
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006 
 
 

 

85

Manuscript received  November 5, 2006. 
Manuscript revised  November 25, 2006. 

An Efficient SIMD-based Quarter-Pixel Interpolation Method for 
H.264/AVC 

Chae-Bong Sohn, and Hye-Jeong Cho 
  

VIA-Multimedia Center, Kwangwoon University, 447-1, Wolgye-Dong, Nowon-Gu, 139-701, Seoul, Korea 

Summary 
Many media processors which support SIMD (Single Instruction 
Multiple Data) instructions have been widely used for digital 
signal processing and multimedia applications. In particular, a set 
of SIMD instructions is very effective in video applications 
which require both simple operations and short data types, 
mostly 8-bit or 16-bit samples. This paper proposes the fast 
quarter-pixel interpolation of the H.264/AVC, which can be 
implemented with the Intel SIMD instructions. The 
implementation of the proposed method is approximately six 
times faster than that of the JM software for the H.264/AVC 
quarter-pixel interpolation operation which needs multiple bi-
linear and 6-tap filtering. 
Key words: 
Media processor, SIMD, H.264/AVC, quarter-pixel interpolation, 
video codec 

1. Introduction 

H.264/AVC, which is the latest video compression 
standard, has surfaced as one of the essential parts in new 
media such as Korea’s T-DMB and S-DMB, Europe’s 
DVB-H, and the Blu-ray Disc, the new generation DVD. 
H.264/AVC is superior to prior video compression 
standards such as H.261, H.263, MPEG-1, MPEG-2, and 
MPEG-4 in compression efficiency. In particular, 
H.264/AVC can have the same image quality to the 
MPEG-2 with only 50% of its bitrate. However, its 
advanced video compression technology to obtain such a 
high compression rates requires high computational 
complexity [1]. 

One of the techniques of the H.264/AVC to enhance 
the coding efficiency is the quarter-pixel motion 
estimation/compensation, which adopts the 6-tap FIR and 
bi-linear filters. The 6-tap filter’s coefficient is (1, -5, 20, -
5, 1) for interpolations of luminance and chrominance, and 
it takes about 25% of the entire decoding time at a decoder 
side [2]. 

Most of the microprocessors available today support 
multimedia instructions to accelerate their application 
programs. For instance, Intel’s Xeon, Pentium IV, and 
AMD’s Athlon64 all have the MMX, SSE, and SSE2 
instructions of the SIMD (Single Instruction Multiple 
Data) model. These instructions can process multiple data 

in parallel in a single instruction. However, there are more  
cases in which it takes more time to pack or unpack data in 
their registers properly than to do computations in 
implementation with the SIMD instructions [3][4]. 

In this paper, an optimized SIMD algorithm for the 
interpolation of the H.264/AVC was proposed in the Intel 
processor supporting SIMD instructions. The proposed 
algorithm is based on the use of symmetry of the 6-tap FIR 
filter coefficient for parallel computation in the data level, 
resulting in significant reduction of multiplications. 

2. Intel SIMD Technology 

SIMD technology was introduced in the IA-32 
architecture based on the MMX technology. MMX 
technology allows SIMD computations to be performed on 
packed byte, word, and double-word integers. The integers 
belong to a set of eight 64-bit registers called MMX 
registers. The Pentium III processor extended the SIMD 
computation model by employing the Streaming SIMD 
Extensions (SSE). SSE enables SIMD computations to be 
performed on operands that support four packed single-
precision floating-point data elements. The operands can 
be loaded in a memory or in a set of eight 128-bit XMM 
registers. SSE also extended SIMD computational 
capability by adding additional 64-bit MMX instructions. 
Fig. 1 shows a typical SIMD computation in which two 
sets of four packed data elements (X1, X2, X3, and X4, 
and Y1, Y2, Y3, and Y4) are operated in parallel, 
respectively. In the Pentium 4 processor, the SIMD 
computation model was enhanced by introducing 
Streaming SIMD Extensions 2 (SSE2) and Streaming 
SIMD Extensions 3 (SSE3). SSE2 is executed with 
operands loaded in either memory or in the XMM 
registers. The SIMD computation capability was improved 
to process packed double-precision floating-point data 
elements and 128-bit packed integers. The SSE supports 
144 instructions, operating on two packed double-
precision floating-point data elements or on 16 packed 
byte, 8 packed word, 4 double word, and 2 quad word 
integers. In the SSE3, SSE and SSE2 are extended by 
providing additional 13 instructions that can accelerate 
application performance in specific areas. These include 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006 
 
 

 

86 

video processing, complex arithmetic, and thread 
synchronization. SSE3 complements SSE and SSE2 with 
additional instructions that process SIMD data 
asymmetrically, facilitate horizontal computation, and 
avoid loading cache line splits [5]. 
 

