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Summary

In this paper, a generalized model of Cohen-Grossberg
neural networks (CGNNs) with time-varying delays and
reaction-diffusion term is investigated. By constructing
suitable Lyapunov functional, inequality technique
and M -matrix theory, some sufficient conditions for
global exponential stability of generalized CGNNs with
time-varying delays and reaction-diffusion term are
obtained. An examples are given to show the effectiveness
of the obtained results.

Key words:

Cohen-Grossberg neural networks; time-varying delays;
reaction-diffusion; global exponential stability.

1. Introduction

In 1983, Cohen and Grossberg studied the following

neural networks (see [1]), which is described by the
ordinary differential equations:
dx; m

E:_ai(xi) bi(xi)_zltijsj(xj)+‘Ji v @
J=

for 1 =1,2,---,m, where X; denotes the state variable

associated with the ith neuron, a,

i represents an

amplification function, b, is an appropriately behaved

function, and M > 2 is the number of neurons in the
network. T = (t;),,., denotes the Mxm connection

matrix, which tells how the neurons are connected in the
network, and the activation functions S;(X;) show how

neurons respond to each other, and J; denotes the ith

component of an external input source introduced from
outside the network to the cell i. This type of network has
been widely studied in recent years and has been found
applications in many areas.

The systems (1) are usually called as Cohen-Grossberg
neural networks (CGNNS), clearly, the CGNNs include
the well-known Hopfield neural networks (see [2,3,5]):
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dx; m i
d—t': d,x, —;tijsj(xj)+ I, i=1---m, (2

Due to their promising potential applications in areas
such as pattern recognition and optimization. The network
(1) have attracted increasing interest in scientific
community, see, for example, [6,10-12,15-20,23,25,26]
and references cited therein.

In reality, time delays inevitably exist in biological and

artificial neural networks due to the finite switching speed
of neurons and amplifiers. It is also important to
incorporate time delay in various neural networks. In
recent years, there exist some results on global
asymptotical stability, global exponential stability and
periodic solutions for the neural networks with constant
delays or time-varying delays (see [4,6-26]). However, the
diffusion phenomena could not be ignored in neural networks
and electric circuits once electrons transport in a nonuniform
electromagnetic field. Hence, it is essential to consider the
state variables are varying with the time and space
variables. The neural networks with diffusion terms can
commonly be expressed by partial differential equations. The
study on the stability of reaction—diffusion neural networks, for
instance, see [21-24], and references therein.
In this paper, we intend to study the global exponential
stability of generalized CGNNs with reaction-diffusion
terms and time-varying delays in a very general setting.
Under quite general conditions, we apply the idea of
vector function, M-matrix theory and inequality technique,
by constructing suitable Lyapunov functional, several new
sufficient conditions are obtained to ensure the existence,
uniqueness, and global exponential stability of equilibrium
point for the generalized CGNNs neural networks with
reaction-diffusion terms and time-varying delays. These
results generalize and improve the earlier publications.

The paper is organized as follows. Model description
and preliminaries are given in section 2. In section 3, main
results and their proofs are presented. Some remarks are
given to compare with the earlier references, and an
example are given to illustrate our theory in section 4.
Finally, in section 5 we give the conclusion.
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2. Model description and preliminaries

Consider the generalized Cohen-Grossberg neural
networks with time-varying delays and reaction-diffusion
term:
ou, (t X) & au-(t,x)

Z o)
ot k=1 O Xy

-4 (u (t X)Ib; (u; (t, X))

n

—Zcij f;(u;(t,x)

j=1

n ®)

j=1
ou; [ oy, ou,
on (ox,  ox
ui(s,x)=¢;(s,x), —7<s<0,
for i =1,2,---,n. Where n > 2 is the number of neurons

in the network, X; are space variables, U, (t,X) is the state

T
J =0, t=20, xeoQ,

m

variable of the ith neuron at time t and in space X ,
f,(u;(t,x)) and g, (u;(t, X)) denote the output of the jth
unit at time t and in space X , smooth function
Dy = Dy (t,u,Xx) > 0 is diffusion operator, 7 (t) is the
transmission delay along the axon of jth unit from the ith unit at
time t, and 0<7;(t)<7; <7= max{rij}, r; (1) <0.
1<i, j<n
Q) is a compact set with smooth boundary Q2 and measure
mesQ >0 in R™. ¢, (s, X) is the initial boundary value.

a; presents an amplification function, b can include a

i
constant term indicating a fixed input to the network, Ji
denotes the external bias on the ith unit, constants Cij and dij
weight the strength of the jth unit on the ith unit at time t and
t—17; (t) , respectively.

