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Summary 
Make a decision has often many results and repercussions. These 
results do not have the same importance according to the 
considered phenomenon. This situation can be translated by the 
introduction of the cost concept in the learning process. In this 
article, we propose a method able to take into account the costs 
in the automatic learning process. We focus our work on the 
misclassification cost and we use decision trees as a supervised 
learning technique. Promising results are obtained using the 
proposed method. 
Key words: 
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Introduction 

Supervised learning aims to build a prediction model 
able to predict the class of an object starting from its 
descriptive features. Several supervised learning methods 
were proposed like decision trees [2]. The quality of the 
prediction model depends on several parameters as its 
interpretation facility, its success rate, and its complexity. 

Making a decision has after-effects. These after-
effects can be more or less serious according to the 
considered phenomenon. For example, in the medical 
domain, classify a positive diagnostic as a negative one 
has more serious after-effects than making the opposite. 
Unfortunately, in the traditional learning methods, all the 
decisions are considered to have the same importance. To 
take into account this kind of situation, the cost sensitive 
learning was introduced. That is, for a learning, we can 
associate several types of cost. Turney [15] has identified 
ten, quote for example, the misclassification cost [2], and 
the test cost. 

In this article, we are interested in the cost sensitive 
learning and we deal especially with the misclassification 
cost. So, we propose a method, based on decision trees, 
able to integrate the real cost. For that, we intervene on the 
various levels of the decision tree construction process. 
Throughout this article we will use the term “cost” to 
indicate the “real misclassification cost”. 
The rest of this article is organized as follows: the 
following section introduces the notations used throughout 
this paper as well as a brief description of the related work. 
After that, we introduce the basic version of our decision 

tree based learning method in Section 3. In Section 4, we 
give the improved version of our learning method for 
considering the costs. Section 5 presents the experiments 
performed to validate our approach. The application of the 
method on mammograms classification is discussed in 
Section 6. Finally, we conclude and give future directions 
in Section 6. 

2. Notations And Related Work 

Consider a set of data Ω  composed by n items 
nIII ,...,, 21 , nI  described by p features pVVV ,...,, 21 . In 

this article we focus exclusively on the two classes 
problems. We note these two classes 1C  and 2C . The 
total misclassification cost Θ of a prediction model Φ  
obtained using a given learning method, is calculated 
starting from the confusion matrix fM  (Table 1) 

obtained after validation (either traditional or cross 
validation), and the costs matrix cM  (Table 2). 

 '
1C  '

2C  

1C  11n  12n  

2C 21n  22n  
 

Table 1. Confusion Matrix 

A confusion matrix contains an account of all the 
items of the dataset according to the predicted class by the  
given learning algorithm. So, '

1C  and '
2C  represent the 

predicted classes. The number of objects, actually 
belonging to class iC 2,1=i and whose model predicts 

their membership in the class '
jC 2,1=j  is ijn . 

 '
1C  '

2C  

1C  0  12c  

2C 21c  0  

Table 2. Costs matrix 

The costs matrix represents the misclassification costs 
ijc  which is the related cost of predicting, for an object 
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actually belonging to class i, to be an object belonging to 
the class j. The total misclassification cost is given by the 

following equation: 21211212 ncnc ×+×=Θ  

 

  
Figure 1. Example of a decision tree obtained by Basic Decision Tree Method 

 
Weaker is Θ , better is the prediction model.  
Several work, allowing to take into account the real 

misclassification cost was proposed. We can classify these 
methods into three main categories: the consideration of 
the cost before the learning process (handling the learning 
set for example), the consideration of the cost during the 
learning process (the use of specific measures, post-
pruning, etc.), and finally, the consideration of the cost 
after the learning process (decision rules manipulation for 
example). 

