
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

90

Manuscript received November 9, 2006.
Manuscript revised November 17, 2006.

A Genetic Method for Hardware-Software Par-Synthesis

Mieczysław Drabowski

Department of Computer Engineering, Cracow University of Technology; Krakow, 31-155 Poland

Summary
The paper presents a coherent approach to solving the problems
of computer system synthesis based on genetic methods assisted
with simulated annealing strategy. We describe algorithm realiza-
tions aimed to optimize resource selection and task scheduling,
as well as the adaptation of those algorithms for coherent
co-synthesis realization. This is new approach, which we propose
call a par-synthesis. We then present selected analytical experi-
ments proving the correctness of the coherent synthesis concept
and indicate its practical motivations.
Key words:
Task Scheduling, Resource Selection, Task and Resource Alloca-
tion, Co-synthesis, Par-synthesis

1. Introduction

The computer systems synthesis process consists in con-
current definition of both hardware and software compo-
nents of the designed system. Rapid prototyping of such
systems requires assisting the synthesis, which may be
achieved through its automation based on implementing
synthesis algorithms. When realizing the synthesis, it is
essential to define the tasks (representing the requirements
and constraints of system design), which are to be com-
pleted by the designed computer system, as well as the
libraries (pool) of available resources which may realize
all system tasks. In the synthesis process, the best re-
sources according to given criteria ought to be chosen. In
most cases, they are cost and power consumption, as well
as the speed of completing all tasks. Moreover, it is neces-
sary to optimize scheduling and allocating tasks to re-
sources.
So far, resources selection, task scheduling and task and
resources allocation in synthesis systems have been real-
ized independently [1, 2, 5]. Optimizing resource selection
and task scheduling were also realized irrespectively of
each other. In this paper a new process of the so-called
par-synthesis is presented, in which resources selection,
task scheduling, allocation of tasks and resources, as well
as system optimization are realized coherently. Once the
tasks have been scheduled and allocated, the resources are
reselected, changing the ones chosen previously, in search
of a satisfactory solution meeting all the established crite-
ria. The schematic diagram of a par-synthesis of multi-
processor computer systems is on Fig. 1. Due to the fact

that synthesis problems and their optimizations are
NP-complete [6], we suggest meta-heuristic approaches –
genetic in this paper – with Boltzmann tournament selec-
tion strategy [7].

Fig.1. Par-synthesis of multiprocessor computer system

2. Evolutionary Approach

In order to eliminate solution convergence [7] in genetic
algorithms, we use data structures which ensure locality

System specification

Pool of resources

Set of tasks
(requirements and constraints)

Initial set of resources

System operation
analysis

Modifications
set of resources

Task scheduling

Task and resource allocation
System performance analysis

Resource partition

Resulting system

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

91

preservation of features occurring in chromosomes and
represented by a value vector. Locality is interpreted as the
inverse of the distance between vectors in an n-dimension
hypersphere [1, 2]. Then, crossing and mutation operators
are data exchange operations not between one-dimensional
vectors but between fragments of hyperspheres. Thanks to
such an approach, small changes in a chromosome corre-
spond to small changes in the solution defined by the
chromosome. The presented solution features two hyper-
spheres:
i. Task hypersphere – two-dimensional, representing the

task graph structure. Each of the vertexes is defined
by two coordinates: an indicator obtained through
topological sorting (the tasks are "closest" if one of
them is a direct successor of the other), and an indica-
tor calculated from the BFS [5] algorithm parallel
tasks are equally distant from the beginning of the
graph).

ii. Resource hypersphere – three-dimensional, represent-
ing the dependencies of resource features. Each of the
resources may be defined by the following coordi-
nates – cost, speed and power consumption.

