
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

121

 Manuscript revised by November 25, 2006.

Jinan Fiaidhi, Sabah Mohammed and Marshall Hahn,

Department of Computer Science, Lakehead University,
Thunder Bay, Ontario P7B 5E1, CANADA

Summary
Interactive multimedia elements allow information to be
presented in a comprehensible format attuned to the way a
students’ mind works. A multimedia learning object is
defined as an animation that includes a combination of text,
graphics, sound, and video packaged together. Unlike the
standard lecture mode, learning objects allow flexibility
and round-the-clock access by the students. This article
develops a method for creating interactive multimedia
learning objects based on the SVG standard that is widely
used on the semantic web. We refer to our implementation
of this method as the learning object presentation (LOP)
generator, a tool capable of generating CanCore compliant
learning object presentations. This tool has been written
using a mixture of Java and JavaScript to make it
independent from the platform. The presentations
generated by it utilize embedded JavaScript rather than
declarative animation for reasons of increased portability,
reduced complexity, and file size minimization.

Key words:
Multimedia Learning Objects, SVG, Semantic Web

Introduction

NE of the more recent developments with the Web is
the Semantic Web initiative. The Semantic Web is

not a separate Web but an extension of the current one, in
which information is given well-defined meaning, better
enabling computers and people to work in cooperation [1].
Various scenarios and possibilities which helped the
evolution of the Semantic Web are based on the
assumption that each object on the web can be described
using an XML-like machine-readable form. More
precisely, the machine-readable descriptions of Web
resources are essential for building advanced Web
applications that can process Web information, can reason
about this information, and thus can provide better support
for interactions with the Web. In fact, the development of
the Semantic Web has a great impact on the future of e-
Learning. Many achievements have been made in creating

standards for Learning Objects. For example, initiatives
such as LOM (Learning Objects Meta-data) [2] IMS [3]
and Ariadne [4] have been highly successful. These
standards shift the focus from the more or less closed e-
Learning environments forward to open e-Learning
environments, in which Learning Objects from multiple
sources (e. g. from different courses, multiple Learning
Object providers, etc.) can be integrated into the learning
process. Learning objects developed and stored at many
different Web locations have a tremendous potential to
benefit e-learning. However, numerous technical issues
must be dealt with before learning objects can be
effectively reused from one situation to the next. Given the
context in which learning objects can be reused on the
Semantic Web, a hotbed of activity has emerged around
how XML content formats and XML-based metadata
systems can support e-learning and instructional
technology on the Web. The XML-based learning objects
should represent complex open object which contains, or
refers to, physical learning resources capable of being
rendered in multiple display formats, with links to one or
more metadata specifications, and perhaps links to other
related learning objects [5]. Ultimately, the conceptual
learning object will contain links to one or more
ontologies that provide sufficient information for reusing
the learning object in different contexts.

However, describing an open learning object that
involves multimedia can be achieved using several
available standards (e.g. MPEG4, MPEG7, MPEG-21,
XHTML, SMIL and SVG). The usage of MPEG
standards proved to be more complex that the other
standards [6]. Realizing the complexity of the MPEG-s
scene description, the other standards took the lead in the
area of developing light weight scene description [7,8].
Actually, by combining SVG with existing Web
technologies like HTML, SMIL, JavaScript, DOM
(Document Object Model), and Java, developers can
create extremely rich lightweight open learning objects [9].