In the case of the costs consideration before the 
learning process, if Ω  is a balanced data set (50% of the 
objects belong to the class 1C , and 50% of the objects 
belong to the class 2C ), then the prediction probability of 
the class 1C  as well as that of the class 2C  will be about 

0.5. If the misclassification cost of 1C  ( 12c ) is more 

significant than the misclassification cost of 2C  ( 21c ), it 
will be necessary to increase the probability of predicting 
the class 1C  in order to reduce the total cost. An intuitive 
and simple solution is to increase the number of objects 
belonging to the class 1C  in the learning set [16]. So, to 
have a probability p. of predicting the class 1C , it is 
necessary to multiply its initial objects count by the term 

)1( *

*

p
p
−

[2]. In the same category we can quote 

Metacost[3]. 
In the decision trees based methods context, the goal 

is to build, in an iterative manner, a succession of 
partitions which lead to a good model. In order to measure 
the quality of each partition, one can use an information 
measurement like the Shannon’s entropy [13]. In order to 
take into account the cost, certain authors propose other 
costs sensitive measures like the proposal of Dummond 
and Holte in [4]. A cost sensitive pruning [1] can also give 
very interesting results by combining it with a classical 

learning or with a cost sensitive learning. Other methods 
make it possible to take into account the cost after the 
learning process. The goal is to handle the obtained 
prediction model in order to reduce the total cost [10] [6] 
[7]. 

3. BASIC DECISION TREE METHOD 

The general principle of our method is rather similar 
to that of the other decision tree based methods. In fact, 
starting from the main partition 0P , representing the root 

0S of the tree and containing all the objects of Ω , the 
features pVVV ,...,, 21  are used to build, in an iterative way, 
a succession of increasingly detailed partitions of Ω . 

The described tree in Figure 1 generates a partition 
1P  of four final nodes 5421 ,,, sandsss . The node 4s  

corresponds to the objects of Ω  with the modalities 
{ }baV ,1 =  and 21 ≤V . The transition from a partition tP  

to another partition 1+tP  is performed by splitting a node 

kS  using the feature iV  which generates the partition 
with the best quality. The tree construction process stops 
when no improvement (partition having better quality) can 
be obtained. 

3.1 Association and selection in Basic Decision Tree 
Method 

In order to produce a decision tree with a low 
complexity and a good quality, we adopt a popular 
principle used in ChAid[9] and CART [2]. This principle 
consists of gathering the values of the predictive features, 
having the same behaviour with respect to the predictive 
class during the node splitting. 

The association principle, FaUR, used in our method 
is described in [5]. So, We start from the finest partition, 
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we seek in each iteration, the two best candidates columns 
to the fusion. These two columns are those whose fusion 
maximizes the total value st  of Tschuprow measure [14] 
[17] based on the Chi2 measure. The algorithm stops when 
no fusion can increase the value of st . 
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In the case of a quantitative feature, we start by 
sorting the values of the feature. Also, in this case, only 
the adjacent columns can be merged in order to obtain 
disjoints intervals.  

The optimized version of FaUR [5] makes it possible 
to perform associations with a complexity of O(l log l). 
This association method is applied to the contingency 
tables of all the features. As a finality, we select the 
feature jV  maximizing the st value of its contingency 

table. 

3.2 Stopping Criteria 

The tree construction (nodes splitting) is stopped if 
one of the two following conditions is satisfied:  

- Minimum objects count in a node: We admit 
that a rule obtained from a leaf node is valid 
only if it is checked by a minimum number of 
objects (effmin). In other words, a leaf node 
whose minimum object count, of the dominant 
class, is lower than effmin will not be able to 
produce a valid rule. From that, any node which 
do not respect this constraint will not be 
developed. This is called the pre-pruning 
process. 

- Node homogeneity: A node kS is considered to 
be homogeneous if it contains only objects 
belonging to the same class iC . In this case, 

any node obtained from the splitting of kS will, 

automatically, have the same conclusion as kS , 

i.e. iC . Thus, it is useless to continue the 
splitting of such a node. 

3.3 Basic Decision Tree Method Algorithm 

Algorithm 1 summarizes the operations performed in 
the proposed method. 

Obtaining the rules starting from a decision tree is 
made on the decision tree’s leaves. Let us recall that a rule 
is composed by a conjunction of conditions and a 
conclusion. 

The conditions are obtained by traversing the tree 
from the root to the leaves, each traversed node brings a 
condition to the rule. A conclusion generated by a leaf 
node is considered as valid if the minimum object count 
constraint is satisfied (the object count of the dominant 
class is higher than the predefined threshold). In the 
opposite, the conclusion is determined by the parent node. 