The solutions sharing the same allocations form the
so-called clusters [1]. The introduction of solution clusters
separates solutions with different allocations from one
another. Such solutions evolve separately, which protects
the crossing operation from generating defective solutions.
There are no situations in which a task is being allocated to
a non-allocated resource. Solution clusters define the
structures of the system under construction (in the form of
resources for task allocation). Solutions are the mapping of
tasks allocated to resources and task scheduling. During
evolution, two types of genetic operations (crossing and
mutation) take place on two different levels (clusters and
solutions).
A population is created whose parameters are: the number
of clusters, the number of solutions in the clusters, the task
graph and resource library. For the synthesis purposes, the
following criteria and values are defined: optimization
criterion and algorithm iteration annealing criterion if so-
lution improvement has not taken place, maximum number
of generations of evolving solutions within clusters, as
well as the limitations – number of resource, their overall
cost, total time fort the realization of all tasks, power con-
sumption of the designed system and, optionally, the size
of the list of the best and non-dominated individuals.
 .

3. Resource selection

The input data for resource selection are the task graph, the
library of available resources and the optimization criteria,
and its goal is to divide tasks into the software and the
hardware part and to select resources for the realization of

all tasks consistent with the established optimization crite-
ria. The diagram of the algorithm of resource selection is
showed on Fig. 2.

Fig. 2. Algorithm of resource selection

3.1. Algorithm initialization
Initialization of the resource selection algorithm aims at
defining preliminary system structure based on the library
of available resources matching the required functionality.
The global algorithm "temperature" is initialized at this
stage as well.

Hypersphere definitions
 filling multi-dimensional vectors with data defining a

given object (resources, tasks)
 calculating the diameters of the hyperspheres, i.e. the

distance between the two most remote points and de-
termining the hypersphere center on the basis of the
extreme coordinates

Population initialization
Clusters and solutions are initialized randomly:
 for every task, a resource capable of completing the

task is selected,
 if the resource is allocated, the algorithm proceeds to

the next task,
 a resource capable of completing the task is selected

and they are allocated.

[Criterion of stop]

Reproduction of
clusters

Evolution of solutions in-
side the clusters

Optimization of resource se-
lection

Result of algorithm

Algorithm ini-
tialization

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

92

Initializing the allocation of tasks to resources
 a vector of resources for allocation is taken for each

task,
 resource type and number are randomly assigned to

the tasks,
 task scheduling by the ASAP [5] algorithm is initial-

ized - eliminates the violations of sequence limita-
tions.

Solution evaluation
 the following are calculated: resource cost, task com-

pletion time and power consumption; the cost is the
sum of allocated resources’ costs, the time of com-
pleted tasks is the time of completing the tasks on all
allocated resources, power consumption is the sum of
power inputs taken by selected resources. Additionally,
the idle power consumption (for an inactive resource)
is allowed for,

 if for an individual representing a solution any of the
optimized criteria exceeds the maximum value ac-
ceptable, the individual is punished and the survival
chances of a punished individual diminish considera-
bly,

 as the result of the above operations, we obtain a vec-
tor containing the values of optimized criteria (time,
cost, power consumption),

 a solution ranking is determined (the rating of a given
solution is the number of solutions in a population
which do not dominate the solution),

 a solution is dominated if each of its costs is lesser
from or equal to the costs of the dominant solution
(for optimization in the Pareto sense).

Cluster evaluation
A solution cluster ranking is created. The rating of a clus-
ter is the sum of the ratings of all solutions within the
cluster.

3.2. Algorithm of resource selection

Cluster reproduction
 Clusters are reproduced with the use of genetic operators:

crossing and mutation. At the reproduction stage, the clus-
ter population is doubled and its initial size is restored at
the elimination stage. This method was introduced arbi-
trarily and ensures that within a population some new in-
dividuals appear and fight for survival with their parents.
The mutation operator creates one and the crossing opera-
tor two new clusters. The likelihood of using either of the
genetic operators is defined by the algorithm parameters.