To obtain our results,

assumptions:
(A1) Each function @,(u) is bounded, positive and

we give the following

continuous, furthermore
ueR, i=12:---,n

(A2) For each function b, (u) € C*(R,R), there
exists a positive constant b, > 0 such that

b/(u)>b, >0,fori=12,---,n

O<a; <au)<a for all

(A3) For functions f; and g, there exist two positive

diagonal matrices F = diag(F,,F,,-:-,F,) and G =

diag(G,,G,,---,G, ) such that
F, = sup fi(u)—fi(u,) ’
Uy Uy U, — U
6, = supl 94 =6.2),
I Uy #U, u, —-u,

forall u, #u,, i=12,---,n
For convenience, we introduce several notations. For a
nxn matrix A, | A| denotes the absolute value matrix

given by | Al= (| h 1) en
u(t, x) = (u, (t, x),u, (t, x),---,
denotes
o 0, = ([ w0 0] i=220

For ¢(s,X) = (¢, (t, X), 4, (5, X), -+, 4, (8, X))" €
C[(-7,0]xR"™, R”] the norm is defined by

||¢||— . sup (5], 21,

It can be easily proved that the C[(—7,0]xR™,R"] isa
Banach space.

For

u, (t,x))" eR",

Definition 1. The equilibrium point u” = (U, ,U,,--,
u’)" €R" of model (3) is said to be globally

exponentially stable if there exist two positive constants
M and A such that

< Mefﬂf(

>0.

Definition 2. ([27]) A real matrix A= (a is said

|J)n><n
to be a nonsingular M -matrix if a;j <0,i,j=L---,n,

I # ], and all successive principal minors of A are

positive.

Lemma 1. ([27]) D is a nonsingular M -matrix if and
only if the diagonal elements of D are all positive and
there exists a positive vector | such that DI >0 or

D'I>0.
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3. Main results
Theorem 1. Under assumptions (Al), (A2) and (A3),
model (3) has a unique equilibrium point, which is
globally exponentially stable if

AB-A(C|F+|D|G)
is a nonsingular M -matrix, where
A=diag(a,,a,,,a,), A=diag(a, &, ,a,),
B =diag(b,,b,,---,b,).
|Cl= (¢ Doen» F=diag(F,F,,---,F),

| D= (ldij ) on: G =diag(G;,G,,-+,G,).

a; (ui)[b; (uy) - ZC.J i (uj) - Zdug (uj)-J;1=0.
From (A1), it follows that
b(U ) ZCU J(u ) Zdljg (U ) ‘] _O

Since AB—A(/C|F+|D|G) is a nonsingular M -

. -1 : =-1 =-1 -1
matrix, and AA™" =diag(a,a, ,a,a, ,---,a,a, )<E,

B-(C|F+|D]|G) is a nonsingular M -matrix. From

Theorem 1 in [25], we know that model (3) has a unique
equilibrium point.

Set u(t, x) = (U, (t,x),u, (t,x),---,u, (t,x))" is any
Proof. Let u* :(ul*'u;,,,,u:)T cR" be an solution of model (3), then we have
equilibrium point of model (3), then we have
At n-u) 26%[ -%X)‘“”j—ai<ui<t,x)){bi<ui<t,x»—bi(ur)
k=1 k k i (4)
—Zcij[f,-(uj(t,x))—f,—(U]f)]—zdij[g,-(U,-(t—Tij(t),X))—g,—(u]f)]}
i=t j=1
Multiply both side of (4) by u; (t, x) —u;" and integrate it, we get
o(u; (t,x) —uy)
2dtj(u(tx) u")2dx = Zj (u; (t, X) — u) ( .Tde
= [ (i (6 X)) (u; (& %) — U b (u; (6 0) = by (u)
—Zn:Cij[fj(uj(t,X))— fj(u]‘k)]_idij[gj(uj(t_Tij(t)’X))_gj(u]‘k)]}dx
j=t j=1
_S _un 0 [ p Ouitx)-ui)
2l G -u (D.k o de ©)