 

Algorithm 1. Basic decision tree method algorithm 

Consider the example of Figure 1. If effmin = 25, 
then the rule generated by the node 5S  will conclude on 

1C  because this node respects the minimum objects count 
constraint. However, the conclusion of the rule generated 
by the node 4S inherits from that of its parent node ( 3S ) 
because it does not respect the minimum objects count 
constraint. The application of the described stages 
produces a decision tree having a rather similar aspect to 
the classical decision trees. In the following, we’ll 
introduce our main contribution for the consideration and 
the integration of the costs in the learning process by 
extending the above described method. 

L : set of free nodes 
A = V1, . . . , Vp : set of features 
Div(k, j) : features obtained after splitting Sk with Vj ; 
L = S0 
while (L ≠ ∅ ) do 

Let Sk ∈ L 
if ((Sk ≠ homogne) and (Sk ≠ effmin)) then 

tsmax = −1; 
best = −1; 
for i = 1 to p do 

Get(Ti), Ti : the contingency table of Vi; 
FaUR(Ti); 
tsi = ts(Ti) 
if (tsi > tsmax) then 

best = i; 
tsmax = tsi; 

end if 
end for 
Split Sk with Vbest 
L = L + Div(k, best) 

end if 
L = L − Sk 

end while 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006 
 
 

 

133

4. COST SENSITIVE DECISION TREE 

The final goal of our work is to propose a learning 
algorithm sensitive to the real misclassification costs. As 
we quoted it before, this can be carried out on three levels: 
before the learning process, during the learning process, 
and after the learning process. In what concern us, we do 
not intervene before the learning, i.e. no data handling is 
made. 

Using the decision trees as a learning method, our 
contribution intervene at the construction level of the tree, 
at the post-pruning level, and at the generation of the rules 
level.  

More concretely, the idea is to intervene, first, locally, 
on the node level during the processing of the contingency 
tables, during the selection of the splitting features, and 
during the pre-pruning. After that, we act on a global level, 
and this, during the pruning (post-pruning) and during the 
decision rules generation. 

4.1 Local level 

4.1.1 A new measure for contingency table 
association and splitting feature selection 

The features’ modalities association in the contingency table as 
well as the choice of a splitting feature depend on the value of 
the Tschuprow measure. 
These two operations aim to maximize the value of this 
measure. However, the problem related to this measure is 
that it considers the costs of the classes equivalent and are 
equal to 1. In other words, it does not take into account the 
affected costs to the classes. 

In order to consider the costs, we propose a new 
quality measure, ttcos , based on the Tschuprow measure 
and introducing a new element representing the cost. The 
measure is illustrated by the following formula: 

Etst t −=cos  

{
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4.1.2 Pre-pruning 

This task is ensured by the introduction of the 
minimum objects count concept. We already introduced a 
first vision of the minimum objects count concept (effmin) 
in the previous sections. This concept translates the 
conditions of the decision-making at a given node. The 
principle is that a conclusion on a class 1C at a node kS  
must be checked by a preset minimum object count by 
disregarding the costs. 

Let us consider the two classes 1C and 2C . If 12c is 

higher than 21c , this means that a bad decision on 2C  

(classify an object belonging to 1C  in 2C ) has more 

after-effects than a bad decision on 1C  (classify an object 

belonging to 2C  in 1C ). We translate this by a stronger 

penalization of the decision-making on 2C . This 
penalization can be translated by the fact that the 
necessary objects count for a conclusion on 2C  must be 

higher than that for the class 1C . 
In order to integrate this concept in our method, we 

introduce an additional minimum objects count (effmin2). 
This concept corresponds to the minimum objects count 
that a rule concluding on 2C  must satisfy to be considered 
as valid. 

To penalize the class 2C , we set its own minimum 
objects count (effmin2). Intuitively, the minimum objects 
count assigned to each class is inversely proportional to its 
cost. 

We illustrate this concept on the example of Figure 2 
where we consider effmin( 1C ) = 10 and effmin2( 2C ) = 

25. So, splitting the node 1S will continue since we have a 

possibility of obtaining nodes that will conclude on 1C  

and respecting effmin although 1S  does not respect 

effmin2. In the node 2S , the number of objects belonging 

to the class 2C  is lower than effmin2. Split this node 

cannot produce any more nodes concluding on 2C  while 
respecting the effmin2 constraint. For that, the splitting is 
not useful any more, it is then stopped. With regard to the 
node 3S , the class 1C  violates the minimum objects 
count constraint what prevents the continuation of the 
splitting task. 
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4.2 Global level 

4.2.1 Post-pruning 

The post-pruning is a significant operation and is 
necessary to obtain a tree with a rather good quality and to 
prevent a high complexity of the tree. Indeed, some leaves 
of the tree can sometimes be useless (too specialized tree). 
In such a situation, a post-pruning is applied. 

