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Abstract 
The problem of the relevance and the usefulness of extracting association 

rules are of primary importance because, in the majority of cases, the 

traditional association rule mining framework produce many redundant 

rules. In this paper, a new framework and method for extracting association 

rules based on concept lattice and the concept of closed itemsets is 

proposed. The number of non-redundant rules produced by the new 

approach is smaller than the rule set from the traditional approach. 

Experiments confirm the utility of the framework in terms of reduction in 

the number of rules, and in terms of time. 
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1.  Introduction 

Association rule discovery, a successful and important mining task, aims at 

uncovering all frequent patterns among transactions composed of data 

attributes or items. Results are presented in the form of rules between 

different sets of items, along with metrics like the joint and conditional 

probabilities of the antecedent and consequent, to judge a rule's importance. 

Since the problem of mining association rules was originally introduced by 

R. Agrawal [1], it has been studied widely and deeply in [2-7]. 

   Concept lattice was proposed by R. Wille [8] in 1982, which is a 

powerful tool for data mining and rule extracting. Concept lattice 

essentially represents the association between objects and attributes, and 

reflects the relationship of generalization and specialization among 

concepts, and Hasse graph realizes the visualization of data. It has been 

widely used in software engineering, knowledge engineering, data mining 

and information retrieval and so on [9-15]. Concept lattice is a natural tool 

for mining association rules. R. Godin [16] proposed an algorithm of 

mining implication rules, N. Pasquier and Y. Bastide [17, 18] discussed 

extracting rules used closed itemsets, and in [19] they addressed mining 

minimal non-redundant association rules using frequent closed itemsets, M. 

Zaki [20] presented an approach of generating non-redundant association 

rules based on the concept of closed frequent itemsets, the results shown 

that, by doing so, the total number of itemsets and rules can be reduced 

substantially, especially in dense data sets.  

Based on above study, the paper address a new framework for extracting 

association rules based on concept lattice and the concept of closed 

itemsets. The paper is organized as follows. Section 2 reviews the basic 

concepts. In section 3, we present a new lattice structure and incremental 

building algorithm. Section 4 gives an algorithm of extracting implication 

rules and section 5 gives a method of extracting frequent itemsets and 

association rule based on the new framework. In section 6, we further 

explain the idea and its realizing process by an example. Finally, we 

summarize our work and conclude in section 7. 

2.  Basic Concepts 

2.1 Concept Lattice 

Definition 2.1[8] A formal context is a triple ),,( RDUK = , where U  

is a finite set of elements called objects, D  is a finite set of elements 

called attributes and R  is a binary relation between U and D .  For 

arbitrary Ux∈  and Dy∈ , Ryx ∈),(  (also denoted by xRy ) 

if the object x  has the attribute y . 

Now we define two mappings )()(: DPUPf → and 

)()(: UPDPg →  as follows [8]: 

},|{)( xRyXxDyXf ∈∀∈= , )(UPXfor ∈ , 

},|{)( xRyYyUxYg ∈∀∈= , )(DPYfor ∈ . 

Where )(UP  and )(DP  are the power sets of U  and D  

respectively. Then, the maps f  and g  form a Galois connection 

between power sets )(UP  and )(DP . 

Definition 2.2[8] Let ),,( RDUK =  be a formal context, 

)(UPX ∈  and )(DPY ∈ . ),( YX  is called a concept, if 

YXf =)(  and XYg =)(  hold. X  and Y  are called the 

extent and intent of the concept ),( YX  respectively. By )(KL , we 
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denote the set of all concepts in the formal context K . 

Definition 2.3[8] Let ),,( RDUK =  be a formal context. For 

),( 111 YXH =  and ),( 222 YXH =  in )(KL , 21 HH ≤  if 

and only if 12 YY ⊆ . 1H  is called child node of 2H , and 2H  is 

called father node of 1H . 

It is clear that the relation ≤  is a partial order on )(KL  and can 

induce a lattice )),(( ≤KL  called the concept lattice of the formal 

context K , also abbreviated as )(KL . 

2.2 Closed Itemsets 

In the following, the basic concept of closed itemsets is introduced. The 

detail description of closed itemsets can be seen in [17, 18]. 