This paper develops an approach to the problem of
generating SVG-based learning objects for composite
mixed-media digital objects by appropriately combining

Developing Lightweight Multimedia Learning
Objects for the Semantic Web

O

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

122

and exploiting existing techniques useful for both client
and server side manipulations of these SVG objects. Two
interesting combinations are particularly useful, the SVG-
JavaScript at the learning object client side and the SVG-
Java at the learning object server side. On one hand, the
new Web browsers supporting the DOM (Document
Object Model), the use of some powerful client-side
scripting, such as JavaScript will add a lot to the
manipulation and interactivity of the SVG DOM structures
[10]. On the other hand, the processing of SVGs at the
server side requires the use of Java. With Batik API [11],
SVG source code can be transferred to a dynamic DOM
structure by reading it from a URI, an InputStream, or a
Reader - using the SAXSVGDocumentFactory. The
following example illustrates how to create an SVG
document:

import java.io.IOException;
import
org.apache.batik.dom.svg.SAXSVGDocumentFact
ory;
import
org.apache.batik.util.XMLResourceDescriptor
;
import org.w3c.dom.Document;

try {
 String parser =

XMLResourceDescriptor.getXMLParserClassName
();
SAXSVGDocumentFactory f = new
SAXSVGDocumentFactory(parser);
String uri = "http://...";
Document doc = f.createDocument(uri);

} catch (IOException ex) {
 // ...
}

Moreover, the Batik API provides several ways to use
an SVG DOM tree. Two modules can be immediately
used to render the SVG document.: (1) the JSVGCanvas
which is a swing component that can display SVG
document, and (2) the ImageTranscoder which is a
transcoder that can take a URI, an InputStream or an SVG
DOM tree and produces a raster image (such JPEG, PNG
or Tiff). Since most of the learning objects on the Web
take the form of visual presentations (e.g., slideshows),
including those used in educational contexts such as
distance learning courses, we will focus on generating
SVG-based learning object presentations.

2. Describing SVG Learning Object
Presentations

There are several applications that can be used to create
slide presentations, but all of them have several
disadvantages that would be interesting to avoid, like
needing a special viewer[12]. Therefore, the presentations
produced by using these tools have a limited portability.
The utilization of standard and open format documents can
solve this problem. SVG, an animation-capable vector
graphics format, can be used to represent such documents.
However, producing a coherent SVG document
representing a complex presentation, likely composed of a
large sequence of slides, is not an easy task. Indeed,
simple SVG editors (e.g. Amaya, EvolGrafiX XStudio 6,
Inkscape Open Source Editor, Jasc WebDraw, Sketsa ,
Sodipodi) cannot be used to generate slide presentations
[13]. Problems will be encountered even with professional
SVG presentation generators like [14]:
1. Dojo Slide Toolkit (http://dojotoolkit.org/).
2. JackSVG(http://titanium.dstc.edu.au/xml/jacksvg/inde

x.shtml).
Such presentation editors do not adhere to the standards
used to describe learning objects metadata. Moreover, the
presentations they generate utilize declarative animation
elements such as the set, animate and mpath elements that
are not well supported by a number of SVG rendering
implementations such as the Apache Batik. Moreover, our
reliance on JavaScript over declarative animation can
reduce the size and complexity of presentation documents.

This section introduces a possible structure for the SVG
document, and presents an interactive tool to create and
edit the SVG slide presentation learning object or LOP for
short. This tool adheres to the CanCore metadata standard
[15] and it has been written in Java to make it platform
independent. The CanCore application profile consists of
eight main categories, 15 "placeholder" elements that
designate sub-categories, and 36 "active" elements for
which data are actively supplied in the process of creating
a metadata record (Figure 1).

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

123

1 general
1.1 identifier
1.2 title
1.3 catalogentry
1.3.1 catalog
1.3.2 entry
1.4 language
1.5 description
1.7 coverage
2 lifecycle
2.1 version
2.3 contribute
2.3.1 role
2.3.2 entity
2.3.3 date
3 metametadata

3.1 identifier
3.2 catlogentry
3.2.1 catalog
3.2.2 entry
3.3 contribute
3.3.1 role
3.3.2 entity
3.3.3 data
3.4 metadatascheme
3.5 language
4 technical
4.1 format
4.2 size
4.3 location
5 educational
5.6 context

5.7 typicalagerange
5.11 language
7 relation
7.1 kind
7.2 resource
7.2.1 identifier
7.2.3 catalogentry
7.2.3.1 catalog
7.2.3.2 entry
9 classification
9.1 purpose
9.2 taxonpath
9.2.1 source
9.2.2 taxon
9.2.2.2 entry
9.4 keyword

Figure 1: Overview of CanCore Metadata elements.