 

 

Figure 2. Illustration of the pre-pruning principle 

At this level, we consider the real cost testθ , 
calculated on a test data set, combined with the complexity 
of the tree )( countleaves×=αππ  ( :α predefined by the 
user) to perform the pruning. The goal is to minimize the 
total cost, πθθ += testtot . 

4.2.2 Generation of the rules 

Consider the decision tree illustrated in Figure 3 with 
the following misclassification costs: 512 =c  and 121 =c . 
 

 
Figure 3. Illustration of the rules generation principle 

Classically, if the minimum objects count constraint 
is 15min =eff  objects, then among the rules we can 
obtain: 

- 222111 )()(: CClassTHENvVANDvVifR ===  

- 123212 )()(: CClassTHENvVANDvVifR ===  
In the standard case, we notice that the two 

conclusions were taken with the same number of objects 
(15 objects in this case). This means that we have the same 
probability to do an error in both cases. However, by 
taking into account the costs, the consequences of the rule 

1R are more important than the consequences of the rule 

2R . In this case, it is necessary that the rules concluding 

on 2C  have less probability of doing a mistake on the 

class 1C . 
By considering the previous example, if one sets the 

minimum objects count related to 2C , effmin2 = 30 

objects while leaving objects count related to 1C  (effmin 
= 15), then the conclusion of the rule R1 will be not valid. 
In this case, we consider that the conclusion of the rule R1 
inherits from the conclusion of the parent node. Thus, We 
will have the two following rules: 

- 122111 )()(: CClassTHENvVANDvVifR ===  

- 123212 )()(: CClassTHENvVANDvVifR ===  
 So, in order to introduce the costs for the decision-

making in a node, we use two different minimum objects 
count: The first one is used to make a decision on 1C , and 

the second one is used to make a decision on 2C . 
By taking into account the presented elements in this 

paper, we integrated the cost concept in the decision tree 
construction process. The suggested method makes it 
possible to support a class having a high cost, and also 
makes it possible to keep a good quality of the tree in 
order to prevent the loss of the decision on the other class. 
The following section introduces the performed experiments to 
validate the proposed approach. 

5. EXPERIMENTS AND RESULTS 

5.1 Parameters Evolution 

Setting up the initial values of the parameters is often 
problematic for the user. In our case, the second minimum 
objects count (effmin2) parameter initialization can be 
difficult. In order to give an idea on the possible values to 
set for this parameter, we will give the evolution and the 
possible relation between the different parameters. 
To perform these experiments, we used breast-cancer data set 
described in [12]. We balanced this data set in order to have the 
same decision probability at the beginning of the evaluation. The 
general principle of the tests is as follows: 

we make correspond for each cost various values of 
minimum objects count (effmin2). For the two test series1, 
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we set the cost 12c  of the class 1C  at 1. We vary the cost 

of the second class 2C  using values from 5 up to 150. 

Also, for each value of 21c , we vary effmin2 from 5 up to 
150. effmin as for it is defined to 5 for all the experiments. 
We recover at each iteration, the obtained gain. 

To show the interest of the method, we made the tests 
in the first case by supporting class 1 ( 11 =C , 22 =C ) 

and in the second case by supporting the class 2 ( 21 =C , 

12 =C ). Curves of figures 4 and 5 show the obtained 
results. 

 

 

Figure 4. Evolution of the gain according to the cost 
and the minimum objects count for the class C2 = 1 

 

 

Figure 5. Evolution of the gain according to the cost 
and the minimum objects count for the class C2 = 2 

We can notice that the curves have approximately the 
same behaviour for the two tests series (for the two 
classes). Globally, one can say that the minimum objects 
count depends on the associated cost to a class. Indeed, 
We notice that the obtained gain, for a given cost, 
increases by increasing effmin2. However, from a certain 

value of effmin2, the gain does not increase any more and 
can even be deteriorated (Figure 5). 

5.2 Tests and results 

For the effective evaluation, we took datasets from 
the UCI Irvine repository [12], and we use the following 
ones: Australiancredit, Breast-Cancer, Heart and White-
House-Votes-84. These data sets are two classes problems. 
We balanced the datasets by taking the totality of the 
objects of the class having less objects count. 

