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Summary 
In this paper, a generalized model of Cohen-Grossberg 
neural networks (CGNNs) with time-varying delays and 
reaction-diffusion term is investigated. By constructing 
suitable Lyapunov functional, inequality technique 
and M -matrix theory, some sufficient conditions for 
global exponential stability of generalized CGNNs with 
time-varying delays and reaction-diffusion term are 
obtained. An examples are given to show the effectiveness 
of the obtained results. 
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1. Introduction 

In 1983, Cohen and Grossberg studied the following 
neural networks (see [1]), which is described by the 
ordinary differential equations: 
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for mi ,,2,1 L= , where ix denotes the state variable 

associated with the ith neuron, ia  represents an 

amplification function, ib  is an appropriately behaved 

function, and 2≥m  is the number of neurons in the 
network. mmijtT ×= )(  denotes the mm× connection 

matrix, which tells how the neurons are connected in the 
network, and the activation functions )( jj xS  show how 

neurons respond to each other, and iJ  denotes the ith 
component of an external input source introduced from 
outside the network to the cell i. This type of network has 
been widely studied in recent years and has been found 
applications in many areas. 

The systems (1) are usually called as Cohen-Grossberg 
neural networks (CGNNs), clearly, the CGNNs include 
the well-known Hopfield neural networks (see [2,3,5]): 
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Due to their promising potential applications in areas 
such as pattern recognition and optimization. The network 
(1) have attracted increasing interest in scientific 
community, see, for example, [6,10-12,15-20,23,25,26] 
and references cited therein. 

In reality, time delays inevitably exist in biological and 
artificial neural networks due to the finite switching speed 
of neurons and amplifiers. It is also important to 
incorporate time delay in various neural networks. In 
recent years, there exist some results on global 
asymptotical stability, global exponential stability and 
periodic solutions for the neural networks with constant 
delays or time-varying delays (see [4,6-26]). However, the 
diffusion phenomena could not be ignored in neural networks 
and electric circuits once electrons transport in a nonuniform 
electromagnetic field. Hence, it is essential to consider the 
state variables are varying with the time and space 
variables. The neural networks with diffusion terms can 
commonly be expressed by partial differential equations. The 
study on the stability of reaction–diffusion neural networks, for 
instance, see [21-24], and references therein. 
In this paper, we intend to study the global exponential 
stability of generalized CGNNs with reaction-diffusion 
terms and time-varying delays in a very general setting. 
Under quite general conditions, we apply the idea of 
vector function, M-matrix theory and inequality technique, 
by constructing suitable Lyapunov functional, several new 
sufficient conditions are obtained to ensure the existence, 
uniqueness, and global exponential stability of equilibrium 
point for the generalized CGNNs neural networks with 
reaction-diffusion terms and time-varying delays. These 
results generalize and improve the earlier publications. 

The paper is organized as follows. Model description 
and preliminaries are given in section 2. In section 3, main 
results and their proofs are presented. Some remarks are 
given to compare with the earlier references, and an 
example are given to illustrate our theory in section 4. 
Finally, in section 5 we give the conclusion. 
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2. Model description and preliminaries 

Consider the generalized Cohen-Grossberg neural 
networks with time-varying delays and reaction-diffusion 
term: 
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(3) 

for ni ,,2,1 L= . Where 2≥n  is the number of neurons 

in the network, ix  are space variables, ),( xtui  is the state 

variable of the ith neuron at time t  and in space x , 

)),(( xtuf jj  and )),(( xtug jj  denote the output of the jth 

unit at time t  and in space x , smooth function 

0),,( ≥= xutDD ikik  is diffusion operator, )(tijτ is the 

transmission delay along the axon of jth unit from the ith unit at 
time t , and 0)(  },{max)(0

,1
≤′=≤≤≤

≤≤
tt ijijnjiijij τττττ . 

Ω  is a compact set with smooth boundary Ω∂  and measure 

0mes >Ω  in mR . ),( xsiφ  is the initial boundary value. 

ia  presents an amplification function, ib   can include a 

constant term indicating a fixed input to the network, iJ  

denotes the external bias on the ith unit, constants ijc  and ijd  

weight the strength of the jth unit on the ith unit at time t  and 

)(tt ijτ− , respectively. 

To obtain our results, we give the following 
assumptions: 

(A1) Each function )(uai  is bounded, positive and 

continuous, furthermore iii auaa ≤≤< )(0  for all 

niRu ,,2,1  , L=∈ . 

(A2) For each function ),()( 1 RRCubi ∈ , there 

exists a positive constant 0>ib  such that 

0)( >≥′ ii bub , for ni ,,2,1 L= . 

(A3) For functions if  and ig , there exist two positive 

diagonal matrices ),,,(diag 21 nFFFF L=  and =G  

),,,(diag 21 nGGG L  such that 
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for all niuu ,,2,1  ,21 L=≠ . 
For convenience, we introduce several notations. For a 

nn×  matrix A , || A  denotes the absolute value matrix 

given by nnijaA ×= |)(||| , For  
nT

n Rxtuxtuxtuxtu ∈= )),(,),,(),,((),( 21 L , 
denotes  
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It can be easily proved that the ],]0,[( nm RRC ×−τ  is a 
Banach space. 

