was set to
run for 20 iterations. These simulation cases were set from
30 activities to 120 activities. All simulations were run on
a Pentinum4 2.8GHz PC using the C language.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

82

Table 1. Execution summary of one instance for 30 to 120
activities.

activity MS_avg MS_best MS_worst MS_stdevp Execution time
30 44.2 43 45 0.53 0.3
60 96.3 95 98 0.9078 1.02
90 121.8 120 123 0.6353 2.51
120 92.3 91 94 1.0450 4.83

Figure 9 illustrates the simulation results of PSLIB for
cases of 30 activities with 480 instances. Simulation
results indicate that the DDACS found more optimal
solutions for PSLIB problems.

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

1
≦

5
<=

10
≦

50

≦
10

0

≦
20

0

≦
30

0

≦
40

0

≦
50

0

Iterations

P
er

ce
nt

ag
e(

no
/4

80
)

DDACS

ACS

difference

Figure 9. Probability of finding optimal solutions comparison with ACS
and DDACS.

Figure 10 shows the difference between computed
makespan and optimal makespan for cases of 30 activities
with 480 instances. The total number of near-optimal
solutions with dynamic and delay solution generation rules
were greater than that obtained when no rule was
employed. For instance, DDACS obtained about 93.3%
(=448/480) cases with near-optimal solutions, in which the
difference between the computed makespan and optimal
makespan was no more than 2, as in Fig. 10.

250

300

350

400

450

500

0 ≦1 ≦2 ≦3 ≦4

Difference between computed makespan and optimal makespan

of

 so
lu

tio
ns

DDACS
ACS

Figure 10. The number of near optimal solutions for 480 different
instances with 500 iterations.

The proposed is suitable to solve the changing the
available resource, if the resource is changed at time t
while the schedule is under processing, then the DDACS

can run immediately for the remainder unfinished activity.
The reschedule process is under new resource
circumstance. Figure 11 show the resource R2 is changed
from 6 to 5 at time 6. The activity 2, 6, 7, 9 and 10 are
rescheduled at this time to satisfy the resource constraints.
The two possible simulation results are showed in Fig. 12,
the Figure 12-(b) is the solution by using the DDACS with
delay rule.

Figure 11. The simulation results for resource changed

(a)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

83

(b)

Figure 12. The simulation results for resource changed

5. Conclusions and discussion

This study presents a modified ACO approach named
DDACS for a multi-constraint (precedence and resource
constraints) project scheduling problem. A two dimension
(time and activity) matrix graph is adopted to solve the
scheduling problem. The proposed DDACS algorithm
modifies the latest starting time of each activity in the
dynamic rule for each iteration. The latest starting time of
an activity is used in the heuristic influence, as listed in Eq.
(5). The latest starting time amendment provides an
appropriate feedback to find the optimal solution.
Moreover, a delay solution generation rule is applied to
allow the solution to escape from the local minimum. The
delay solution generation rule is a good strategy to search
for a better solution, as revealed by the simulation results,
as shown in Fig. 10.
The proposed DDACS scheme provides an efficient
method of finding the optimal or near schedule of the
resource-constrained project scheduling problems. An
important feature of the scheduling algorithm is its
efficiency or performance, i.e., how its execution time
increases with the problem size. A fast convergence rate is
a significant characteristic of an ant colony system. The
execution time of the DDACS algorithm is proportional to
O(N×T×ant) for one iteration. Restated, the execution
time of DDACS is linear proportional to ant number and
matrix size. Changing of available resources is an
important consideration in the resource-constrained
project scheduling problem. However, the proposed
DDACS method is an adaptable scheme for such variable
resource situations. This work focuses on investigating the
resource-constrained project scheduling problems.
However, the more complex conditions, such as set-up
time between activities or reschedule cost should be
further studied. Meanwhile, a dynamic situation can be

further studied, with emergency activities arriving at a
certain time. Moreover, the makespan is considered in this
work, but tardiness is allowed in other scheduling
problems, such as job-shop, flow-shop and industry
production plans. Heuristic functions and how to generate
better solutions can also be further discussed, and future
research endeavors should address these issues more
thoroughly.

References

1. Merkle, D. & Middendorf, M. (2001). A new approach to

solve permutation scheduling problems with ant colony
optimization. In Proceedings of the Evo. Workshops 2001,
number 2037 in Lecture Notes in Computer Science,
pages 484–494. Springer Verlag.

2. A genetic algorithm approach to a general category project
scheduling problem Ozdamar, L.; Systems, Man and
Cybernetics, Part C, IEEE Transactions on Volume 29,
Issue 1, Feb. 1999 Page(s):44 – 59

3. O. Icmeli and S. S. Erenguc, “A tabu search procedure for
the resourceconstrained project scheduling problem with
discounted cash flows,” Comput. Oper. Res., vol. 21, pp.
841–853, 1994.

4. E. Pinson, C. Prins, and F. Rullier, “Using tabu search for
solving the resource-constrained project scheduling
problem,” in Proc. 4th Int. Workshop Project
Management and Scheduling, Leuven, Belgium, 1993, pp.
102–106.

5. T. Baar, P. Brucker, and S. Knust, “Tabu search
algorithms and lower bounds for the resource-constrained
project scheduling problem,” in Meta-Heuristics:
Advances and Trends in Local Search Paradigms for
Optimization, S. Voss, S. Martello, I. Osman, and C.
Roucarion, Eds. Norwell, MA: Kluwer, 1998, pp. 1–18.

