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Summary 
This study presents and evaluates a modified ant colony 
optimization (ACO) approach for the resource-constrained 
project scheduling problems. A modified ant colony 
system is proposed to solve the resource-constrained 
scheduling problems. A two-dimensional matrix is 
proposed in this study for scheduling activities with time, 
and it has a parallel scheme for solving project scheduling 
problems. There are two designed heuristic is proposed. 
The dynamic rule is designed to modify the latest starting 
time of activities and hence the heuristic function. In 
exploration of the search solution space, this investigation 
proposes a delay solution generation rule to escape the 
local optimal solution. Simulation results demonstrate that 
the proposed modified ant colony system algorithm 
provides an effective and efficient approach for solving 
project scheduling problems with resource constraints. 
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Introduction 

In a project scheduling problem, given programs (tasks) of 
a project with precedence relation and resource 
requirements constraint are scheduled, such that the 
program's execution time is minimized. In practice, project 
management considers the precedence and resource 
requirements constraint and finding the minimum of 
maximum complete time, called the resource-constrained 
project scheduling problem (RCPSP) [1]. The traveling 
salesman problem (TSP) is a typical NP-complete problem, 
for which obtaining an optimal solution for a tour with a 
minimum distance is quite time consuming. Scheduling 
has many applications in commercial, industrial and 
academic fields, including avionics, communications, 
signal processing, routing, industrial control, operations 
research, production planning, project management, 
process scheduling in operating systems, class 

arrangement and grid computing. Most scheduling 
problems are confirmed to be NP complete problems. 
Many different schemes have been presented for solving 
scheduling problems. In this study, an ACO approach for 
the precedence and resource constrained projected 
scheduling problem is presented and evaluated. 
The rest of this study is organized as follows. Section 2 
reviews the related work for the resource-constrained 
project scheduling problems. Section 3 depicted the ant 
colony system and the proposed ACO algorithm, which 
combines the delay solution generation rule and dynamic 
rule for the scheduling problem. The simulation examples 
and experimental results are presented in Section 4. 
Conclusions and discussions are given in Section 5. 

2. Related work 

Early research was concentrated mainly on the formulation 
and solution of the problem as a mathematical model; such 
as integer programming, branch-and-bound method and 
dynamic programming [2]. But these approaches can only 
be useful for small problems. The heuristic methods can 
solve the small problem. The heuristic methods are usually 
computationally efficient, but easily trap into local optimal 
solution and no guarantee that they will find optimal 
solutions. Recently, metaheuristics have been applied, such 
as tabu search, simulated annealing, genetic algorithm and 
ant colony optimization. Icmeli and Erenguc developed a 
tabu search method for RCPSP with the objective of 
optimizing the net income of the project [3]. Pinson et al. 
apply tabu search for RCPSP, based on a neighborhood 
search [4]. Baar et al. developed two tabu search 
algorithms: the first relies on elimination of critical arcs 
and list scheduling techniques, while the second relies on 
schedule schemes, where neighbors are generated by 
placing activities in parallel or deleting a parallelity 
relation [5]. Lee and Kim used a sequence of priority 
values for each task of a project as a representation scheme 
and apply simulated annealing, tabu search, and a genetic 
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algorithm to manipulate the priority sequence [6]. Tasks of 
a project are scheduled according to their priority values. 
They report better results than conventional heuristics. 
Naphade et al. employ problem space search, which is a 
local search metaheuristic that proved effective for a 
variety of combinatorial optimization problems [7]. They 
report extremely encouraging results comparable in 
performance to the branch and bound algorithm of 
Demuelemeester and Herroelen [8]. 