= [ 2 (U (600 ()u; (6, X) - uf) 2 dx

+Zn:Cij [ (Ui (6 0)(u; (&) = uf )L U (8, %)) = £ (u})]dx
j=1

#37dy ], a0 0)u; 3 )T, (U (- 7y (0, 0) -~ 0, (U
j=1

where & locates between u;” and U, (t, X) . From the boundary condition of (1), we get
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a(ui(t,x)—ur)jm i

kijg(ui(t,x)—ur)a%[wW}dxﬁg(ui(tw—u:‘)V{Dik =
=1 k k k

k=1
. g, Q0 -u)) (a0 -u))
_.[Qv [(Ui(t,X) u|)D|k an Jk_ldx J.Q(le an Jk_l V(Ul(t,X) Ul)dX
m 2
_ T ) a(ui(tvx)_ui*) _ L ) a(Ui(t,X)—Ui*)
_jaﬂ[(ui(t,x) u')D'k—axk Jklda kZ_;JQD'k(—an de
) S N2 (6)
3 D( (ui(,x)—ui)j dx
k1 Xy
6 o o)
in which V = (—,—,--- j is the gradient operator, and
OX; OX,  OXp
* m * * T
D, ouit ) -u) | _ D, a(ui(t’x)_ui),u-,Dim o(u; (t, x) —uy) .
OX, 1 0X, X,
From assumptions (A1) and (A2), we have
— [ &, (€000 (£, (6 ) —u) d< = [ by (U (%) - u;)? dx=—ayb Ju (&, %) - u; Z %
By use of assumptions (A1) and (A3), we have
¢ [ @ (U5 (L 0)u; (6 ) —u)LF (6 ) = F (u)dx
j=1
<a) Cij|Fjj.glui(t,x)—ui*|-|uj(t,x)—u]f|dx (8)

j

n
|
]
n
SaiZ| Cii | FjHui (t,x)—u;
=t

zuuj(t,x)—u]-‘ )

We get from the same reason

> dy . @ (0 (6 0) (U (630 ~ UG, (U, (- 7 (0, 30) ~ 0 (U)o
j=1

L 9)
SaiZ|dij |GjHUi(t,X)—Ui 2“Uj(t—‘[ij(t),x)—uj )
j=1
By applying (6)-(9) to (5), we obtain
1 d « 2 . 2 _ . n .
Eauui(t,x)—ui ZS—éibi“ui(t,x)—ui 2+aiHui('£,x)—ui 2§|cij |Fj“uj(t,x)—uj ,

2

3|y (69 -y Zilmij |G u (€= 7 (0, - uj
<
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Lao

D ui(t,x)—ui*Hz S—gibiuui(t,x)—ui* L d; |Gjuuj(t—rij (t), x) —u}

n
=

Since AB— A(|/C|F—|D|G) is a nonsingular M -matrix, there exists a positive vector | =(l;,l,,---,1.)" >0 such
that

n n
a;bl; —FiZIjEj |c;; |—GiZIj§j |dj [>0,
i=1

=t

it follows that
n _ n _
—abli + R 1@ [c; [+G; D Ia; |d [<0. (11)
j=1 j=1
From (11), we can choose a sufficient small & >0 such that
n _ n _
~li(ab, —&)+|FY l;a;|c; [+G > 1@, |d; [e” | <0, (12)
j=1 j=1

where TZQ,%{T”}'

Now we construct a Lyapunov functional:
4 * —_ 4 t *
V(t):Z'i{HUi(t,X)—Ui et +& Y 1d; |G| Huj(s,x) —u]
i=1 j=1

t—rj; (t)
Calculating the upper right Dini derivate D"V (t) of V (t) along the solution of (4), by (10) and the assumption of
r; (1), 1,j=12,---,n, we have

, eg(s”)ds} . (13)

D*V(t)Sznll{(g—gibi)“ui(t,x)—ui* ,

n
Ze‘gt +ae’ Y Icy |Fj“uj(t,x)—u]f
=1

es(t+r)
2

n n
+&e" Y1y |G u; -7 .0 —uj| +a Y1d; 16 u; 6. %) -u;
=1 j=1

n
- a Z| dij | G; “Uj (t- Tjj (1), x) - U? zeg(Hij ©) A- Ti'j (t)}
j=1

IN

n n n
e“ZI{(a—gibi)Hui(t,x)—ui* ra ey IF uy 0 -uj| +a Y1 dy 16 Ju; ) -uj| e~
i=1 j=1 j=1

Seﬁzn;4|:ll(€_§|bl)+ Flznllljgl |CJ| |+G|egrilljaj |dj| |:|“U,(t,X)—UI*
1= 1= j=

<0,

2

hence
V(1) <V (0), t>0. (14)