Definition 2.4 [18] Let ),,( RDUK = be a context, （ gf , ）a Galois 

connection between power sets )(UP  and )(DP . The operations 

))(( Ygfgfh == o  ))(( DPY ∈ and ))(( Xfgfgh ==′ o  

are called Galois closure operator. 

Definition 2.5[18] Let ),,( RDUK =  be a context, and DC ⊆ , 

then C  is a closed itemset if and only if CCh =)( . 

That is to say, closed itemset is the largest set of attributes that have 

common objects. From the Definition 2.5, we have the following 

corollaries: 

Corollary 2.1 Intent of the concept ),( YX  in )(KL  is a closed 

itemset. 

Corollary 2.2 The set of closed itemset generated from 

),,( RDUK =  is )}(),(|{ KLYXYR ∈= .  

3. Closed Label Lattice and Incremental Building 
Algorithm 

In this section, a new lattice structure for extracting rules, called closed 

label lattice is proposed.  

Definition 3.1 Let )(),( KLYXC ∈= , XCextention =)(  be 

extent of C , and intention YC =)(  be intent of C . The closed label 

of C  is denoted by )(ClClosedlabe , where )(ClClosedlabe  

is a set, )(ClClosedlabeX ∈∀  satisfy the follow conditions: 

(1) =)(Xh intention )(C ; 

(2) XXh ≠)( ; 

 (3) XY ⊂∀ ， )()( XhYh ⊂ . 

Form Definition 3.1, we know that the elements of closed label set can 

represent the concept and they have simpler form that possesses the 

information of the concept. So we can use closed label of a concept to 

denote the original concept. 

Theorem 3.1 Let )(),( KLYXC ∈= , if }{}|{ 111 CCCCC ′=≤=′ , then 

the closed label of C  is 

)(ClClosedlabe = ∈xx|{U intention −)(C intention )( 1C′ }. 

Proof  For ∈∀x )(ClClosedlabe , we have that, (1) =)(xh  

intention )(C ; (2) =)(xh intention )(C x⊇ ; (3) is obviously true. 

So x  is a closed label. 

Theorem 3.2 Let )(),( KLYXC ∈= , },{}|{ 2111 CCCCCC ′′=≤=′ .  

  (1) If intention −)(C  (intention )( 1C′ U intention )( 2C′ ) ∅≠ , 

=)(ClClosedlabe ∈xx|{ {intention −)(C (intention )( 1C′ U  

intention ))}( 2C′ .  

(2) If intention −)(C  (intention )( 1C′ U  intention ))( 2C′ ∅= ，

=)(ClClosedlabe ∈121 |{ xxx  intention −)(C intention )( 1C′ , ∈2x  

intention −)(C  (intention )( 2C′ )}. 

Proof  Theorem 3.2 is obviously true. 

For some concept C , 2|}|{| 11 >≤=′ CCCC , then its closed 

label can correspondingly be generated based on theorem 3.2. 

We can use algorithm 3.1 to produce the closed label set of concept in 

the lattice. 

Algorithm 3.1 Compute closed label )(NsedComputeclo  of 

concept N . 

Input: )(Nparents , }|{)( NNNNparents ′≤′= . 

Output: Closed label )(Nlclosedlabe  of N . 

Step 1: If ∅=)(Nextent or intention ∅=)(N , 

)(NlClosedlabe := N , skip to step 6. 

Step 2: Computing )(|)({int NparentsNNentionL ∈′′=U . 

Step 3: If L ⊂ intention( N ), i.e. there have new added attributes, 

)(NlClosedlabe ∈= xx |{:  intention( N )- }L , skip to 

step 6. 

Step 4: If L =intention( N ), i.e. there have no new added attributes, for 

any two element iM  and jM  in )(Nparents . 

Computing iL = intention( N )-intention( iM )， 

jL :=intention( N )-intention( jM )， 

)(NlClosedlabe := )(NlClosedlabe U

≠∈∈ jijjiiji xxandLxLxxx ,|{  intention( iM ), 

≠ji xx  intention( jM )}. 

Step 5: If )(NlClosedlabe =∅ , then get any three element from 

)( Nparents , computing as step4, until 

)(NlClosedlabe ≠ ∅ . 

Step 6: End, return )(NlClosedlabe . 

    Based on the concept of closed label, we can define a new framework 

of concept lattice.    
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Definition 3.2 Every concept of closed label lattice is a triple 

),(),(( ClClosedlabeCextention  intention ))(C ，called 

concept of closed label lattice. 