X4 X3 X2 X1          

          Y4           Y3           Y2           Y1

OP OP OP OP

X4 op Y4 X3 op Y3 X2 op Y2 X1 op Y1      

Fig. 1  Typical SIMD Operations. 

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

mm0

mm1

mm2

mm3

mm4

mm5

mm6

mm7

64-bit MMX Register 128-bit SSE Register

 

Fig. 2  SIMD instruction registers. 

3. Overview of Quarter-Pixel Interpolation 

In the H.264/AVC standard, a 6-tap FIR filter is at first 
applied for half-pixel interpolation in luminance 
components. Its coefficients are (1, -5, 20, 20, -5, -1) 
which can be considered as a low-pass filter. After that, a 
bi-linear filter is used for quarter-pixel estimation. For 
example, the half-pixels aa, bb, b, cc, dd, h, j, m, ee, ff, s, 
gg, and hh, as shown in Fig. 3, can be calculated as 
follows. 
 

b = (( E - 5*F + 20*G + 20*H – 5*I + J) +16 )/32 
h = (( A - 5*C + 20*G + 20*M – 5*R + T) +16 )/32 
m = (( B - 5*D + 20*H + 20*N – 5*S + U) +16 )/32 
s = (( K - 5*L + 20*M + 20*N – 5*P + Q) +16 )/32 
j = (( cc - 5*dd + 20*h1 + 20*m1 – 5*ee + ff) +512 )/1024 

or ((aa - 5*bb + 20*b1 + 20*s1 – 5*gg + hh) +512 )/1024 (1)
 

For interpolation at the half-pixel j, interpolations at 
the neighboring six points, cc, dd, ee, and ff or aa, bb, gg, 
and hh should be available in advance. On the other hand, 
for quarter-pixels a, c, d, e, f, g, i, k, n, p and q, their 
interpolations are denoted by  
 

a = (G+b+1)>>1          c = (H+b+1)>>1 
d = (G+h+1)>>1          n = (M+h+1)>>1 
f = (b+j+1)>>1           i = (h+j+1)>>1 
k = (j+m+1)>>1          q = (j+s+1)>>1 
e = (b+h+1)>>1          g = (b+m+1)>>1 
p = (h+s+1)>>1          r = (m+s+1)>>1 

 

(2)

 

bb

a cE F I JG

h

d

n

H

m

A

C

B

D

R

T

S

U

M s NK L P Q

fe g

ji k

qp r

aa

b

cc dd ee ff

hh

gg

 

Fig. 3  Quarter-pixel interpolation for luminance. 

All the interpolation points can be classified into 
layer 0~3, according to their mutual dependencies. Points 
in the layer-0 represent the integer pixels that are 
originally available as the input. Points at which the 
interpolation depends on the layer-0 pixels are classified 
as the layer-1. In the same way, layer-2 and 3 can be 
defined. Obviously, the input pixels A, B, C, D,…, U 
belong to the layer-0 and the half-pixels, b, h, m, and s are 
grouped to the layer-1. The quarter-pixels, a, c, d, e, g, n, 
p, r, and j are considered to be in the layer-2. Finally, f, i, k, 
and q longs to the layer-3. Theoretically, all the three 
layers of computations should be performed for 
interpolation in motion estimation (At an encoder with 1/4 
pixel accuracy). On the other hand, the layer-3 
computation is necessary in motion compensation 
(decoder) for a full compliant to the H.264/AVC baseline 
specification, depending on motion vector (MV) for each 
block [6],[7]. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006 
 
 

 

87

4. Proposed SIMD-based Quarter-Pixel 
Interpolation Method 

In this paper, a new computation for the quarter-pixel 
interpolation of the H.264/AVC is proposed for SIMD 
architecture. The proposed algorithm is derived by 
minimizing the number of memory access. The formulas 
to compute half-pixel interpolations are proposed by using 
the symmetry of the 6-tap FIR filter coefficients, resulting 
in significant reduction of the multiplications. 
 