From (13), we have



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006 163

V(t) Zgli”ui(t' X) _ui*Hz

and
V(0) = D L+ Z|o|,J G N (0)”u
n . _ n 0
<3, |, +al; |GjL“uj
i=1 j=1
n
<maxl }Z{ |, +=e; |GjHu,. 5,
<i1<n j:1
n
< r11<1|a<>n<{l )(1+ Gize”;éj |d; |JZ ?EEO
n
_TI%{EQ%{| )[1+ G,z ;aj d, |J}\
Let

M:

max{max{l )[
I<i<n | I<i<n

)
1<|<n

e(s+r)ds:|

* eg(s+r) d5:|
Hiz

il eg(s”’} (-r<5<0)

u; (s, x) — u“

et

then M >1, and

The proof is completed.

mm{l }

l

Corollary 1. Under hypothesis (Al), (A2) and (A3),
model (3) has one unique equilibrium point, which is
globally exponentially stable if any one of the following
conditions is true:

() ab >& Y [e; |F+1dy1G;} i=12,n
j=1

n n
=1 =

(iii) There exists a positive vector 1=(l,,1,,---,1,)"

>0 such that
abl >a Yl [c; IF+1d, 16} i=12-n
-1

Proof. In fact, any one of the conditions (i)-(iii) in

Corollary 1 can assure AB—A(C|F+|D|G) is a
nonsingular M-matrix.

In the case D;, =0(i=12,---,n,k =1,2,---m), model

(3) reduces to the following usual time-vary delayed
generalized CGNNSs:

Ao (t)){b (u, ) - zc,,f “,®)
(15)
_Zdijgj(uj(t—rij ®) + Ji},
j=1
for i=1,2,---,n. Here, we have

Corollary 2. Under hypothesis (Al), (A2) and (A3),
model (15) has one unique equilibrium point, which is
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globally exponentially stable if AB— A(|/C|F+|D|G)
is a nonsingular M-matrix and z;; (t) <0.

4. Comparisons and example

Remark 1. For model (3), if D;, =0, this model has

been studied by many authors, see, for example,
Refs.[6,10-12,15-19] and the references cited therein.
In [1-12], the authors studied the stability, but the
activation function f; is required to be bounded on
R. However, in this paper, it is noted that the models
of Refs. [1,6,10-12,15-19] are involved in model (3),
we study the global exponential stability of model (3),
we only need the activation function f; to satisfy the

assumption (A3), not require it to be bounded on R.

Remark 2. The system (3) in this paper is the same as
model (2.1) in [23], but the results in [23] requires the

activation fj and g; to be bounded. Also, the

exponential stability criteria in [23] are independent of the
magnitude of the delays, which are not the same as our

results. However, when 7;(t) is a constant, the

exponential stability criteria in [23] is a corollary of our
results.

Example. Consider the networks with time-varying delays
and reaction-diffusion term:

oy au \/ _a
g[ul(t,x)j_ Dlla_:(ll Dy, a_;lz %
otlup(t.x)) (Dp5e Dy 5t \ g

2+sinu, 3 u,
2+cosu, 3)\u,

(-02 01 2(luy +1]+u, -1
03 0.1\3(u, +1]+lu, -1]

0.2 0.2 tanh(u, (t — 7, (t), x)
101 0.3\ tanh(u, (t —7,(t), X)

.
M [ My Nz} 150, xeo
on | ox, o, T ’

U;(5,%) = (5, X),

_Z<s<o.
2

X =X
where tanh(x)zex—e

2,2k
e +e Di =4

(,k=12) ,

T; (t)=£—arctant . It is clear that 0<t; (t)sZ :
' 2 ' 2

7{(t) <0, i=12, and

1 — (3 3 2
A= , A= , B= , F= ,
SRS LS G
1 0.2 01 0.2 0.2
G= , |Cl= , |ID= .
1 0.3 0.1 0.1 0.3
It follows that

— 12 -18
AB-A(C|F+|D|G)=

-09 15

is a nonsingular M -matrix.

Therefor, we know that this network has one unique
equilibrium point that is globally exponential stable from
Theorem 1.

Remark 3. It is worth noting that f,, f, are unbounded

on R. Thus the exponential stability criteria in [23] cannot
be applied to here.

5. Conclusions

In this paper, a generalized Cohen-Grossberg neural
networks with time-varying delays and reaction-diffusion
term have been studied. Some sufficient conditions for the
existence and exponential stability of the equilibrium point
have been established. These obtained results are new and
they complement previously known results. Moreover, an
example are given to illustrate the effectiveness of the new
results.
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