There have been a series of algorithms for building concept lattice 

based on binary relation. These algorithms can be parted into two species 

[21]: batch algorithm and incremental algorithm. R. Godin [22] proposed 

an algorithm of incrementally building lattices and its Hasse graph, and Z. 

Xie [23] gave an algorithm for building association rules lattice. 

Algorithms 3.2 has similar idea as above algorithms, but does some 

corresponding modification as to the difference concept structure. 

Algorithm 3.2 Incremental algorithm of building lattice based on closed 

label. 

Input: Given lattice L , added an object x , )(xf  denote the set of 

attributes that x  satisfied, i.e. add concept （ x ,Φ , )(xf ）

into L . 

Output: Lattice L′  after update. 

Step 1 : Initialization φ=:Mark . 

Step 2: For every concept C  in lattice,  

rearrange as (Card intention ))(C  ascending. 

Step 3: For C , if intention )(C ⊂ )(xf ,  

add x  to )(Cextention , add C  to Mark , skip to step 7. 

If intention )(C = )(xf , add x  to )(Cextention , add C  

to Mark , skip to step 8. 

Step 4: Let Int = intention )(C I )(xf , if there dose not exists a 

father node MarkCi ∈  such that  intention( iC )= Int , 

then create new node N , intention( N ):= Int ; 

)(Nextention := )(Cextention U x , add N  to the set 

of his father nodes )(Cparents , and add C  to the set of his 

child nodes )(NChildren , otherwise skip to step 7. 

Step 5: Get a element MP  from Mark .  

(1) If intention )(MP ⊂ intention )(N , then 

trueParent =: ; 

(2) For every M ∈ )(MPChildren , if 

intention )(M ⊂ intention )(N ， then 

falseParent =: ; 

(3) If trueParent = , then add N  to 

)(MPChildren , and add MP  to )(Nparents . 

If MP ∈ )(Cparents , then delete MP  from 

)(Cparents , and delete C  from 

)(MPChildren . Repeat step 5. 

Step 6: Run, )(NsedComputeclo compute closed label of new node 

N , and re-compute closed label of every child node of N . 

Step 7: Get next node, skip to step 3. 
Step 8: End, output lattice L′ . 

4. Mining Implication Rules 

One can directly mining implication rules from concept lattice according to 

its relationship of generalization and specialization among concepts, but the 

number of rules is very large [16, 24]. Here we extract generation set of 

implication rules using closed label lattice. Generation set needs small 

storage space, and other implication rules can be deduced from it. 

Sometimes what user interest is only a part of rules in the whole set of rules, 

then he can extract some rules selectively, and generate other rules. But the 

generation set extracted is also not the smallest rules set, rules generate 

from different concept may have redundancy. 

Theorem 4.1 Let 21, XX  be closed label of a concept lattice, then rule 

21 XX →  is true if and only if )()( 21 XhXh → . 

Proof According to definition of closed itemsets, 1X  and )( 1Xh  have 

same objects set, 2X  and )( 2Xh  have same objects set. So the 

theorem is apparently true. 

Meanwhile, for any closed label X  in concept lattice, 

XXhXhX →→ )(),(  are true. 

In closed label lattice, the closed itemsets of closed label is intent of the 

concept, and closed label set is the simplest attributes set that can denote 

the concept. So we only consider closed label when mining generation set. 

Theorem 4.2 Let 1X ， 2X ， 3X  be closed label of a concept lattice, 

and )( 1Xh ⊆ )( 2Xh ⊆ )( 3Xh . If 1X → 2X ， 2X → 3X ，we 

have 1X → 3X . 

Proof According to the relationship of generalization and specialization 

among concepts, one easily knows that the theorem is true. 

Theorem 4.2 shows that mining implication rules only need to think 

about neighborhood concept. 

Theorem 4.3 If the closed label of a concept includes more than one new 

added attributes, these attributes implicate each other. 

Proof Because these attributes appear in the same concept at the same time, 

they must have same objects set. Hence, they implicate each other.  

Let ba,  be two new added attributes, then ba → ， ab →  are 

two implication rules. 