We performed three tests series on each data set and 
on each class. The three tests series correspond 
respectively to costs 5, 10 and 15. Also, we used three 
methods: C4.5 [11], BDTM, and CSDTM. For CSDTM, we 
use effmin2 with the values 5, 10 and 15. Table of Figure 8 
(in the end of this paper) summarizes the obtained results 
in term of real misclassification cost. 
Initially, we can affirm that our initial method offers better 
results compared to C4.5, for these datasets. In addition, 
the CSDTM method makes it possible, in the majority of 
the cases, to reduce the total cost. Certainly, the cost does 
not decrease for all the effmin2’ values (heart, 21c = 15, 

12 =C , effmin2 = 15), but there is, at least, a value of 
effmin2 for which the cost decreases. 

These results show certainly the utility and the 
interest of the method. In the next section, we describe and 
discuss an application of the suggested method on 
mammograms classification. 

6. MAMMOGRAMS CLASSIFICATION 

6.1 Description of the database 

.We used a data set issued from the 
DDSM(DIGITAL Database for Screening Mammography) 
of the University of the South Florida [8]. This database 
includes 2620 breast cancer cases representing malignant 
and benign cancers (cf. Figure 6). Each mammogram was 
studied by a doctor and zones comprising cancerous zones 
are identified. 

 

  
Figure 6. Example of the studied mammograms 
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6.2 Processing the database for features extraction 

In order to study this database, each mammogram is 
divided into several circles of equal sizes allowing to 
cover the totality of the mammogram (cf. Figure 7). Then, 
we extract from each circle some characteristics 
corresponding to the colour histogram (256 features). 
Thus, each circle will be considered as an item (object). If 
the circle crosses the cancerous zone, then it will be 
marked as a malignant item (Class=malignant), and if its 
not the case it will be marked as a benign item 
(Class=benign). Thus, our target (class) feature will have 
two possible values: benign and malignant. At the end, we 
consider a dataset with 12.417 items. 

 

 
Figure 7. Processing of the mammograms 

6.3 Costs introduction 

The bad classification of a malignant circle is more 
serious than a bad classification of a benign circle. In 
order to decrease the number of bad classifications of the 
“malignant” items, we will apply the proposed method. 

A cross validation (10 iterations with a training on 
90% circles and a validation on the 10% of the remaining 
circles) made using the basic decision tree method (costs 
of bad classifications = 1) give the following confusion 
matrix (cf. Table 3). 

 
 Benign Malignant 
Benign 9911 2134 
Malignant 36 336 

Table 3. confusion Matrix obtained using 
Arbogodai[17] 

We will perform series of tests in order to observe the 
evolution of the bad classifications on the class 
“malignant” according to the misclassification cost. Also, 
we will show the interest of using a measure including the 
cost during the selection of the best splitting feature at 
each node and during the association of the features 
modalities. 

An effective method should decrease the number of 
misclassification on the class “malignant” if the cost of 
this bad classification increases. Thus, we distinguish 
three stages: 

- In the first stage, we will use the standard version 
of Tschuprow measure during the features’ 
modalities association and the proposed version 
of Tschuprow during the best splitting feature 
selection. Any increasing of effmin2 will be 
performed. 

- In a second stage we introduce the cost at the 
selection time (costS) or during association 
(costA) while defining effmin2 to 20. 

- In the last stage, we introduce the cost at the 
selection and the association levels while 
increasing effmin2. 

Step 1 : effmin2=2 and we vary the 
misclassification cost of malignant circles during the 
selection stage only. We obtain the results described into 
table 5 and 5 respectively. 

 
 Benign Malignant 
Benign 10065 1980 
Malignant 46 326 

Table 4. Confusion matrix with CostS=5 

 Benign Malignant 
Benign 9938 2107 
Malignant 37 335 

Table 5. Confusion matrix with CostS= 100 

We note a deterioration of the results. Indeed the 
number of miss classifications of the malignant circles 
increases. These results confirm the previously obtained 
ones: Taking into account the costs in the used measure is 
not enough to decrease the misclassification rate while 
having effmin = effmin2. 

 
Step 2 : effmin2=20 and we vary the 

misclassification cost of the malignant circles. 
By defining effmin2 to 20 and increasing the cost, we 

obtain the results of tables 6, 7, 8 and 9 respectively. 
 