6. J. K. Lee and Y. D. Kim, “Search heuristics for resource-
constrained project scheduling,” J. Oper. Res. Soc., vol.
47, pp. 678–689, 1996.

7. K. Naphade, S.Wu, and R. Storer, “Problem space search
algorithms for resource-constrained project scheduling,”
Ann. Oper. Res., vol. 70, pp. 307–326, 1997.

8. E. Demeulemeester andW. Herroelen, “A branch-and-
bound procedure for the multiple resource-constrained
project scheduling problem,”Manage. Sci., vol. 38, pp.
1083–1818, 1992.

9. J. H. Holland, Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: Univ. Michigan Press, 1975.

10. K. A. De Jong, “Adaptive system design: A genetic
approach,” IEEE Trans. Syst., Man, Cybern., vol. SMC-10,
pp. 566–574, 1980.

11. M. C. Portmann, “Genetic algorithms and scheduling: A
state of the art and some propositions,” in Proc. Workshop
Production Planning Contr., Mons, 1996.

12. Maniezzo, V. & Carbonaro, A. (1999). Ant Colony
Optimization: an Overview. Proceedings of MIC’99, III
Metaheuristics International Conference, Brazil

13. Brucker, P., Drexel, A., Möhring, R. H., Neumann, K., &
Pesch, E. (1999). Resource-constraint project scheduling:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

84

Notation, classification, models, and methods. Eur. J. Oper. Res., vol. 112, no. 1, pp. 3–41.
14. Herroelen, W., B. Reyck, D. & Demeulemeester, E.

(1998). Resource-constrained project scheduling: A
survey of recent developments. Comput. Oper. Res., vol.
13, no. 4, pp. 279–302.

15. Merkle, D. Middendorf, M. & Schmeck, H. (2002). Ant
colony optimization for resource-constrained project
scheduling. IEEE Transactions on Evolutionary
Computation, Vol. 6, Issue: 4 On page(s): 333- 346

16. Dorigo, M., & Gambardella, L. M. (1997). Ant colony
system: A cooperative learning approach to the traveling
salesman problem. IEEE Transactions on Evolutionary
Computation; 1(1): 53-66.

17. Pierucci, P., Brandani, E. R., & Sogaro, A. (1996). An
industrial application of an on-line data reconciliation and
optimization problem. Computers & Chemical
Engineering, Volume 20, Pages S1539-S1544.

18. Besten, M. D., Sttzle, T. & Dorigo, M. (2000). Ant
Colony Optimization for the Total Weighted Tardiness
Problem. Berlin, Germany: Springer-Verlag, vol. 1917,
Lecture Notes in Computer Science, pp. 611-620.

19. Gajpal, Y., Rajendran, C., & Ziegler, H. (2004). An ant
colony algorithm for scheduling in flowshops with
sequence-dependent setup times of jobs. European Journal
of Operational Research, Volume 155, Issue 2, Pages 426-
438

20. Rajendran, C. & Ziegler, H. (2004). Ant-colony
algorithms for permutation flowshop scheduling to
minimize makespan/total flowtime of jobs. European
Journal of Operational Research, Volume 155, Issue 2,
Pages 426-438

21. Stützle, T., Hoos, H. H. (2000). MAX-MIN Ant system.
Future Generation Computer Systems, v.16 n.9, p.889-914.

22. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant
system: Optimization by a colony of cooperating agents.
IEEE Transaction on System, Man and Cybernetics, 26(1):
1-13.

23. Bauer, A., Bullnheimer, B., Hartl, R. F. & Strauss, C.
(1999). An ant colony optimization approach for the single
machine total tardiness problem. In Proc. 1999 Congr.
Evolutionary Computation, 1999, pp. 1445-1450.

24. Iredi,S., Merkle, D., & Middendorf, M. (2001). Bi-
Criterion Optimization with Multi Colony Ant Algorithms.
In First International Conference on Evolutionary Multi-
Criterion Optimization (EMO’01)., vol. 1993, Lecture
Notes in Computer Science, pp. 359–372. Springer-Verlag.

Ruey-Maw Chen, he was born at
Tainan, Taiwan, R.O.C. in 1960. He
received the B. S., the M. S. and the
PhD degree in engineering science
from National Cheng Kung
University of Taiwan R.O.C. in
1983, 1985 and 2000, respectively.

From 1985 to 1994 he was a
senior engineer on avionics system

design at Chung Shan Institute of Science and Technology
(CSIST). Since 1994, he is a technical staff at Chinyi

Institute of Technology. Since 2002, he has been with the
Department of Computer Science and Information
Engineering, National Chinyi Institute of Technology,
where he is an assistant professor. His research interests
include scheduling, and neural networks, computer

networks.

 Shih-Tang Lo, he was born at Hsinchu,
Taiwan, R.O.C. in 1965. He received the
B. S in computer science from Soochow
University in 1987, the M. S. in
Information Engineering from Tamkang
University in 1989 and now is Phd
student in engineering science, National
Cheng Kung University of Taiwan

R.O.C.
From 1991 until now, he is an instructor of department of
information management, Kun-Shan University. His
research interests include project scheduling, neural
networks, genetic algorithm and ant colony optimization.