Form Theorem 4.3, we have that: 

Corollary 4.1 Let )(),( KLYXC ∈= , }{}|{ 111 CCCCC ′=≤=′ , for 

)(CeClosedlablx∈∀ , )(CeClosedlably ′∈∀ , 

yx →  is true. 
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Theorem 4.4 Let )(),( KLYXC ∈= , },{}|{ 2111 CCCCCC ′′=≤=′ , 

for )(CeClosedlablX ∈∀ , )( 1CeClosedlablY ′∈∀  or 

∈Y )( 2CeClosedlabl ′ , if ⊄Y X , we have that YX →  is 

an implication rule. 

Proof  If ⊄Y X , because every concept related to its father node is 

specialized, YX →  is true. If ⊆Y X , YX →  is clearly true 

and hence redundancy. 

Theorem 4.5 Based on generation set, we can deduce all other implication 

rules. 

Proof Because generation set of implication rules is produced from closed 

label (not intent of concept), and closed label can denote the concept. 

Therefore, all other rules can produced based on theorem 4.1-4.5. 

User can use the following methods to generate implication rules from 

generation set. 

(1) Adding some attributes to the former of the implication rules 

(added attributes should be in the same closure as the former ). 

(2) Transfer according to theorem 4.2. 

(3) Unite some rules together, for example, if CW → ， CD → ，

then CDW → [20]. 

Algorithm 4.3 Mining generation set of implication rules based on closed 

label lattice. 

Input: Given closed label lattice L . 

Output: Generation set of implication rules Σ . 

Step 1 : Initialization Σ :=∅ . 

Step 2 : For every concept C  in lattice,  

rearrange as (Card intention( C )) ascending, and put into 

Mark , let kMar ′ := Mark . 

Step 3: Get a concept C  from kMar ′ , kMar ′ := kMar ′ - C . If 

)(ClClosedlabe =∅ , skip to step 10. 

Step 4: Define a set )(CsParent ′ ,  

and let )(CsParent ′ := )(CParents . 

Step 5: Get a concept N from )(CsParent ′ , let 

=′ :)(CsParent NCsParent −′ )( . 

 If )(NlClosedlabe =∅ , skip to step 8. 

Step 6: Let S := )(ClClosedlabe , if )(NlClosedlabe  has 

two or more new added attributes, then move these attributes from 

S . 

Step 7: For every element X  in S  and every element Y  

 in )(NlClosedlabe , generate rule 

}{ XYX −→ ,Σ :=Σ U }}{{ XYX −→  . If S  has 

two or more new added attributes,  then for arbitrary two new 

added attributes, generate rules ba → ， ab → ，

Σ :=Σ U { ba → ， ab → }. 

Step 8: If )(CsParent ′ ≠ ∅，skip to step 5. 

Step 9: If there have some element X  in S  that have not generated 

rules, thenΣ : =Σ U  →X{  {intention( C ) }}X− . 

Step 10: If kMar ′ ≠ ∅，skip to step 3. 

Step 11: End, output Σ . 

5. Mining Frequent Itemsets and Association Rules 

Let },,,{ 21 miiiI ⋅⋅⋅=  denote a set that contains m  different 

attributes. n -itemset mean that there have n  items. Every transaction 

in transaction database TD  has an only identifier TID  and has an 

itemset IT ⊆ .  

Definition 5.1[19] (Frequent itemsets) Let Il ⊆ , the support of an 

itemset l  is the percentage of objects in transaction database containing 

l . l  is a frequent itemset if  support ≥)(l minsupport. 

Definition 5.2[19] (Association rules) An association rule r  is an 

implication between two frequent itemsets Ill ⊆21,  of the form 

)\( 121 lll →  where 21 ll ⊂ . The support and the confidence of  r  

defined as: support )(r  =support )( 2l  and =)(rconfidence  

support )( 2l / support )( 1l . 

Generally speaking, mining association rules includes two steps: 

1. Finding all frequent itemsets, 

2. Finding possible association rules from frequent itemsets.  

      Transaction database TD  can be seen as a formal context 

),,( RDU  easily [23], where U  is the set of transaction and D  is the 

set of items in TD . For  Ux∈ ， Dd ∈ ， xRd  if and only if d  

belongs to the itemsets of transaction x . 

 

Theorem 5.1 For a concept in closed label lattice 

),(),(( ClClosedlabeCextentionC intention )(C ), and itemset 

=S  intention )(C , the support of S  is 

Support ||/)()( UCextentionS =  

  

Theorem 5.2 For a concept of closed label lattice 

),(),(( ClClosedlabeCextentionC intention )(C ), all the 

member of )(ClClosedlabe  has the same support. 