Genetic operators
The cluster mutation operator consists in mutating alloca-
tion vectors in the following way: a cluster with identical
likelihood is picked at random and copied. The number of
the resource which will be mutated in a new cluster is
picked randomly. Then, a number in the 0-1 range is
picked - if the number is smaller than the global tempera-
ture, the resource is added, otherwise it is subtracted.
Adding resources is limited by the maximum resource
number parameter. At the beginning of the algorithm op-
eration, resources will be added to the structure. As the
algorithm approaches the end of the run defined by the
cooling process, resources will be subtracted. This is
aimed at creating a cost-effective structure.
The cluster crossing operator consists in randomly picking
two clusters and copying them. Crossing is achieved
through cutting the resource hypersphere with a hyper-
plane. The information contained on "one side" of the hy-
perplane is exchanged between clusters.

The algorithm for cutting the hypersphere with a hy-
perplane
 determining the cutting hyperplane by picking n

points inside an n-dimensional hypersphere,
 creating a random permutation, e.g. for n = 3, the

permutation can be (2, 1, 3),
 constructing the point displacement vector in respect

to the hypersphere center; square coordinates are
picked consistent with dimension permutations, e.g.
for three dimensions with the permutation (2, 1, 3): y2
= rand() % r2, x2 = rand() % (r2 – y2), z2 =
rand() % (r2 – (y2 + x2)), where: r – hypersphere ra-
dius, and (x, y, z) are the coordinates of the con-
structed point in a three-dimensional space,

 the roots of square coordinates are calculated,
 a coordinate radical sign is picked,
 the hypersphere center coordinates are added to the

new point resulting in obtaining a new point inside the
n-dimensional hypersphere,

 the equation of the hyperplane cutting the hypersphere
is calculated and the obtained system of equations is
solved.

Saving the best solutions
After solution reproduction, a new procedure is called to
save the globally non-dominated solutions generated dur-
ing evolution.
This procedure executes:
 searches for non-dominated solutions in the present

generation,
 creates the ranking of the best solutions saved so far

and in the present generation,
 saves the non-dominated solutions from both the "old"

and the "new" solutions,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

93

 deletes the solutions saved in the past if they were
dominated by new solutions; if there are more than
one solution whose all optimized criteria values are
identical, only one of those solutions is saved (the
"newest" one),

 if the new solutions dominated none of the ones saved
in the past, the population was not improved,

 the number of non-dominated solutions that the algo-
rithm can save is defined by an algorithm parameter.

Cluster evaluation
At this stage of the algorithm, half the individuals are re-
moved from the population. The initial number of indi-
viduals is restored. The elimination of individuals is car-
ried out using Boltzmann tournament selection strategy.

4. Task Scheduling

Task scheduling is aimed at minimizing the schedule
length (the total tasks completion time). The diagram of
the algorithm of task scheduling is showed on Fig. 3.

Fig. 3. Algorithm of task scheduling

The scheduling algorithm initialization resembles the ini-
tialization of resource selection algorithm. The difference
is that there is solely one cluster in which solutions evolve.
The cluster allocation remains unchanged during the algo-
rithm's run because all the resources are known for the task
scheduling algorithm.

Solution reproduction
Solutions are reproduced using the genetic operators:
crossing and mutation. Solutions are reproduced until their
number doubles (the number of new solutions has been
chosen arbitrarily).
The mutation operator produces one and the crossing op-
erator two new solutions. The likelihood of using either of
the genetic operators is defined by the algorithm parame-
ters.