An LOP is generated based upon an XML description
shown in Figure 2. All data describing the presentation is
contained within the <ss:presentation> tag. In this
direction, the CanCore metadata describing the
presentation is placed within the <ss:cancore> tag. We
may set some global properties for the design of the
learning object presentation. For this purpose, we can
place such properties under the <ss:properties> tag. For
simplicity our learning object presentation generator
includes one property that allows us to change the
transition type. Other properties such as font color and
font size can be easily added to our learning object
presentation generator.

<ss:presentation
xmlns:ss='urn:SLIDESHOW:0-395-36341-6'>
<ss:cancore> ... </ss:cancore>
<ss:properties>
 <ss:transition type="fade"
duration="1000" frames="20"/>
</ss:properties>
<ss:slide delay="">
 <ss:titlebox>
 <ss:title>The Title</ss:title>
 <ss:subtitle>Slide 1</ss:subtitle>
 </ss:titlebox>
 <ss:bodybox>
 <ss:point>
 <ss:text>The Text<ss:text>
 <ss:point>...<ss:point>
 ...
 </ss:point>
 ...
 </ss:bodybox>
 <ss:images>
 <ss:image path="picture.jpg" />
 </ss:images>

</ss:slide>
 <ss:slide delay="">
 ...
 </ss:slide>
 ...
</ss:presentation>

Figure 2: The XML LOP Input File.

The <ss:slide> tag can be used to describe a slide. The
slide that will be displayed first in the slideshow should
appear at the top of the document, the second slide next,
and so on. The delay attribute specifies how long the slide
should be displayed if the slideshow is in “play mode”.
Each slide must have a titlebox and may have one
bodybox and\or one image.

The input XML description will be transformed into a
LOP with the document structure shown in Figure 3. The
output LOP will consist of the following components: a
copy of the original input XML document, embedded
JavaScript, and graphical elements defining the controls
and slides of the presentation. An example LOP slide is
shown in Figure 4.

<svg ...>
 <ss:presentation
 xmlns:ss="urn:SLIDESHOW:0-395-
36341-6">
 ...
 </ss:presentation>
 <script type="text/ecmascript" ...>
 <![CDATA[
 ...
]]>
 </script>
 <g id="controls" …>
 <g id="prev" ...> ... </g>
 <g id="next" ...> ... </g>
 <g id="play-pause" ...> ... </g>
 </g>
 <g id="slide1" delay="3000"
opacity="0">
 ...
 </g>
 <g id="slide2" delay="3000"
opacity="0">
 ...
 </g>
 ...
</svg>

Figure 3: The Overall Structure of SVG Learning
Object Presentation.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

124

The opacity attribute of a <g id=”slide#”> element
applies to all child elements of the slide. This attribute
allows the presentation runtime script to display one slide
at a time rather then all of them at once. Each <g
id=”slide#”> element may contain the following elements:

1. A <g id=”titlebox”> element used to group
together all elements needed to render a slide’s
titlebox.

2. A <image> element used to render a base64
encoded jpg image.

3. A <g id=”bodybox”> element used to group
together elements needed to render a slide’s
bodybox.

The most complex of the above three slide components

is the bodybox. The <g id=”bodybox”> element’s <rect>
child defines the box that all text will be displayed within.
All other children are <g id=”textgroup#”> elements. LOP
generator has a point wrap algorithm that is used to split
all points in a bodybox amongst a number of <g
id=”textgroup#”> elements, which are used to group
together a number of points represented by <text>
elements. In addition, it uses a word wrap algorithm to
split a point amongst a number of lines. Each line of a
point is contained within a <tspan> element. The opacity
attribute of a <g id=”textgroup#”> element is of particular
importance. Using this attribute, the presentation runtime
can selectively choose which textgroup to display. Each
<g id=”textgroup#”> element has a delay attribute. The
sum of all textgroup delays should equal the delay of the
slide. LOP generator has an algorithm designed to
determine what percentage of a slide’s total delay will be
assigned to each textgroup.

