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Summary 
The paper presents a coherent approach to solving the problems 
of computer system synthesis based on genetic methods assisted 
with simulated annealing strategy. We describe algorithm realiza-
tions aimed to optimize resource selection and task scheduling, 
as well as the adaptation of those algorithms for coherent 
co-synthesis realization. This is new approach, which we propose 
call a par-synthesis. We then present selected analytical experi-
ments proving the correctness of the coherent synthesis concept 
and indicate its practical motivations. 
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1. Introduction 

The computer systems synthesis process consists in con-
current definition of both hardware and software compo-
nents of the designed system. Rapid prototyping of such 
systems requires assisting the synthesis, which may be 
achieved through its automation based on implementing 
synthesis algorithms. When realizing the synthesis, it is 
essential to define the tasks (representing the requirements 
and constraints of system design), which are to be com-
pleted by the designed computer system, as well as the 
libraries (pool) of available resources which may realize 
all system tasks. In the synthesis process, the best re-
sources according to given criteria ought to be chosen. In 
most cases, they are cost and power consumption, as well 
as the speed of completing all tasks. Moreover, it is neces-
sary to optimize scheduling and allocating tasks to re-
sources. 
So far, resources selection, task scheduling and task and 
resources allocation in synthesis systems have been real-
ized independently [1, 2, 5]. Optimizing resource selection 
and task scheduling were also realized irrespectively of 
each other. In this paper a new process of the so-called 
par-synthesis is presented, in which resources selection, 
task scheduling, allocation of tasks and resources, as well 
as system optimization are realized coherently. Once the 
tasks have been scheduled and allocated, the resources are 
reselected, changing the ones chosen previously, in search 
of a satisfactory solution meeting all the established crite-
ria. The schematic diagram of a par-synthesis of multi-
processor computer systems is on Fig. 1. Due to the fact 

that synthesis problems and their optimizations are 
NP-complete [6], we suggest meta-heuristic approaches – 
genetic in this paper – with Boltzmann tournament selec-
tion strategy [7]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Par-synthesis of multiprocessor computer system 

2. Evolutionary Approach 

In order to eliminate solution convergence [7] in genetic 
algorithms, we use data structures which ensure locality 
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preservation of features occurring in chromosomes and 
represented by a value vector. Locality is interpreted as the 
inverse of the distance between vectors in an n-dimension 
hypersphere [1, 2]. Then, crossing and mutation operators 
are data exchange operations not between one-dimensional 
vectors but between fragments of hyperspheres. Thanks to 
such an approach, small changes in a chromosome corre-
spond to small changes in the solution defined by the 
chromosome. The presented solution features two hyper-
spheres: 
i. Task hypersphere – two-dimensional, representing the 

task graph structure. Each of the vertexes is defined 
by two coordinates: an indicator obtained through 
topological sorting (the tasks are "closest" if one of 
them is a direct successor of the other), and an indica-
tor calculated from the BFS [5] algorithm parallel 
tasks are equally distant from the beginning of the 
graph).  

ii. Resource hypersphere – three-dimensional, represent-
ing the dependencies of resource features. Each of the 
resources may be defined by the following coordi-
nates – cost, speed and power consumption.  

The solutions sharing the same allocations form the 
so-called clusters [1]. The introduction of solution clusters 
separates solutions with different allocations from one 
another. Such solutions evolve separately, which protects 
the crossing operation from generating defective solutions. 
There are no situations in which a task is being allocated to 
a non-allocated resource. Solution clusters define the 
structures of the system under construction (in the form of 
resources for task allocation). Solutions are the mapping of 
tasks allocated to resources and task scheduling. During 
evolution, two types of genetic operations (crossing and 
mutation) take place on two different levels (clusters and 
solutions). 
A population is created whose parameters are: the number 
of clusters, the number of solutions in the clusters, the task 
graph and resource library. For the synthesis purposes, the 
following criteria and values are defined: optimization 
criterion and algorithm iteration annealing criterion if so-
lution improvement has not taken place, maximum number 
of generations of evolving solutions within clusters, as 
well as the limitations – number of resource, their overall 
cost, total time fort the realization of all tasks, power con-
sumption of the designed system and, optionally, the size 
of the list of the best and non-dominated individuals. 
 . 