Genetic operators
The mutation operator of task allocation to resources acts
in the following manner: a solution is randomly selected
and copied. Then, the number of tasks in the system is
multiplied by the global temperature. When the global
temperature is high, the number of tasks changed in the
allocation to resources will be greater than that in later
stages of the evolution. Tasks are picked at random and
allocated to resources.
The schedule mutation operator acts in the following
manner: if due to the mutation operation of task allocation
to resources, the resource the task had been running on
was changed, then the task is removed from the schedule
for the "old" resource and boundaries are set on the new
resource schedule between which the task may be allo-
cated. A location within the boundaries is picked and the
task is allocated.
The crossing operator of task allocation to resources re-
sembles cluster crossing, however, the task graph hyper-
sphere is used for that purpose. Schedule crossing operator
acts in the following way – after the allocations have been
crossed, a map is created defining which parent a given
feature of an offspring comes from. The offspring stores
the allocation vector (obtained after crossing task alloca-
tions to resources) and the empty vector of lists with
schedules of tasks on available resources.
The algorithm analyzes the tasks by checking their posi-
tion on the graph. For all tasks in one position, the re-
sources on which the tasks will be performed (defined by
the vector of allocation to resources) are put on the list. If
in a position there is only one task ran on a given resource,
the task is entered into the resource schedule, otherwise
the tasks are sorted according to the starting time they had
in the parent and are placed in the schedule in ascending
order.

Solution evaluation, saving the best solutions and solu-
tion elimination
They are the same algorithms which were employed in the
resource distribution algorithm. Analogical solutions are
eliminated using Boltzmann tournament selection strategy.

[Criterion of stop]

Reproduction
of solutions

Evaluation of
solutions

Optimization of task sched-
uling

Result of algo-
rithm

Algorithm
initialization

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

94

Algorithm report
If within the number of generations determined by the
annealing criterion a better individual did not appear, the
evolution is stopped and the evolution report is created.
The result of the algorithm operation is a set of
non-dominated individuals (in the scale of the whole cal-
culation process).

5. Coherent Resource Selection and Task
Scheduling – Par-Synthesis

The diagram of the algorithm of the coherent resources
selection and tasks scheduling according to genetic ap-
proach, is showed on Fig. 4.

Fig. 4. The coherent co-synthesis (par-synthesis) of computer system –
genetic approach

The initialization of the coherent synthesis algorithm re-
sembles the initialization of resource selection algorithm.
The input parameters are the number of clusters in the
population and the number of solutions in clusters.
Solution clusters represent the structures sharing the same
resource allocation, but with different task allocation to
resources and different schedules. The outer loop of the

algorithm (realizes resource selection) is ran until the
number of generations without population improvement is
exceeded. This value is defined by the annealing criterion
parameter. There are few outer loops at the beginning of
the algorithm operation. Their number grows until it
reaches the value of k with the falling of the temperature.
Fewer task allocations and scheduling processes are per-
formed at the beginning. When the temperature falls suffi-
ciently low, each inner loop has k iterations. The number
of iterations may be regulated with the temperature step
parameter. The greater the step, the faster the number of
inner iterations reaches the k value.

6. The Results of Analytical Experiments

We present the analytical results obtained by testing the
presented algorithms. In the tests represented by the flow-
charts below, we compared the results from the incoherent
and coherent syntheses.
During cost optimization, both algorithms yielded similar
cost values for all tested task sets.
However, the coherent algorithm improved time optimiza-
tion for graphs exceeding 30 tasks. For 50 tasks it achieved
a 15% improvement of the task completion time – Chart 1.

Minimum cost

0

5

10

15

20

25

5 10 15 20 25 30 35 40 45 50 55

number of tasks

tim
e

non coherent coherent

Chart 1. Non coherent and coherent synthesis (par-synthesis) for mini-
mum cost

When the flowchart reflecting the dependence of time
from the number of system tasks is considered (Chart 2),
time minimization is comparable for both algorithms.
Nevertheless, once the flowchart showing the interde-
pendence of cost and the number of tasks is analyzed
(Chart 3), it is clear that the solutions yielded by the co-
herent algorithm are far less expensive than those from the
incoherent algorithm. The coherent algorithm achieves

[Criterion of stop]

Reproduction
of clusters

Reproduction of solutions

Optimization of resource
selection

Result of
algorithm

Evaluation of solutions

Optimization of task
scheduling

Evaluation of clusters

[Criterion of stop]

Algorithm
initialization

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

95

similar task completion times in solutions much cheaper
from those found by the incoherent algorithm.