 Benign Malignant 
Benign 8300 3745 
Malignant 11 361 

Table 6. Confusion matrix with CostS=5 

The obtained results show a reduction in the number   
malignant circles bad classification when increasing 
effmin2 and costS/costA. 
 

 Benign Malignant 
Benign 7802 7243 
Malignant 8 364 

Table 7. Confusion matrix with CostS=100 
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 Benign Malignant 
Benign 8617 3428 
Malignant 12 360 

Table 8. Confusion matrix with CostA=5 

 Benign Malignant 
Benign 8175 3870 
Malignant 11 361 

Table 9. Confusion matrix with CostA=100 

 Benign Malignant 
Benign 9252 2793 
Malignant 23 349 

Table 10. Confusion matrix with Cost=5, effmin2=5 

 
Step 3: We vary effmin2 and the misclassification 

cost of the malignant circles. 
By increasing effmin2, costS (=cost) and costA 

(=cost), we obtain the results showed in tables 10, 11, 12, 
13, 14, and 15 respectively. 

 
 Benign Benign 
Benign 8684 3361 
Malignant 17 355 

Table 11. Confusion matrix with Cost=10, effmin2=10 

 Benign Malignant 
Benign 8187 3858 
Malignant 14 358 

Table 12. Confusion matrix with Cost=10, effmin2=20 

 Benign Malignant 
Benign 7466 4579 
Malignant 8 364 

Table 13. Confusion matrix with Cost=100, effmin2=20 

 Benign Malignant 
Benign 7274 4771 
Malignant 4 368 

Table 14. Confusion matrix with Cost=1000, 
effmin2=20 

 Benign Malignant 
Benign 6568 5477 
Malignant 3 369 

Table 15. Confusion matrix with Cost=1000, 
effmin2=50 

 
 
 
 

 Benign Malignant 
Benign 5320 6725 
Malignant 0 372 

Table 16.  Confusion matrix with Cost=1000, 
effmin2=60 

The obtained results show clearly the interest of the 
proposed method. So, we can conclude from that, that 
increasing the misclassification cost of the malignant 
circles and effmin2 involves systematically a reduction in 
the misclassification rate of the malignant circles. Note 
that the objective of the application was to reduce the 
misclassification cost of malignant items what is done 
successfully (See Table 16). 

7. CONCLUSION AND FUTURE WORK 

 
The cost sensitive learning is a very significant 

problem in the machine learning community. Several work 
was devoted to this subject. In this work, we were 
interested in the misclassification and used the decision 
trees like learning method. We proposed a method able to 
take into account the misclassification cost in the various 
steps of the decision tree construction process while 
keeping a good quality of the tree. The major contribution 
of this work is, certainly, the intervention on the various 
levels of the learning process (decision tree construction). 
The performed tests show very interesting results. 

As future work, we plan to find an automated manner 
for initializing the effmin2 parameter. Also, we plan to 
extend the method to multi-classes datasets.  
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.

 
     CSDTM 

Cost Dataset C2 C4.5 BDTM effmin2=5 effmin2=5 effmin2=5 
Australian 1 331 298 217 192 194 
Australian 0 311 314 276 279 266 

Breast 2 62 80 87 76 76 
Breast 1 70 88 50 49 56 
Heart 1 223 114 170 158 156 
Heart 2 251 162 143 133 140 
House REPUBLICAN 64 35 35 35 35 

5 

House DEMOCRAT 80 55 55 55 55 
Australian 1 611 543 453 404 326 
Australian 0 566 579 479 380 315 

Breast 2 112 145 155 115 115 
Breast 1 130 163 55 56 66 
Heart 1 403 199 268 202 195 
Heart 2 466 307 255 227 230 
House REPUBLICAN 114 60 60 60 60 

10 

House DEMOCRAT 150 105 105 105 105 
Australian 1 891 788 631 559 470 
Australian 0 821 844 585 412 284 

Breast 2 162 210 180 180 188 
Breast 1 190 238 90 62 71 
Heart 1 583 284 358 265 248 
Heart 2 681 452 382 318 320 
House REPUBLICAN 164 85 110 100 100 

15 

House DEMOCRAT 220 155 155 155 155 

Figure 8. Results on some UCI Irvine datasets. 
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