Because for ∀ s ∈ )(ClClosedlabe ，we have that =)(sh  

intention )(C ， )()( Cextentionsg = . So they have same support. 
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Theorem 5.3 The set of frequent itemsets in a transaction database is 

{=S intention })()(|)( θ≥∈ CextentionandKLCC  

=)(|{ shsU intention )}(C . 

Because the set of closed label is a subset of frequent itemsets, and all 

the frequent itemsets can deduced from closed label, such as adding some 

attributes to the closed label (attributes in the intent of concept). Therefore, 

we only think about closed label when mining association rules, removed 

part of redundancy rules. 

Definition 5.3 For arbitrary two concept 1C ， 2C  in closed label lattice, 

if support(intention θ≥)( 2C ， )()( 21 CextentionCextention ⊃  

and support( intention )( 2C ) / support( intention )( 1C )= 

δ≥)(/)( 12 CextenctionCextention , then 1(C ， )2C  is called 

),( δθ -candidate binary group. 

Theorem 5.4  intention →)( 1C ( intention \)( 2C  intention ))( 1C  is 

),( δθ -association rule if and only if （ 1C ， 2C ）is ),( δθ - candidate 

binary group 

From above, we know that all of the ),( δθ -association rules can be 

produced from ),( δθ - candidate binary group. According to definition 

5.2, for arbitrary two concept 1C ， 2C , if 1C f 2C , i.e. 1C  is a 

father node of 2C  , θ≥)( 2Cextention and 

δ≥)(/)( 12 CextenctionCextention ， then （ 1C ， 2C ） is 

（ δθ , ）-candidate binary group. So when mining association rules, we 

only consider concept and its child concept.  

Theorem 5.5  Let BA → , CB →  be ),( δθ -association rule, 

and confidence is 1c ， 2c  respectively，then confidence of CA→  

is 1c ∗ 2c . 

Proof  Because BA→ , CB →  are ),( δθ -association rule, 

there exists three nodes 1C ， 2C ， 3C ，satisfying the following 

conditions:    

              =)(Ah intention )( 1C , 

=)( BAh U  intention )( 2C  

and  

=)( CBh U  intention )( 3C . 

Also we have 1C f 2C f 3C .  

Thereby,  

1c ＝ )(/)( 12 CextenctionCextention ， 

2c ＝ )(/)( 23 CextenctionCextention , 

Hence, confidence of CA →  is 

)(/)( 13 CextenctionCextention ＝ 1c ∗ 2c . 

When mining association rules in closed label lattice, we still only 

consider candidate binary group composed of father and child node. 

Algorithm 5.1 Mining generation set of association rules on closed label 

lattice. 

Input: Given closed label lattice L , support θ  and confidence δ . 

Output: Generation set of association rules Σ . 

Step 1 : Initialization Σ :=∅ . 

Step 2: For every node C  in lattice L , 

 if ||/)( UCextenction θ≥ , rearrange as (Card  

extention( C )) ascending, and put into Mark , let 

kMar ′ := Mark . 

Step 3: Get a concept C  in kMar ′ , kMar ′ := kMar ′ - C .  

If )(ClClosedlabe =∅ , skip to step 8. 

Step 4: )(CsParent ′ := )(CParents . 

Step 5: Get a concept N  in )(CsParent ′ , 

 let NCsParentCsParent −′=′ )(:)( . If 

)(NlClosedlabe =δ , skip to step 7. 

Step 6: For every element X  in )(NlClosedlabe  and every 

element Y  in )(ClClosedlabe , generate rule 

}{ XYX −→ , if 

δ≥)(/)( NextentionCextention , 

Σ :=Σ U }{{ XYX −→ （ ||/)( UCextenction ，

))}(/)( NextentionCextention . 

Step 7: If )(CsParent ′ ≠ ∅，skip to step 5. 

Step 8: If kMar ′ ≠ ∅，skip to step 3. 

Step 9: End, output Σ .       

6. Example and Analysis of Experimental Results 

Example 6.1 Table 1 is a given transaction database, and Table 2 is 

corresponding formal context. 

Fig. 1 is closed label lattice based on formal context in Table 2. 