2.1 Project scheduling problems using genetic 
algorithm 

The Genetic Algorithm (GA) is the most popular and 
widely used technique for project scheduling problem. 
Crossover, mutation and selection operators are applied to 
create for the new generation of schedules and find the 
solution with GA. GA’s were first developed by Holland  
and De Jong and are based on the mechanics of natural 
selection in biological systems[9] [10]. Portmann use GA 
integrated with other search techniques, and analyses the 
effects of various GA characteristics, such as the encoding, 
crossover, and mutation operators on the performance of 
GA’s in scheduling [11]. GA generates a high quality of 
output schedules in project scheduling problems, but the 
scheduling times are generally much higher than with the 
heuristic-based schemes. Additionally, several control 
parameters in a genetic algorithm need to be determined 
appropriately.  

2.2 Ant system for project scheduling problems 

ACO is a class of constructive meta-heuristic algorithms 
that share the common approach of building a solution on 
the basis of information provided by both a standard 
constructive heuristic function and previously constructed 
solutions [12]. This effort is mediated by exchanging 
information based on the problem structure collected 
concurrently by the agents, while building solutions 
stochastically. Similarly, an ACO scheduling algorithm, 
consisting of concurrent distributed agents, which 
discovers a feasible solution, is presented. RCPSP using 
ACO algorithms has recently been studied [13][14][15]. 
The ACO has been successfully applied to RCPSP, 
combined with the different heuristics, easily obtaining a 
near-optimal solution. Dorigo and Gambardella first 
applied the ant colony system (ACS) to solve TSP [16]. 
Simulation results indicate that ACS outperforms other 
nature-inspired algorithms, such as simulated annealing 
and evolutionary computation. Applications of the ACO 
algorithm are also involved in solving job shop scheduling 
problems [17]. Besten et al. presented an application of the 
ACO meta-heuristic to the single machine total weighted 
tardiness problem [18]. Gajpal et al. adopted ACO to solve 
the problem of scheduling in flowshop with sequence-

dependent setup times of jobs [19]. Rajendran and Ziegler 
developed two ant-colony optimization algorithms for 
solving the permutation flowshop scheduling problem [20]. 
Merkle et al. presented an ACO approach for RCPSP, 
which is a schedule problem to find the minimum 
makespan with resource and precedence constraints [15]. 
These studies indicate that ACO can work successfully in 
many different scheduling applications about combination 
problems. This work attempts to find optimal or near-
optimal solutions to project schedule problems with 
resource and precedence constraints under restricted 
scheduling times. The proposed algorithm enables fast 
optimal or near-optimal solutions to be found, and is 
useful in industrial environments where computational 
resources and time are restricted. Therefore, the concept 
can be adopted to solve project scheduling, job-shop, 
flow-shop, open-shop problems and grid computing 
problems. 

3. Ant colony system and scheduling problem 

3.1 Ant colony system 

The ACO algorithm has been demonstrated to be an 
effective means of solving complex combinatorial 
optimization problems. In ACO, the positive feedback of 
pheromone deposits on arcs comprising more optimal 
node-arc tours (paths), allows the next cycle (iteration) to 
progress toward an optimal solution [21][22]. ACO 
mimics the behavior of foraging ants. Ants deposit 
pheromones on the paths that they move along. The 
pheromone level deposited on a particular path increases 
with the number of ants passing along it. Ants adopt 
pheromones to communicate and cooperate with each 
another in order to identify the shortest paths to a 
destination. ACO is applied to the TSP first, since it 
enables an efficient evolution toward quality sub/optimal 
solutions. 
The ACO algorithm has recently been applied to 
scheduling problems, such as job-shop, flow-shop, and 
single machine tardiness problems [1][16][23][24]. 
Traditionally, the pheromone matrix τ=[τij], where  the 
pheromone is added to an element τij of the pheromone 
matrix, finds a good solution where job j is the ith job on 
the machine. The following ants of the next generation 
directly use the value of τij and heuristic function to 
estimate the desirability of placing job j as the ith job on 
the machine when obtaining a new solution [15]. Bauer et 
al. proposed ACO algorithms using a conventional 
pheromone matrix [τij] to solve the single machine total 
tardiness problem and the flow-shop problem [23]. This 
study adopts a modified pheromone matrix [τtj], in which 
the element τtj, denoting the pheromone value of activity j 
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is processed at time t on a specific machine. Restated, the 
two-dimensional grid for scheduling activities at certain 
time is a time-dependent relation structure. The element τtj 
is similar to τij, which is designed to suit a dynamic 
environment. The number of resource is changed by the 
time; the proposed scheme is easy to reschedule the 
remained activities from the time of resource changed. 