32/)165*)4*)(((
32/)16)20*)(5*)()(((

32/)16)*5*20*20*5((
32/)165*)4*)(((

32/)16)20*)(5*)()(((
32/)16)*5*20*20*5((

+++−−+=
++++−+=
++−++−=

+++−−+=
++++−+=
++−++−=

TARCMG
MGRCTA

TRMGCAh
JEIFHG

HGIFJE
JIHGFEb

 

(3)

 
Fig.4 shows of the proposed quarter-pixel 

interpolations in the horizontal direction with SIMD 
instructions. In order to carry out interpolations using 
SIMD instructions, the pixel data should be loaded in 
registers, as shown in Fig. 4(a). Those data could exceed 
the bites in computing the 6-tap filtering, which called for 
converting the byte data into word units with the 
PUNPCKxx instructions [5]. Fig. 4(b) shows the 6-tap 
filtering to compute the equation (3) for eight half-pixel 
values. In Fig. 4(c), the half-pixel and integer-pixel values 
are computed with the PAVGB instruction along with 
quarter-pixel ones. Then the PUNPCKxx instructions are 
adopted to store the integer-, half- and quarter-pixel values 
at the proper place of the register. 
 

 
(a) Data arrangement for the horizontal interpolations 

 

(b) A method to make half-pixel by using the 6-tap filtering following the 
equation (3) 

 

(c) A method to make quarter-pixel by using half- and integer-pixel 

Fig. 4  An SIMD data flow for the horizontal quarter-pixel interpolations 
(a)Data arrangement for the horizontal interpolations, (b)half-pixel 
interpolation by using the 6-tap filtering, (c)quarter-pixel interpolation 
with half- and integer-pixels. (h: Half-pixel value, q: Quarter-pixel value). 

The quarter-pixel interpolations for the second 
vertical direction are obtained by computing the integer- 
and half-pixel information out of the completed 
information after the quarter-pixel interpolations for 
horizontal direction. Fig. 5 shows a case of vertical 
quarter-pixel interpolation using SIMD along with the way 
to store the integer- and half-pixel from the horizontal 
direction in the register. If you perform the same 
computation as Fig. 4(b) in the stored register, you can get 
half-pixel for the vertical direction. The quarter-pixel can 
be obtained by performing Fig. 4(c) in the horizontal 
direction. Interpolations for both the directions will leave 
quarter-pixel for the diagonal element and half-pixel just 
as shown in Fig. 6(a). Fig. 6(b) presents a structure to 
compute the values for the half-pixel and diagonal 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006 
 
 

 

88 

elements, which can be obtained by using the PUNPCKxx 
and PAVGB instructions. 

 
h03 y03 h02 y02 h01 y01 h00 y00

y13 h12 y12 h11 y11 h10 y10h13

h23 y22 h21 y21 h20 y20h24 y23

y32 h31 y31 h30 y30h33 y33 h32

h41 y41 h40 y40h43 y43 h42 y42

y51 h50 y50h53 y53 h52 y52 h51

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5  

Fig. 5  Data arrangement to implement vertical quarter-pixel 
interpolations. h : Half-pixel value y : integer-pixel value 

 
I q h q I q h q I q h q I q h q I

q

h

q

q

h

q

q

h

q

q

h

q

q

h

q

q

h

q

q

h

q

q

h

q

q

h

q

I q h q I q h q I q h q I q h q I  
(a) Half- and quarter-pixel created after the horizontal and vertical 

interpolations 
 

P
U

N
C

K
xx

P
A

V
G

B
P

A
V

G
B

P
A

V
G

B

 
(b) A method to make quarter-pixel for the diagonal element and half-

pixel. 

Fig. 6  Data arrangement to implement vertical quarter-pixel 
interpolations. (a) Half- and quarter-pixel created after the horizontal and 
vertical interpolations (b) A method to make quarter-pixel for the 
diagonal element and half-pixel. I : integer-pixel value, h: Half-pixel 
value, q: Quarter-pixel value. 

5. Experiment Results 

The processor used in this experiment is the Intel Pentium 
IV (2.4GHz), supporting 64-bit MMX and 128-bit SSE2 
instructions. VTune performance analyzer was used for 

performance profiling and actual execution time is used 
for performance evaluation [8]. 

Table 1 presents the numbers of instruction clock 
ticks of the JM and the proposed methods for the 
H.264/AVC interpolation. The proposed SIMD-based 
interpolation gives benefit for loading and storing of data, 
multiplication, calculation and logic computation. 
However, extra computation like packing and unpacking 
of data is required for the proposed algorithm but it is not 
significant in overall performance. 

Table 1: Comparison of clock ticks for each module 
SIMD Method

Instruction 
JM  Horizontal 

Direction 
Vertical 
Direction

Memory Move 2304 398 178 
Logic and Arithmetic 768 146 166 

Multiply 1536 72 72 
Data pack/unpack 0 224 84 
Total Clock tick 4608 840 500 

Speedup 1.0000 5.4857 9.216 
 

Table 2 shows the comparison of actual execution 
time of quarter-pixel interpolation module of the reference 
encoder, and proposed algorithm using the SSE2(128-bit). 
We created 100,000 8x8 block generated with a random 
number generator, and the average execution time is 
measured with the generated data. Each input video used 
in our experiment consists of 300 frames. As shown in 
Table 3, the proposed method is about 6 times faster than 
the JM reference software for an H.264/AVC quarter-pixel 
interpolation. 