3. Resource selection 

The input data for resource selection are the task graph, the 
library of available resources and the optimization criteria, 
and its goal is to divide tasks into the software and the 
hardware part and to select resources for the realization of 

all tasks consistent with the established optimization crite-
ria. The diagram of the algorithm of resource selection is 
showed on Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
Fig. 2. Algorithm of resource selection 
 
3.1. Algorithm initialization 
Initialization of the resource selection algorithm aims at 
defining preliminary system structure based on the library 
of available resources matching the required functionality. 
The global algorithm "temperature" is initialized at this 
stage as well. 

Hypersphere definitions 
 filling multi-dimensional vectors with data defining a 

given object (resources, tasks) 
 calculating the diameters of the hyperspheres, i.e. the 

distance between the two most remote points and de-
termining the hypersphere center on the basis of the 
extreme coordinates 

Population initialization 
Clusters and solutions are initialized randomly: 
 for every task, a resource capable of completing the 

task is selected, 
 if the resource is allocated, the algorithm proceeds to 

the next task, 
 a resource capable of completing the task is selected 

and they are allocated. 
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Initializing the allocation of tasks to resources 
 a vector of resources for allocation is taken for each 

task, 
 resource type and number are randomly assigned to 

the tasks, 
 task scheduling by the ASAP [5] algorithm is initial-

ized - eliminates the violations of sequence limita-
tions. 

Solution evaluation 
 the following are calculated: resource cost, task com-

pletion time and power consumption; the cost is the 
sum of allocated resources’ costs, the time of com-
pleted tasks is the time of completing the tasks on all 
allocated resources, power consumption is the sum of 
power inputs taken by selected resources. Additionally, 
the idle power consumption (for an inactive resource) 
is allowed for,  

 if for an individual representing a solution any of the 
optimized criteria exceeds the maximum value ac-
ceptable, the individual is punished and the survival 
chances of a punished individual diminish considera-
bly, 

 as the result of the above operations, we obtain a vec-
tor containing the values of optimized criteria (time, 
cost, power consumption), 

 a solution ranking is determined (the rating of a given 
solution is the number of solutions in a population 
which do not dominate the solution), 

 a solution is dominated if each of its costs is lesser 
from or equal to the costs of the dominant solution 
(for optimization in the Pareto sense). 

Cluster evaluation 
A solution cluster ranking is created. The rating of a clus-
ter is the sum of the ratings of all solutions within the 
cluster. 

 

3.2. Algorithm of resource selection 

Cluster reproduction 
 Clusters are reproduced with the use of genetic operators: 

crossing and mutation. At the reproduction stage, the clus-
ter population is doubled and its initial size is restored at 
the elimination stage. This method was introduced arbi-
trarily and ensures that within a population some new in-
dividuals appear and fight for survival with their parents. 
The mutation operator creates one and the crossing opera-
tor two new clusters. The likelihood of using either of the 
genetic operators is defined by the algorithm parameters.  

Genetic operators 
The cluster mutation operator consists in mutating alloca-
tion vectors in the following way: a cluster with identical 
likelihood is picked at random and copied. The number of 
the resource which will be mutated in a new cluster is 
picked randomly. Then, a number in the 0-1 range is 
picked - if the number is smaller than the global tempera-
ture, the resource is added, otherwise it is subtracted. 
Adding resources is limited by the maximum resource 
number parameter. At the beginning of the algorithm op-
eration, resources will be added to the structure. As the 
algorithm approaches the end of the run defined by the 
cooling process, resources will be subtracted. This is 
aimed at creating a cost-effective structure.  
The cluster crossing operator consists in randomly picking 
two clusters and copying them. Crossing is achieved 
through cutting the resource hypersphere with a hyper-
plane. The information contained on "one side" of the hy-
perplane is exchanged between clusters. 