Generation set of implication rules extracted from the lattice is as follows:  

{ ef → , hd → , dh → , ia → , gb → , fb → ,

ecd → , ced → , ech → , ceh → , gca → ,

ciga → , agc → , agi → , fei → , ecfi → ,

eifc → , adi → , ahi → }，there are 19 rules. For example, 

the rules generated from concept )},,,,{,2( acgicagacigc  are 

{ gca → , ciga → , agc → , agi → }, then we can 

produce the following rules: { igca → ， cgia → ， agci → ，

acgi → ， aigc → ，  gica → }, so the rules that we 

extracted are more simpler. From above we can see that generation set is 
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only a smaller set of rules. Other rules could be generated from generation 

set if needed. 

Let 4.0=θ ，δ ＝0.6, then the generation set of association rules 

generated from lattice are : { fe → (0.4, 0.67), ce → (0.4, 0.67), 

ec → (0.4, 0.67), ic → (0.4, 0.67), ci → (0.4, 0.67), 

ai → (0.4, 0.67}. 

The time complexity of incremental building lattice in [22] is 

||)||2( LO k , in which |||| U  is the number of objects and k  is the 

maximum value of the number of attributes })({|| xf || )( Ux∈ . 

|||| L = ||||2 Uk  is the number of nodes in lattice. In the paper, because 

the computing closed label of every new added node or of generate node 

need scan all its father nodes. The maximum number of father nodes is 

k2 -1，so the time complexity of the algorithm is 

 

Table 1 Transaction database 

TID T 

0 gfeb ,,,  

1 hedc ,,,  

2 igca ,,  

3 ifec ,,,  

4 ihda ,,,  

Table 2 Formal context 

 

),,01234( ∅∅  

            

)},{,013( ee           )},{,02( gg         )},{,02( cc      )},{,234( ii  )},,{,14( dhhd  

  

 

     )},{,03( eff              )},{,13( cece          )},{,23( cici             )},{,24( aia  

 

 

)},,,{,3( cefifieifc )},{,0( befgb )},,,,{,1( cdehehchedcd )},,,,{,2( acgicagagigc )},,,,{,4( adhihidihada  

 

                                   )},{,( abcdefghiabcdefghi∅  
Fig. 1 Hasse graph of closed label lattice based on table 1  

 

))122(||(|| −+ kkLO = ||)||2( LO k . The number of repeat times 

that the algorithm of mining implication rules is the number of father nodes, 

so the time complication of mining generation set is 

))12(||(|| −kLO = )2||(|| kLO . In practice, the number of father 

nodes is far less that the worst, and we recorded father nodes of every node, 

 a  b  c  d  e  f  g  h  i  

0 0 1 0 0 1 1 1 0 0 

1 0 0 1 1 1 0 0 1 0 

2 1 0 1 0 0 0 1 0 1 

3 0 0 1 0 1 1 0 0 1 

4 1 0 0 1 0 0 0 1 1 
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so the efficiency of mining rules will has some improvement. As for 

mining association rules, the scan number is even less because of pruning 

based on support. 

  The above algorithms have been realized using Delphi5.0 in Windows 

XP. We have tested from building closed label lattice to mining rules for 

some random dataset of given 15 attributes and each object has 5 attributes. 

Fig. 2 denotes the relationship of average time of running and the number 

of objects. The results indicate that the algorithm has certain stability. 

Fig. 3 denotes the relationship of the number of object and the number 

of rules in generation set. In the same time, we compared the results with 

[24]. In Fig. 3, the above curve shows the results of [24] and the below 

curve denotes the results of our algorithm. We can see from the figure that 

the set of rules we extracted is smaller than the traditional algorithm. So at 

certain number of attributes, our algorithm has some advantage. 
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Fig. 2 Relation of execute time of algorithm and objects set  
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Fig. 3 Relation of the number of rules and objects set 

7.  Conclusions   

In the paper, a new framework for extracting association rules based on 

concept lattice and the concept of closed itemsets is proposed. The 

algorithm of incremental building lattice based on closed label lattice is 

given, and the algorithms of mining generation set of implication rules and 

association rules are introduced. The number of non-redundant rules 

produced by the new approach is smaller than the rule set from the 

traditional approach. Experiments confirm the utility of the framework in 

terms of reduction in the number of rules, and in terms of time. In future 

work, we will study the method of extracting classification rules based on 

the new framework. 
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