<g id="slide4" delay="3000" opacity="0">
 <g id="titlebox"
transform="translate(50,10)">
 <rect x="0" y="0" width="924"
height="130" …/>
 <text fill="white" x="178.35" font-
size="65" y="65">
 Introduction to Java </text>
 <text fill="white" x="261.95" font-

size="40" y="120">
 Java is Cross Platform </text>

 </g>
 <image x="50" y="160" width="924"
height="250"

xlink:show="embed"xlink:href="data:;base64,
/9j/4AAQ
 SZJRgABAQEASABI ...

BRRRQUAFFFFRRRQB//"/>
 <g id="bodybox" opacity="1"
transform="translate(50,425)">
 <rect x="0" y="0" width="924"
height="275" …/>
 <g id="textgroup1" delay="2250"

opacity="1">
 <text fill="white" x="50" font-

size="40" y="15">
 <tspan x="50" dy="40">
 Compiles to machine-independent

bytecode
 </tspan>
 <tspan x="50" dy="40">
 that runs on: </tspan>
 </text>
 <text fill="white" x="100" font-

size="40" y="95">
 <tspan x="100" dy="40"> Windows

</tspan>
 </text>
 <text fill="white" x="100" font-

size="40" y="135">
 <tspan x="100" dy="40"> MacOS

</tspan>
 </text>
 <text fill="white" x="100" font-

size="40" y="175">
 <tspan x="100" dy="40"> Linux

</tspan>
 </text>
 <text fill="white" x="100" font-

size="40" y="215">
 <tspan x="100" dy="40"> and more

</tspan>
 </text>
 </g>
 <g id="textgroup2" delay="750"

opacity="0">
 <text fill="white" x="50" font-

size="40" y="15">
 <tspan x="50" dy="40">
 Java has a portable graphics

library </tspan>
 </text>
 <text fill="white" x="50" font-

size="40" y="55">
 <tspan x="50" dy="40">
 Java avoids hard-to-port

constructs </tspan>
 </text>
 </g>

 </g>
 </g>

Figure 4: An Example of an LOP Slide.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

125

3. LOP Runtime Script Internals

Figure 5 describes the embedded JavaScript used to
make a LOP interactive. Class control provides the
interface through which graphical SVG elements can
communicate with the presentation runtime to achieve
tasks such as switching slides, etc. Its overButton method
will change the color of a button to green when the mouse
is on top of that button, as specified via the onmouseover
attribute found on that button’s group element. The
outButton method will change the color of the indicated
button back to blue when the mouse is no longer above the
button, as indicated via the onmouseout attribute. Function
nextSlide is called when the user clicks the next button as
indicated via the onclick attribute of the next button’s
group element. The prevSlide and togglePlay methods are
used in similar ways. The implementations of nextSlide
and prevSlide are very simple. They simply call
setSlideNow with pSlide, which is an index into a data
structure we call the displaylist, either incremented or
decremented.

Figure 5: The presentation runtime architecture.

The displayList, an array of displayable objects, is used
to define the sequence of slide – textgroup pairs that will
be displayed as the presentation progresses, as shown in
Figure 6. Using this data structure, the task of displaying
one slide-textgroup combination and then another is
simplified. For example, to display slide 2, textgroup 1
instead of slide 1, textgroup 1 in Figure 6, the following
code could be used:

displayList[0].display(0);

displayList[2].display(1);

Figure 6: The display list.