The algorithm for cutting the hypersphere with a hy-
perplane 
 determining the cutting hyperplane by picking n 

points inside an n-dimensional hypersphere, 
 creating a random permutation, e.g. for n = 3, the 

permutation can be (2, 1, 3), 
 constructing the point displacement vector in respect 

to the hypersphere center; square coordinates are 
picked consistent with dimension permutations, e.g. 
for three dimensions with the permutation (2, 1, 3): y2 
= rand() % r2, x2 = rand() % (r2 – y2), z2  =  
rand() % (r2 – (y2 + x2)), where: r – hypersphere ra-
dius, and (x, y, z) are the coordinates of the con-
structed point in a three-dimensional space, 

 the roots of square coordinates are calculated, 
 a coordinate radical sign is picked, 
 the hypersphere center coordinates are added to the 

new point resulting in obtaining a new point inside the 
n-dimensional hypersphere, 

 the equation of the hyperplane cutting the hypersphere 
is calculated and the obtained system of equations is 
solved.  

Saving the best solutions 
After solution reproduction, a new procedure is called to 
save the globally non-dominated solutions generated dur-
ing evolution.  
This procedure executes: 
 searches for non-dominated solutions in the present 

generation, 
 creates the ranking of the best solutions saved so far 

and in the present generation, 
 saves the non-dominated solutions from both the "old" 

and the "new" solutions, 
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 deletes the solutions saved in the past if they were 
dominated by new solutions; if there are more than 
one solution whose all optimized criteria values are 
identical, only one of those solutions is saved (the 
"newest" one), 

 if the new solutions dominated none of the ones saved 
in the past, the population was not improved, 

 the number of non-dominated solutions that the algo-
rithm can save is defined by an algorithm parameter. 

Cluster evaluation 
At this stage of the algorithm, half the individuals are re-
moved from the population. The initial number of indi-
viduals is restored. The elimination of individuals is car-
ried out using Boltzmann tournament selection strategy. 

4. Task Scheduling 

Task scheduling is aimed at minimizing the schedule 
length (the total tasks completion time). The diagram of 
the algorithm of task scheduling is showed on Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Algorithm of task scheduling 

 
The scheduling algorithm initialization resembles the ini-
tialization of resource selection algorithm. The difference 
is that there is solely one cluster in which solutions evolve. 
The cluster allocation remains unchanged during the algo-
rithm's run because all the resources are known for the task 
scheduling algorithm. 

Solution reproduction 
Solutions are reproduced using the genetic operators: 
crossing and mutation. Solutions are reproduced until their 
number doubles (the number of new solutions has been 
chosen arbitrarily).  
The mutation operator produces one and the crossing op-
erator two new solutions. The likelihood of using either of 
the genetic operators is defined by the algorithm parame-
ters. 

Genetic operators 
The mutation operator of task allocation to resources acts 
in the following manner: a solution is randomly selected 
and copied. Then, the number of tasks in the system is 
multiplied by the global temperature. When the global 
temperature is high, the number of tasks changed in the 
allocation to resources will be greater than that in later 
stages of the evolution. Tasks are picked at random and 
allocated to resources.  
The schedule mutation operator acts in the following 
manner: if due to the mutation operation of task allocation 
to resources, the resource the task had been running on 
was changed, then the task is removed from the schedule 
for the "old" resource and boundaries are set on the new 
resource schedule between which the task may be allo-
cated. A location within the boundaries is picked and the 
task is allocated. 
The crossing operator of task allocation to resources re-
sembles cluster crossing, however, the task graph hyper-
sphere is used for that purpose. Schedule crossing operator 
acts in the following way – after the allocations have been 
crossed, a map is created defining which parent a given 
feature of an offspring comes from. The offspring stores 
the allocation vector (obtained after crossing task alloca-
tions to resources) and the empty vector of lists with 
schedules of tasks on available resources.  
The algorithm analyzes the tasks by checking their posi-
tion on the graph. For all tasks in one position, the re-
sources on which the tasks will be performed (defined by 
the vector of allocation to resources) are put on the list. If 
in a position there is only one task ran on a given resource, 
the task is entered into the resource schedule, otherwise 
the tasks are sorted according to the starting time they had 
in the parent and are placed in the schedule in ascending 
order. 