3.2 Scheduling problem 

The formal assumptions of the scheduling problem domain 
are introduced in advance. Suppose that there are N 
activities in a project. Based on these assumptions, let J= 
{0,1,…,N,N+1 } denote the set of activities, and activities 
cannot be both segmented and preemptive. Activity 0 is 
the only start activity that has no predecessor and activity 
N+1 is the only end activity that has no successor, and no 
resource requirements and has no processing time. Q 
denotes a set of renewable resource totals of k types, and 
Ri≧0 is the resource quantity for resource type i, i ∈Q. 
The availability of each resource type i, i ∈Q in each time 
period is Ri units. Each activity j, j∈J, has a duration pj and 
resource requirements rj,1…….. rjq, where rj,i denotes the 
requirement for a resource type i when processing activity 
j. The value of rj,i does not change with time [15]. There 
are precedence relations between the activities, and 
transmission time is assumed to zero from one activity 
switch to the next activity. The precedence relations 
between the activities can be represented by an acyclic 
activity-on-vertex (AOV) network. A network G=(V,E) 
comprises a set of activities (vertex) V={v1,v2,....., vn} and 
a set of edges E ={(i, j)| vi , vj ∈V } representing the 
precedence relation. A schedule of a project is mapping a 
set of activities to meet the activity precedence relations 
and resource requirements.  
 
Figure 2 shows a basic example of the problem domain 
studied, including a precedence graph and resources 
constraint with 6 activities and 4 resource types. The total 
utilized resources can not be more than the total available 
resources for each resource type at a certain time. A two-
dimensional matrix (T×N) is adopted to denote the 
scheduling result. The axes of the matrix are activity and 
time, as denoted by j and t respectively. The state of a 
coordinate is represented by Vtj. The value of Vtj is set to 
one (Vtj=1) if activity j is processed at time t, otherwise Vtj 
=0. Every Vtj is associated with one τtj and one ηtj. Thus, 
unlike other approaches, the τtj and ηtj in the proposed 
approach is time dependent. 

 
(a) 

 
(b) 

Figure 1. Simulation cases for 6 activities with precedence and resource 
constraints 

 

Figure 2. Simulation result with one solution matrix. 

3.3 Modified ACO algorithm for RCPSP 

Figure 3 displays the steps of the scheduling algorithm for 
the resource-constrained project scheduling problem by 
modified ACS, which combines the dynamic rule and 
delay solution generation rule, and is called a dynamic and 
delay ant colony system (DDACS). DDACS begins with a 
partial schedule containing activity 0 at time 0. At each 
stage, a set of all eligible activities Jk(t), comprising all 
candidates for successors at time t. The initial activities in 
Jk(0) have in-degree=0 which refers to the number of 
eligible activities at time 0. The following activities 
selected from Jk(t) are applied until resource constraints is 
not satisfied. An activity is selected by the ant from Jk(t) if 
it satisfies resource constraints, C and Jk(t) are then 
updated later, where C denotes the set of already 
scheduled activities. The algorithm runs until a stopping 
criterion is met, e.g., a certain number of generations have 
been performed. 
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To define the scheduling algorithm concisely, we define 
two auxiliary times: the earliest and latest start times of an 
activity. First, the earliest start time of activity j (Ej ) is the 
length of the longest path from an entry activity to activity 
j. The latest start time of activity j.(Lj) is defined to be the 
latest time at which activity j may start, such that activity j 
and all successors of activity j have a chance to complete 
as soon as possible.  
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 where the pre(j) (succ(j)) is the set of immediate 
predecessors ( successors) of activity j, if (i,j)∈E. The 
earliest and latest start times of an activity is applied in η 
function determination. The Lj is used to build the initial 
solution. The state transition rules are governed by Eq. (3) 
and (4). The next activity j is chosen from Jk(t) when q≦