Class control utilizes the framework provided by class
transition to animate slide transitions. It must be
initialized with the following information: how long the
transition should take, how many frames the animation
should consist of, a function that will be called each frame
update, a function that will be called to initialize the
transition and finally, a function that should be called
when the transition is done. The last argument, doneFunc,
is always passed the playSlide function of class control,
which will start a timer that upon expiration will cause the
next slide to be displayed if the presentation is in play
mode. Which update and init functions are passed to the
constructor depends on the type of transition desired. Two
transition types exist: fade and update. To see how simple
the definition of these transitions is, please examine their
update function implementations:

function fadeUpdate()
{

 transition.oldSlide.display(1-

(transition.currFrame/transition.numFra
mes));
 transition.newSlide.display(

transition.currFrame/transition.numFram
es);
}
function shiftUpdate()
{
 var inc = (docWidth /

transition.numFrames) *
 transition.currFrame;
 transition.oldSlide.setPos(inc ,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

126

0);
 transition.newSlide.setPos(inc-

docWidth, 0);
}

To begin animating a transition, the start function of class
transition will be called with the old slide’s displayable
object and the new slide’s displayable object as arguments.
This function call will originate from the setSlideNow
function of class control.

4. The LOP Generator

Much of work performed by the LOP Generator
involves the proper placement of text on each slide. The
height and length of all text lines must be known for this
to be accomplished. Therefore, all text must be rendered
so that it dimensions can be retrieved. Necessary
adjustments such as those needed to wrap text can then be
made. This is the main the concept that lead to the
architecture shown in Figure 7. The GUI interface of this
utility is provided by class SVGPresGen. Class svgEditor
is used to perform the sequence of document
transformations needed to produce the output LOM shown
in Figure 8. The transformation process begins when
SVGPresGen’s generateSlideVG method is called. The
following steps are involved in its execution:

• An SVG document containing only the Slide

Generation Script is loaded into the svgEditor.
• A call to addDocumentAsRootChild will add the

input XML document to the SVG document as a child
of the root.

• A call to base64encode will create an SVG image
element for each image specified in the input XML
document. Each <image> element will be placed in
the document as a child of its input <ss:image>
element.

• Method setDocument of svgCanvas will be called
with the SVG document as an argument, causing the
document to render. This causes the Slide Generation
Script shown in Figure 9 to begin executing.

• When this script is done, it will be replaced with the
Runtime Script.

• A call to outputDocument outputs the LOP to a file.

+svgEditor(in path : String)
+addDocumentAsRootChild(in path : String)
+base64encode()
+replaceScript(in path : String)
+outputDocument(in path : String)

+doc : Document
-root : SVGElement

svgEditor

+SVGPresGen()
+main(in args : String[])
+generateSlideVG()
+openLocalSVG()

-svgCanvas : JSVGCanvas
SVGPresGen

SVG Document

Slide Generation
Script

Input XML
Document

Output
ElementsRuntime Script

Figure 7: The LOP Generator General Structure.

Figure 8: LOP document transformations sequence.

Figure 9 shows the high-level structure of the Slide
Generation Script. An object of class presentationFactory
instigates the presentation generating process when its
constructor is called. Throughout this process, SVG
elements will be created using class elementFactory.
Class presentationFactory also relies on the
processBodyBox function object, which is designed to
create a bodybox.

Upon construction, the presentationFactory object will
iterate through all <ss:slide> elements found in the input
document. For each slide:

1. A slide group element will be created via a call to

elementFactory’s createSlideGroup method.
2. processImage, processTitleBox, and processBodyBox

will each be called in turn. Each of these methods
will be passed the slide input data (stored within an
<ss:slide> element) as its first argument and the slide
group element created in step 1 as its second element.

After all slides have been processed, the scripts job is done.
Image processing and titlebox processing are very simple,
as an examination of Figure 4 should imply. The most
complex processing occurs when a slide’s bodybox is
created, a task carried out by the processBodyBox
function object. This function object is designed to
recursively process all input <ss:point> elements.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

127

Figure 9: The Slide Generation Script.

The processBodyBox constructor gets the process started
by passing each top-level point to the recursive
processPoints function. Its dx parameter defines the
number of pixels the point should be indented. Function
processPoint will carry out the following steps to process a
point:

• The dx parameter will be incremented by some

amount. This is needed to cause indentation of
subpoints.