Table 2: Comparison of excution time and performance of quarter-pixel 
interpolation for the 8x8 block 
Time (sec) Speedup speedup

method Horizontal Vertical Horizontal Vertical
JM 0.292839 0.329502 1 1 
SIMD 0.055824 0.036922 5.2458 8.9243 
 

According to Table 1, the proposed algorithm 
would be approximately 5.4 times and 9.2 times faster 
than the JM for each direction module. Table 2 shows that 
the actual execution time is 5.2 and 8.9 times faster than 
the JM for each directional module. As shown in Table 3, 
the execution time is measured in terms of image size. 
Each input video used in our experiment consists of 300 
frames. As shown in Table 3, the proposed method is 
about 6 times faster than the JM reference software for an 
H.264/AVC quarter-pixel interpolation. 

 
 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006 
 
 

 

89

Table 3: Comparison of implementation time and performance of quarter-
pixel interpolation for video sequence 

Time (sec) speedup 
method JM SIMD Speedup 

QCIF(176x144) 0.03095 0.00496 6.235 
QVGA(320x240) 0.09366 0.01417 6.608 
CIF(352x288) 0.13725 0.01862 7.370 

6. Conclusions 

This paper presents a optimized method to quarter-pixel 
interpolations used in H.264/AVC by using SIMD 
instructions. The proposed method resulted in about 6 
times of performance improvement in quarter-pixel 
interpolations compared to the JM. From our experiments, 
We have shown that proposed method is suitable for 
quarter-pixel interpolations at H.264/AVC codecs in 
SIMD processors. With increasingly more real-time 
applications in H.264 encoders, it is possible that the 
proposed SIMD based quarter-pixel interpolation will be 
indispensable. 

Acknowledgments 

The present Research has been conducted by the Research 
Grant of Kwangwoon University in 2006 
 
References 
[1] J. Ostermann, J. Bormans, PList, D. Marpe, M. Narroshke, 

F. Pereira, T. Stockhammer, and T. Wedi, “Video coding 
with H.264/AVC: tool, performance, and complexity,” 
IEEE Circuit and Syst. Mag. Vol. 4, pp. 7-28, 2004 

[2] M. Horowitz, A. Joch, F.kossentini, and A. Hallapuro, 
“H.264/AVC baseline profile decoder complexity analysis,” 
IEEE Trans Circ and Syst. Video Tech, vol. 13, n0 7, pp 
715-727, 2003 

[3] Richard  G.,  "The Software Optimization Cookbook", Intel 
Press, 2002 

[4] Intel Corp., "Intel Pentium 4 and Intel Xeon Processor 
Optimization - Reference Manual", Order Number: 248966-
05, 2002 

[5] Intel Corp., " IA-32 Intel® Architecture Optimization 
Reference Manual", Order Number: 248966-013US, April 
2006 

[6] T. Wiegand, G.J. Sullivan, G. Bjontegaard and A. Lutha, 
“Overview of the H.264/AVC Video Coding Standard,” 
IEEE Trans. Circuits Syst. Video Technol, vol 13, no.7, 
pp.560-576, July 2003 

[7] Wen-Nung Lie, Han-Ching Yeh, Lin, T.C.-I, Chien-Fa 
Chen ”Hardware-efficient computing architecture for 
motion compensation interpolation in H.264 video coding” 
IEEE international Symposium on Circuit and system, vol. 3, 
pp.2136-2139, May 2005 

[8] Intel Corp., Intel® VTuneTMPerformance Analyzer, Version 
7.0, 2003 

 

 
 

Chae-Bong Sohn received the B.S., 
M.S., and Ph.D. degree in electronics 
engineering form Kwangwoon 
University, Seoul, Korea in 1993, 1995, 
and 2006, respectively. From 2000 to 
2005, he was a full-time lecturer, 
Hanyang Women’s College, Department 
of Internet Informations Engineering. He 
is currently a full-time lecturer, 

Department of Electronics and Communications Engineering. 
Kwangwoon University, Seoul, Korea. His research interests 
include image compression, transcoding, digital broadcasting 
systems. 
 
 
 

Hye-Jeong Cho received the B.S.  
degree in 2004 form the Department of 
Internet Informations Engineering, 
Hanyang Women’s College, Seoul, 
Korea. She is currently pursuing the 
joint M.S. and Ph.D. degree in 
electronics engineering from 
Kwangwoon University, Seoul, Korea. 
Her research interests include video 

coding, digital broadcasting systems. 