Definition 1. The equilibrium point ,,,( 21 L∗∗∗ = uuu  
T

nu )∗ nR∈  of model (3) is said to be globally 
exponentially stable if there exist two positive constants 
M  and λ  such that 

0  ,),(
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i
ii φλ . 

Definition 2. ([27])  A real matrix nnijaA ×= )(  is said 

to be a nonsingular M -matrix if ,,,1, ,0 njiaij L=≤  

ji ≠ , and all successive principal minors of  A are 
positive. 

Lemma 1. ([27]) D  is a nonsingular M -matrix if and 
only if the diagonal elements of D  are all positive and 
there exists a positive vector  l such that 0>Dl or 

0>lDT . 
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3. Main results 

Theorem 1.  Under assumptions (A1), (A2) and (A3), 
model (3) has a unique equilibrium point, which is 
globally exponentially stable if 

)|||(| GDFCABA +−  

is a nonsingular M -matrix, where 

),,,(diag 21 naaaA L= , ),,,(diag 21 naaaA L= , 

),,,(diag 21 nbbbB L= , 

nnijcC ×= |)(||| ,  ),,,(diag 21 nFFFF L= , 

nnijdD ×= |)(||| ,  ),,,(diag 21 nGGGG L= . 

Proof.  Let nT
n Ruuuu ∈= ∗∗∗∗ ),,,( 21 L  be an 

equilibrium point of model (3), then we have  
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Since )|||(| GDFCABA +−  is a nonsingular M -

matrix, and EaaaaaadiagAA nn ≤= −−−− ),,,( 11
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)|||(| GDFCB +−  is a nonsingular M -matrix. From 
Theorem 1 in [25], we know that model (3) has a unique 
equilibrium point. 

    Set T
n xtuxtuxtuxtu )),(,),,(),,((),( 21 L=  is any 

solution of model (3), then we have 
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Multiply both side of (4) by ∗− ii uxtu ),(  and integrate it, we get 
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where iξ  locates between ∗
iu  and ),( xtui . From the boundary condition of (1), we get 
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By use of assumptions (A1) and (A3), we have 
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Calculating the upper right Dini derivate )(tVD +  of )(tV  along the solution of (4), by (10) and the assumption of 
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hence 
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From (13), we have 
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The proof is completed. 
 
Corollary 1. Under hypothesis (A1), (A2) and (A3), 
model (3) has one unique equilibrium point, which is 
globally exponentially stable if any one of the following 
conditions is true: 
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Proof.  In fact, any one of the conditions (i)-(iii) in 

Corollary 1 can assure )|||(| GDFCABA +−  is a 
nonsingular M-matrix. 

In the case ),2,1 ,21( 0 mk,n,,iDik LL === , model 
(3) reduces to the following usual time-vary delayed 
generalized CGNNs: 
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for ni ,,2,1 L= . Here, we have 

Corollary 2. Under hypothesis (A1), (A2) and (A3), 
model (15) has one unique equilibrium point, which is 
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globally exponentially stable if )|||(| GDFCABA +−  
is a nonsingular M-matrix and 0)( ≤′ tijτ . 

4. Comparisons and example 

Remark 1. For model (3), if 0=ikD , this model has 
been studied by many authors, see, for example, 
Refs.[6,10-12,15-19] and the references cited therein. 
In [1-12], the authors studied the stability, but the 
activation function jf  is required to be bounded on 
R. However, in this paper, it is noted that the models 
of Refs. [1,6,10-12,15-19] are involved in model (3), 
we study the global exponential stability of model (3), 
we only need the activation function jf  to satisfy the 
assumption (A3), not require it to be bounded on R. 

Remark 2. The system (3) in this paper is the same as 
model (2.1) in [23], but the results in [23] requires the 
activation jf  and jg  to be bounded. Also, the 

exponential stability criteria in [23] are independent of the 
magnitude of the delays, which are not the same as our 
results. However, when )(tijτ  is a constant, the 

exponential stability criteria in [23] is a corollary of our 
results. 

Example. Consider the networks with time-varying delays 
and reaction-diffusion term: 
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is a nonsingular M -matrix. 
Therefor, we know that this network has one unique 

equilibrium point that is globally exponential stable from 
Theorem 1. 

Remark 3. It is worth noting that 21 , ff are unbounded 
on R. Thus the exponential stability criteria in [23] cannot 
be applied to here. 

5. Conclusions 

In this paper, a generalized Cohen-Grossberg neural 
networks with time-varying delays and reaction-diffusion 
term have been studied. Some sufficient conditions for the 
existence and exponential stability of the equilibrium point 
have been established. These obtained results are new and 
they complement previously known results. Moreover, an 
example are given to illustrate the effectiveness of the new 
results. 
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