• stripws will be called to normalize the white space
found in the text string of the point (more detail on
this method later).

• An SVG text element representing the string will
be created and appended to the current text group.

• wrapPoint will be called to split the contents of the
text element amongst a number of tspan elements.
The dx parameter is needed to calculate how much
horizontal space is available for each line of the
point. The dy instance variable of processBodyBox
stores the vertical position of the next line to be
drawn. The wrapPoint algorithm will increment it
by the font height each time a new line is used.

• If the sum of all line heights exceeds the height of
the bodybox, a new textgroup is created. The most
recently created point is then moved to this
textgroup (bodybox wrap).

• processPoint calls itself to process each subpoint.
• The algorithm will terminate when no subpoints

remain.

For simplicity, the above description does not include

steps needed to calculate the delay each textgroup should
receive. Each time a new textgroup is needed, an entry for
the new textgroup is created in the textgroupList. We
store the height and a reference to the group tag of each
textGroup within the textGroup list. After all point
processing has completed, this data structure is used to
distribute the total delay of a slide across the textgroups
belonging to that slide. We define textGroupLineHeight as
the number of lines in a textgroup multiplied by the height
of the lines (all lines have the same height). We define
slideLineHeight as the sum of all text group line heights.
Based upon these two variables as well as the slide delay
specified by the user, the delay a textGroup should receive
is approximately the following:
textGroupDelay = (textGroupLineHeight/slideLineHeight) *
slideDelay.

Although the above algorithm is important, it isn’t by
any means as important as the word wrap algorithm
performed by the wrapPoint method. This algorithm
assumes that each word in a line of text is separated by no
more than one space. This assumption is valid due to the
preprocessing performed on all input strings by the stripws
method. The stripws method will strip all white space
from the front and ends of a text string and all white space
between words except for one space. This processing is
needed because Apache Batik will render a string of text
as if it had been normalized in the way described above.
However, when ask for the length of a string, it still
returns the length of the non-normalized string, which
causes problems for our word wrap algorithm.

The wrapPoint method is passed an SVG text element

and the amount a point will be indented as arguments. It
relies on the following methods provided by the
SVGTextContentElement interface defined in the SVG
specification: getComputedTextLength() and
getSubStringLength(). The general idea behind the
algorithm is as follows. The algorithm begins by
calculating the maximum pixel length (mpl) that each
line of this point can have based upon the width of the
bodybox and the dx parameter. Next, the algorithm
checks if the total pixel length of the input string (tpls)
exceeds mpl. If no, word wrap is not needed and the
algorithm will be terminated. If yes, more processing is
required. The algorithm begins iterating over all the
characters in the input string. If a single space character is
found, the algorithm will check whether or not the length
of the string up to the space exceeds mpl. If it does, the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

128

string must be broken at the space which occurred before
this space. If it does not, search for next space, and so on.

5. Conclusion

For a long time now, it has been known that multimedia
learning objects have the potential to support a wider
group of learners by providing content in a medium that
supports their strengths (e.g. a visual learning style). The
difficulty has been that multimedia when used
inappropriately can hinder a learner, by possibly providing
too complex learning objects. This article presented a tool
and a technique for generating multimedia learning objects
in the form of a lightweight SVG presentation that enables
content experts to easily combine text and images into one
synchronized learning object. Users do not need to
perform any programming tasks, but instead make use of a
graphical user interface to generate the learning object (see
Figure 10). The utility adheres to the CanCore metadata
and can generate multimedia learning objects that can be
easily stored and retrieved by major learning objects
repository networks like eduSource
(http://www.edusource.ca/). This work is part of an
ongoing research at Lakehead to develop an ontology
based search engine for multimedia learning objects. This
work is supported by the first author NSERC grant.

Figure 10: Displaying a Generated LOP Presentation.