q0, which flavors the choices for the next activity with the 
highest pheromone times heuristic value, where the η 
function is defined in Eq. (5). 
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where α, β denote the parameters correlating to the 
importance of the pheromone and heuristic, respectively. 
Concerning heuristics, this study adopts the adaptations of 
priority heuristics known as the critical path method to 
determine the earliest/latest starting process time; Ej /Lj for 
activity j, j∈J in Eq. (1) and (2). The Ej and Lj are initially 
computed under no resource considerations, hence there is 
a conservative value for each activity. The Lj from the best 
solution of all ants is adopted in every iteration. Finally, 
the Lj is changed dynamically in the current iteration 
according to dynamic rules given in Section 3.3.3. 
Equation (5) shows the η function of the modified ACO. 
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Equation (5) demonstrates that activity j with the shortest 
process time (shortest pj) and nearest to Lj (minimum dj) 
obtains the highest η value. Activity j with the highest 
probability (Pk(t,j)) is selected from Jk(t) at time t. Hence, 
the activity with minimum dj and shortest pj  is first when 
Ej≦t<Lj,, or the activity with maximum dj and shortest pj 
is first when t≧Lj. 

1. Initialize 
2. Loop 
3.   Each ant k is positioned on a starting node 
4.   Loop  
5.      Initialize t=1, C =∅ and Jk(t=0)  
6.      Loop 
7.         Select one activity j∈Jk(t) with state transition rule 
8.         while j≠null do 
9.             if activity j at time t under resource constraint satisfied 
10.               if the delay rule is activated then delay activity j  
11.               else schedule activity j at time t 
12.                   C = C∪{ j} and Jk(t)= Jk(t)-{ j } 
13.                   applied local update rule 
14.             Select next activity j∈ Jk(t) with state transition rule 
15.         end while 
16.         t=t+1 
17.         add the eligible activity to set Jk(t) with current in-degree=0 
18.       Until  | C | =N  
19.    Until all ants have built a complete solution 
20.    A dynamic rule to adjust the Lj 
21.    A global pheromone updating rule is applied with the best solution 
22. Until End_condition is reached 

Figure 3.  DDACS Algorithm. 
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Once one activity j is selected according to the state 
transition rule Eq. (3) and (4), then Vtj=1, t∈[Sj ,fj], where 
Sj= t and fj=t+pj−1. Sj (fj) is the starting (finish) process 
time of activity j in the current solution. Thus this setting 
ensures that the non-preemptive requirement is satisfied. 
Restated, Vtj is set to one during the time period of Sj to fj. 
An unassigned activity has high η value (>1/2) when the 
time t>Lj, and low η value (<1/2) when t<Lj for activities 
in Jk(t). An activity with a η value of 0 is not a member of 
Jk(t). The η value of an activity is close to 1/2 when Lj=t. 
However, the η value of an activity is always between 0 
and 1. 

3.3.1 Local Update Rule 

The pheromones τtj are updated by the local updating rule 
after an ant has built one RCPSP solution. The modified 
ACS adopts the following local updating rule to prevent 
succeeding ants from searching in the neighborhood of the 
current schedule of the current ant. The ants select activity 
j at time t, and then modify their pheromone levels. 