Minimum processing time

0
1
2
3
4
5
6
7
8
9

10

5 10 15 20 25 30 35 40 45 50 55

number of tasks

tim
e

non coherent coherent

Chart 2. Non coherent and coherent synthesis (par-synthesis) for mini-
mum time

Minimum processing time

0

2

4
6

8

10

12

5 10 15 20 25 30 35 40 45 50 55

number of tasks

co
st

non coherent coherent

Chart 3. Non coherent and coherent synthesis (par-synthesis) for
minimum time

7. Conclusion

The paper describes genetic algorithms and their imple-
mentation flowcharts. Moreover, it presents selected re-
sults of analytical experiments for resource selection and
task scheduling. The paper explores the coherent synthesis
algorithm of computer systems, in which resource selec-
tion and task scheduling optimization processes are real-
ized concurrently and coherently. The coherent approach
in the synthesis generates common and interdependent
solutions regarding the system structure (type and con-
figuration of the selected resources), as well as the sched-
uling of tasks ran on those resources. In the presented ap-
proach, the cost of resources (system cost), the time of
completing all tasks (system speed) and the power con-
sumption of the system are optimized. The coherent algo-
rithm yields much (up to 40%) better solutions, which is
proved by analytical experiments. The solution suggested
in the paper may be applied in supporting computer system
prototyping, for dependable and fault-tolerant [3, 4] multi-
processors systems, too.

References

[1] Dick R. P., Jha N. K., “CORDS: Hardware-Software
Co-Synthesis of Reconfigurable Real-Time Distributed Embed-
ded Systems”. In: Proc. Int. Conf. Computer-Aided Design,
1998, pp. 62 – 68.
[2] Dick R. P., Jha N. K., “MOGAC: A Multiobjective Genetic
Algorithm for Hardware-Software Cosynthesis of Hierarchical
Heterogeneous Distributed Embedded Systems”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 17, no. 10, Oct. 1998, pp. 920 – 935.
[3] M. Drabowski, K. Czajkowski, “Minimizing Cost and Mini-
mizing Schedule Length in Synthesis of Fault Tolerant Multi-
processors Systems”. In: Lecture Notes in Computer Science,
Springer Berlin/Heidelberg, vol. 3911, 2006, pp. 986 – 993.
[4] Drabowski M, Wantuch E., “Coherent concurrent task sched-
uling and resource assignment in dependable computer system
design”. In: Int. Journal of Reliability, Quality and Safety Engi-
neering, vol. 13, No. 1, 2006, pp. 15 – 24.
[5] Gajski D. D., Principles of Digital Design, Prentice Hall,
Upper Saddle River, NJ, 1997.
[6] Garey M. R., Johnson D. S., Computers and intractability: A
guide to the theory of NP-completeness, San Francisco, Freeman,
1979.
[7] Rothlauf F., “On the Locality of Representations of Integers
on the Performance of Selectorecombinative Genetic Algorithms”.
In: Genetic and Evolutionary Computation – GECCO, Erick
Cantu-Paz et al. (Eds.), Lecture Notes in Computer Science,
Springer Berlin/Heidelberg, vol. 2724, 2003, pp. 1608 – 1619.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

96

Mieczysław Drabowski is the
Assistant Professor of Department of
Computer Engineering, Faculty of
Electrical and Computer Engineering,
Cracow University of Technology. He
received the M. Sc. degree in
automatic control and communication
from AGH University of Science and
Technology in Krakow, he graduated
mathematic from Jagiellonian Uni-

versity in Krakow and he received the Ph. D. degree in comput-
ing science from Poznan University of Technology, in 1977, 1979
and 1986, respectively. He has eighteen years of industrial ex-
perience in design of computer systems and in software engi-
neering.
His research interest includes scheduling, assignment and alloca-
tion for tasks and resources, dependable system modeling, oper-
ating system and software engineering. Dr. Drabowski is a
member of the council of the Polish Information Processing So-
ciety.