References
[1] Permanand Mohan, Christopher Brooks, "Learning Objects

on the Semantic Web," p. 195, Third IEEE International
Conference on Advanced Learning Technologies
(ICALT'03), 2003

[2] LOM,
http://en.wikipedia.org/wiki/Learning_object_metadata

[3] IMS, http://www.imsglobal.org/metadata/
[4] Jehad Najjar, Erik Duval, Stefaan Ternier, Filip Neven,

TOWARDS INTEROPERABLE LEARNING
OBJECTREPOSITORIES: THE ARIADNE EXPERIENCE,
Proc. IADIS Int’l Conf. on WWW/Internet 2003, Vol. I, P.
219-226

[5] Othoniel Rodriguez, Dr. SuShing Chen, Dr. Hongchi Shi,
Dr. Yi Shang, Open Learning Objects: the case for inner
metadata, The Eleventh International World Wide Web
Conference, 7-11 May 2002, Honolulu, Hawaii.

[6] ISO/IEC JTCl/SC29/WG11, “Call for Proposals for
Lightweight Scene Representation,” MPEG Document
N6337, March 2004.

[7] J. FIAIDHI, Guo T. Song, S. MOHAMMED, and Nathan
Epp, Developing a Collaborative Multimedia mLearning
Environment, 10th western Canadian Conference on
Computing Education, WCCCE 2005, May 5-6, 2005,
University of Northern British Columbia, UNBC, Prince
George, BC, Canada.

[8] MOHAMMED, S and FIAIDHI, J., Developing Secure
Transcoding Intermediary for SVG Medical Images within
Peer-to-Peer Ubiquitous Environment, IEEE 3rd Annual
Conference on Communication Networks and Services
Research Conference (CNSR2005), Halifax, Nova Scotia,
Canada, May 16 - 18, 2005.

[9] Nicholas Chase, JavaScript and the Document Object
Model, IBM Research Journal, 01 Jul 2002 http://www-
128.ibm.com/developerworks/web/library/wa-jsdom/

[10] http://www.w3.org/TR/SVG/svgdom.html
[11] http://xmlgraphics.apache.org/batik/
[12] Anita Petrinjak and Rodger Graham, Creating Learning

Objects from Pre-Authored Course Materials:
Semantic Structure of Learning Objects — Design and
Technology, Canadian Journal of Learning and Technology,
Volume 30(3) Fall / automne 2004

[13] Tobias Hauser, SVG Editors, SVG Open Conference,
Tokyo, Japan · Sept 7-10, 2004

[14] Raul Casado, Juan Carlos Torres, SVG Slide Presentation
Editor, SVG Open Conference, Tokyo, Japan · Sept 7-10,
2004.

[15] Norm Friesen, Anthony Roberts and Sue Fisher, CanCore:
Metadata for Learning Objects, Canadian Journal of
Learning and Technology, Volume 28(3) Fall / automne,
2002

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

129

Jinan Fiaidhi received her PgD and PhD in
Computer Science from England UK (Essex
and Brunel Universities) during 1983 and
1986 respectively. She served as faculty
member at various universities including
Philadelphia, Applied Science, Sultan
Qaboos and Lakehead Universities. Since
January 2002, she is with Lakehead
University, Ontario/Canada. Currently she

holds the rank of Professor and the designates of MBCS and
I.S.P. of Canada. Her research interests include Learning Objects,
Multimedia/Virtual Environments and Peer-to-Peer Learning.

Sabah Mohammed received his MSc and
PhD in Computer Science from England UK
(Glasgow and Brunel Universities) during
1981 and 1986 respectively. He served as
faculty member at various universities
including Amman, Philadelphia, Applied
Science, Oman HCT and Lakehead
Universities. Since January 2002, he is with
Lakehead University, Ontario/Canada.
Currently he holds the rank of Professor and

the designate of MBCS. His research interests include Image
Segmentation, Image Protection and Open Source Multimedia.

Marshall Hahn is HBSc fourth year
Computer Science student. He is conducting
the research in this article as part of his
NSERC grant on multimedia programming.