( ) ( ) ( ) ( ) jnew Stjtjtjt =Δ⋅+⋅−=   ,,,1, τρτρτ  (6)

where 0<ρ<1 denotes the evaporation rate as an input 
parameter, where activity j progresses from Sj to fj. Δτ(t, 
j)=τ0 is set in the proposed ACO method. If the 
pheromone τtj is set to a low value, then activity j has a 
lower probability of being chosen by another ant at time t.  
In Figure 2, activity 1∈Jk(1) is the first activity in the 
schedule at time 1, where Jk(1) ={1,5}. Thus, τ11 
evaporates some pheromone lower than τ15, according to 
the local update rule. At time 3, Jk(3) ={2,3,5}. If activities 
2 and 3 are selected, the related τ value (τ32 and τ33) is 
decreased. Figure 4 shows another feasible solution for the 
next ant, while activity 5 is the first activity to be assigned 
with the highest τ value. Such a solution has the smallest 
makespan, i.e. makespan=11. The local update rule 
adopted to select another activity is a strategy to avoid 
being trapped in a local maximum (or minimum). 
 

 
Figure 4. Simulation result of another ant after the previous ant using 

the local update rule. 

3.3.2 Global update rule 

After all ants have built all feasible schedules, the global 
update rule, Eq. (7), is used to increase the pheromone τtj 
by applying the best solution so far. For all τtj, the 
pheromone is increased by the global update rate if Vtj =1, 
where t=Sj, and is otherwise evaporated by global 
pheromone evaporation rate, as shown in Eq. (7). This is 
an elitist strategy that leads ants to search near the best-
found solution. 
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 where 0<δ<1 denotes a parameter representing the global 
pheromone evaporation rate, and where Δτgb(t,j) is 
computed by the best schedule in the current iterations, 
and the amount of pheromone added is δΔτgb(t,j) when 
activity j is assigned to run in time period [Sj , fj]. The msold 
and msgb denote the makespan of the best schedule in the 
previous and current iterations, respectively. For each 
activity, pheromone is added when an activity is being 
processed in the activity schedule list of the best solution 
obtained in the current generation. Otherwise, the 
pheromone is evaporated if Vtj =0. 

3.3.3 Dynamic rule 

In the beginning, one activity’s earliest starting and latest 
starting time is computed by the critical path without 
considering the resource constraints. The makespan is first 
assumed to be equal to the critical path length at first 
iteration. Owing to the resource constraints, the makespan 
may be larger than the critical path length in the solution.  
The Lj is initially determined under no resource 
considerations. That is, the value of Lj may be increased 
along with the makespan. A schedule may contain some 
activities that start to run behind Lj, while considering the 
resource constraints The original Lj is a conservative value, 
while the η function is computed based on the latest 
starting time, as shown in Eq. (5). If the Lj can not reflect 
the actual latest starting time, then the Lj is an excessively 
conservative value for the state transition rule. The ants 
will choice the activity under the state transition rule with 
η value and pheromone τ value. Therefore, a rule is 
designed to refine the latest starting time by feedback of 
the best solution found in current iteration. This rule is 
called a “dynamic” rule. If the activity is processed before 
the Lj, then the Lj does not need to be extended later. For 
those activities that have been processed later than the Lj, 
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the new Lj is simply replaced by the Sj. Restated; this 
replacement is used to acquire the most accurate value for 
Lj. This rule is adopted in step 20 of the DDACS 
procedure in Fig. 3. The accuracy of estimation of the η 
function value rises as the accuracy of Lj increases. The Lj 
dynamic adjustment rule is defined as follows: 
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jjjj
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3.3.4 Delay solution generation rule 