Solution evaluation, saving the best solutions and solu-
tion elimination 
They are the same algorithms which were employed in the 
resource distribution algorithm. Analogical solutions are 
eliminated using Boltzmann tournament selection strategy. 
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Algorithm report 
If within the number of generations determined by the 
annealing criterion a better individual did not appear, the 
evolution is stopped and the evolution report is created. 
The result of the algorithm operation is a set of 
non-dominated individuals (in the scale of the whole cal-
culation process). 

5. Coherent Resource Selection and Task 
Scheduling – Par-Synthesis 

The diagram of the algorithm of the coherent resources 
selection and tasks scheduling according to genetic ap-
proach, is showed on Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 4. The coherent co-synthesis (par-synthesis) of computer system – 
genetic approach 

 
The initialization of the coherent synthesis algorithm re-
sembles the initialization of resource selection algorithm. 
The input parameters are the number of clusters in the 
population and the number of solutions in clusters.  
Solution clusters represent the structures sharing the same 
resource allocation, but with different task allocation to 
resources and different schedules. The outer loop of the 

algorithm (realizes resource selection) is ran until the 
number of generations without population improvement is 
exceeded. This value is defined by the annealing criterion 
parameter. There are few outer loops at the beginning of 
the algorithm operation. Their number grows until it 
reaches the value of k with the falling of the temperature. 
Fewer task allocations and scheduling processes are per-
formed at the beginning. When the temperature falls suffi-
ciently low, each inner loop has k iterations. The number 
of iterations may be regulated with the temperature step 
parameter. The greater the step, the faster the number of 
inner iterations reaches the k value. 

6. The Results of Analytical Experiments 

We present the analytical results obtained by testing the 
presented algorithms. In the tests represented by the flow-
charts below, we compared the results from the incoherent 
and coherent syntheses.  
During cost optimization, both algorithms yielded similar 
cost values for all tested task sets.  
However, the coherent algorithm improved time optimiza-
tion for graphs exceeding 30 tasks. For 50 tasks it achieved 
a 15% improvement of the task completion time – Chart 1. 
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Chart 1.  Non coherent and coherent synthesis (par-synthesis) for mini-
mum cost 
 
When the flowchart reflecting the dependence of time 
from the number of system tasks is considered (Chart 2), 
time minimization is comparable for both algorithms. 
Nevertheless, once the flowchart showing the interde-
pendence of cost and the number of tasks is analyzed 
(Chart 3), it is clear that the solutions yielded by the co-
herent algorithm are far less expensive than those from the 
incoherent algorithm. The coherent algorithm achieves 
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similar task completion times in solutions much cheaper 
from those found by the incoherent algorithm. 
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Chart 2.  Non coherent and coherent synthesis (par-synthesis) for mini-
mum time 
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Chart 3. Non coherent and coherent synthesis (par-synthesis) for 
minimum time 
 
 

7. Conclusion 

The paper describes genetic algorithms and their imple-
mentation flowcharts. Moreover, it presents selected re-
sults of analytical experiments for resource selection and 
task scheduling. The paper explores the coherent synthesis 
algorithm of computer systems, in which resource selec-
tion and task scheduling optimization processes are real-
ized concurrently and coherently. The coherent approach 
in the synthesis generates common and interdependent 
solutions regarding the system structure (type and con-
figuration of the selected resources), as well as the sched-
uling of tasks ran on those resources. In the presented ap-
proach, the cost of resources (system cost), the time of 
completing all tasks (system speed) and the power con-
sumption of the system are optimized. The coherent algo-
rithm yields much (up to 40%) better solutions, which is 
proved by analytical experiments. The solution suggested 
in the paper may be applied in supporting computer system 
prototyping, for dependable and fault-tolerant [3, 4] multi-
processors systems, too. 
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