The delay solution generation rule (called the delay rule 
for short) is indicated in step 10 of DDACS. This rule 
enables some activities to be assigned later on purpose to 
escape the local optimal solution. The delayed activity is 
excluded from in Jk(t) for a certain delay length, which is a 
uniform distribution of [0, Lj – t] as demonstrated in Eq. 
(9). The delay is not allowed to later than Lj, hence the Sj 
of activity j cannot be greater than Lj. This rule is enable 
one activity can be processed later to let the other 
activities be processed ahead to yield different solution 
under the resource constraints. For instance, if one activity 
is selected to schedule which require many resources at 
time t, then some other activities requiring same resources 
are prohibited from being processed for some time. 
Accordingly, these activities result in a larger makespan 
than the optimal solution. 
Figure 6 depicts an example of this situation. Based on the 
proposed method without delay strategy, two activities in 
Jk(1)={1,2,3} are schedule to run at t=1. Suppose that 
activities 1 and 2 are assigned for processing, and Jk(2) 
={3,4,5} at time 2. In this case, activity 2 needs two R3 
resources and activity 5 needs three R3 resources. The total 
amount of R3 resources available is 4, which is not 
sufficient for processing activities 2 and 5 concurrently at 
t=2. The solution is never optimal if activity 2 is scheduled 
at t=1. If activities 2 and 3 are delayed to process, then the 
other activities (activity 4 and 5) can be executed earlier, 
and the successor activities of activities 4 and 5 can start 
to run as soon as possible. Hence, an optimal solution is 
obtained, since activity 7 is a critical path activity and 
processed earlier. The comparison between cases without 
delay strategy and with delay strategy is shown in Figures 
6 and 7. 
The “delay” rule deliberately delays an eligible activity, as 
shown in Eq. (9). This rule enables an undiscovered 
solution to be found. The delay time is defined as follows. 
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where q is a random number uniformly distributed in [0,1]. 
The q1 (0<q1<1) is a predetermined parameter that 
determines the probability of changing the influence on 

the decisions of the ants. The rule in Eqs. (3) and (4) are 
adopted when q ≦q1. Otherwise, this delay strategy is 
applied when q>q1 and t< Lj. The q1 value increases along 
with the iteration. The q1 value is close to one after certain 
iterations. Restated, the possibility of delaying activities is 
decreased as the iteration increase. 
The DDACS combines the above described rules to 
explore the search space of a feasible solution. The 
following simulations indicate these rules are suitable for 
resource-constrained project scheduling problems. 

4. Experimental simulations 

The simulations involved different sets of scheduling 
problems with different activities, from 10 to 30 activities, 
then later with 30 to120 activities. All simulation cases 
assumed that three or four different resource types were 
available and 10 ants were adopted. The simulations used 
various set of weighting factors. The q0 value was set in 
the range of [0.8, 0.95]. The initial q1 value was set in the 
[0.7, 0.95] range. Other settings were: iterationmax=1000, 
τ0.=0.01, c=10 and c1=50. Moreover, δ=0.1, ρ=0.1, α=1, 
β=1, q0 =0.9 and q1 =0.95 were set in the simulation, if no 
other values are mentioned. 
Figure 5 shows the 10 activities case with the given 
precedence and resource constraints. Figures 6 and 7 
indicate the scheduling results. Figures 6 show the results 
of the no-delay rule used in the modified ACO. Figures 7 
display scheduling results of using the delay rule in the 
algorithm.  
Figure 8 show the corresponding optimal schedule 
obtained using the proposed ant approach. The allocation 
profiles of three types of resources are reflectively 
described in the schedule. 

 
(a) 
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(b) 

Figure 5. Simulation cases for 10 activities with precedence and resource 
constraint. 

 

Figure 6. The solution matrix with no delay rule 

 

Figure 7. The solution matrix with delay rule 

 

 

 

Figure 8. Resource allocation for one simulation result 

The makespan of the optimal solution case is 10; thus the 
proposed approach with the delay rule can obtain the 
optimal solution in less than 10 iterations.  
The following simulation cases are PSLIB cases. The 
PSLIB library has cases with 30 to 120 activities; each 
case is with at least 480 instances. Thus, suggested 
DDACS applied to solve the PSLIB problems. The 
following simulations were used to test the proposed 
DDACS to check whether the optimal solutions can be 
found as listed in PSLIB. The other purpose of solving 
PSLIB using DDACS is to verify the designed dynamic 
rule and delay solution generation rule in obtaining a near-
optimal (optimal) solution. The following simulation 
results indicate that the DDACS finds a near-optimal 
(optimal) solution under a certain number of iterations.  
Table 1 show the simulation results (activity number, 
average, best, worst makespan, standard deviation of 
makespan and execution time) by proposed scheme. Each 
case was simulated 10 times; each simulation was set to 
run for 20 iterations. These simulation cases were set from 
30 activities to 120 activities. All simulations were run on 
a Pentinum4 2.8GHz PC using the C language. 
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Table 1. Execution summary of one instance for 30 to 120 
activities. 

activity MS_avg MS_best MS_worst MS_stdevp Execution time
30 44.2 43 45 0.53 0.3 
60 96.3 95 98 0.9078 1.02 
90 121.8 120 123 0.6353 2.51 
120 92.3 91 94 1.0450 4.83 

 
Figure 9 illustrates the simulation results of PSLIB for 
cases of 30 activities with 480 instances. Simulation 
results indicate that the DDACS found more optimal 
solutions for PSLIB problems. 
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Figure 9. Probability of finding optimal solutions comparison with ACS 
and DDACS. 

Figure 10 shows the difference between computed 
makespan and optimal makespan for cases of 30 activities 
with 480 instances. The total number of near-optimal 
solutions with dynamic and delay solution generation rules 
were greater than that obtained when no rule was 
employed. For instance, DDACS obtained about 93.3% 
(=448/480) cases with near-optimal solutions, in which the 
difference between the computed makespan and optimal 
makespan was no more than 2, as in Fig. 10. 
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Figure 10. The number of near optimal solutions for 480 different 
instances with 500 iterations. 

The proposed is suitable to solve the changing the 
available resource, if the resource is changed at time t 
while the schedule is under processing, then the DDACS 

can run immediately for the remainder unfinished activity. 
The reschedule process is under new resource 
circumstance. Figure 11 show the resource R2 is changed 
from 6 to 5 at time 6. The activity 2, 6, 7, 9 and 10 are 
rescheduled at this time to satisfy the resource constraints. 
The two possible simulation results are showed in Fig. 12, 
the Figure 12-(b) is the solution by using the DDACS with 
delay rule. 
 

 

 

Figure 11. The simulation results for resource changed 

 
(a) 
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(b) 

Figure 12. The simulation results for resource changed 

5. Conclusions and discussion 

This study presents a modified ACO approach named 
DDACS for a multi-constraint (precedence and resource 
constraints) project scheduling problem. A two dimension 
(time and activity) matrix graph is adopted to solve the 
scheduling problem. The proposed DDACS algorithm 
modifies the latest starting time of each activity in the 
dynamic rule for each iteration. The latest starting time of 
an activity is used in the heuristic influence, as listed in Eq. 
(5). The latest starting time amendment provides an 
appropriate feedback to find the optimal solution. 
Moreover, a delay solution generation rule is applied to 
allow the solution to escape from the local minimum. The 
delay solution generation rule is a good strategy to search 
for a better solution, as revealed by the simulation results, 
as shown in Fig. 10. 
The proposed DDACS scheme provides an efficient 
method of finding the optimal or near schedule of the 
resource-constrained project scheduling problems. An 
important feature of the scheduling algorithm is its 
efficiency or performance, i.e., how its execution time 
increases with the problem size. A fast convergence rate is 
a significant characteristic of an ant colony system. The 
execution time of the DDACS algorithm is proportional to 
O(N×T×ant) for one iteration. Restated, the execution 
time of DDACS is linear proportional to ant number and 
matrix size. Changing of available resources is an 
important consideration in the resource-constrained 
project scheduling problem. However, the proposed 
DDACS method is an adaptable scheme for such variable 
resource situations. This work focuses on investigating the 
resource-constrained project scheduling problems. 
However, the more complex conditions, such as set-up 
time between activities or reschedule cost should be 
further studied. Meanwhile, a dynamic situation can be 

further studied, with emergency activities arriving at a 
certain time. Moreover, the makespan is considered in this 
work, but tardiness is allowed in other scheduling 
problems, such as job-shop, flow-shop and industry 
production plans. Heuristic functions and how to generate 
better solutions can also be further discussed, and future 
research endeavors should address these issues more 
thoroughly.  
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