
JCSNS International Journal of Computer Science and Network Security, Vol.6 No.11, November 2006

229

Manuscript received October 5, 2006.
Manuscript revised November 12, 2006.

An Intrusion Detection Approach Based On Understandable
Neural Network Trees

Qinzhen Xu† , Wenjiang Pei†, Luxi Yang†, and Qiangfu Zhao ††,

†School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
††Multimedia Device Laboratory, Aizu University, Aizu-wakamatsu 965-8580, Japan

Summary
In this paper we presented a novel intrusion detection mode
based on understandable Neural Network Tree (NNTree).
NNTree is a modular neural network with the overall structure
being a Decision Tree (DT), and each non-terminal node being
an Expert Neural Network (ENN). One crucial advantage of
using NNTrees is that they keep the non-symbolic model ENN’s
capability of learning in changing environments. Another
potential advantage of using NNTrees is that they are actually
“gray boxes” as they can be interpreted easily if the number of
inputs for each ENN is limited. The experimental results are
demonstrated on the KDD Cup 1999 intrusion detection dataset.
The results show that the trained NNTree achieves a simple ENN
at each non-terminal node as well as a satisfying recognition rate
of the network packets dataset. Furthermore, the learned model
contains the information about those features of critical
importance for detection. One can accordingly focus his
observation on those important attributes and hence decrease the
complexity of the feature space. Besides, the learning results
may also enlighten researchers on exploring new features for
those difficult detecting attack types.
Key words:
Intrusion detection; Neural Network Tree; Expert Neural
Network; Decision Tree; Self-organized feature learning.

1. Introduction

The rapid expansion in the degree of interconnection of
computer systems has caused the rising insecurity of
information assets. Identifying unauthorized usage of a
computer system is thus become increasing important.
Intrusion detection systems are the right systems designed
to implement the identifying process. In recent years,
numerous researchers have investigated in this field.
Those interesting methodologies include statistical models,
immune system approaches, protocol verification, file and
taint checking, neural networks, whitelisting, expression
matching, state transition analysis, dedicated languages,
genetic algorithm, and burglar alarms[1]. Some of the
examples are as follows. Sung-Bae incorporated neural
network and fuzzy logic into the Intrusion Detection
System (IDS) based on anomaly detection using Hidden
Markov Model (HMM)[2]. He also proposed an effective
HMM-based IDS that improves the modeling time and
performance by only considering the privilege transition

flows based on the domain knowledge of attacks[3]. His
latest work described an intrusion detection technique
based on evolutionary neural networks, which determined
the structure and weights of network during evolution
process[4]. Richard and Robert proposed a method to
improve the performance of IDS by improving the
baseline keywords and using discriminant neural
network[5]. Azzedine and Kathia, et al. used an immune
based Intrusion Detection Mode to achieve a significant
size reduction of the logs file[6]. David and Daniel took
the advantage of multi-resolution wavelet analysis to
compress the traffic, and subsequently investigated the
effect of compression upon the reconstructed signal’s self-
similarity, as measured by its estimated Hurst parameter
[7].

In this paper, a novel intrusion detection approach based
on understandable Neural Network Tree (NNTree) is
proposed for intrusion detection. Models for machine
learning can be roughly divided into two categories:
symbolic and non-symbolic (or sub-symbolic). Symbolic
models such as Decision Tree (DT) are generally
considered understandable because a reasoning procedure
can be provided for each decision. However, they are not
good for learning in changing environments. Each time
some new data are observed, the system must be revised
substantially or a new system must be designed again. On
the other hand, non-symbolic models, such as neural
networks, are good at learning in changing environments
because the system can be revised easily through re-
training the free parameters. However, non-symbolic
models are usually “black-boxes” and cannot be
understood easily. In many situations we need a learning
model that can have the advantages of both symbolic and
non-symbolic models. For example, in intrusion detection
problem, it is required to revise the learner or refine the
knowledge using data observed each day or even each
minute. At the same time, it also needs to give the
understandable reasons for making decisions to confirm
the reliability. A simple way to solve this problem is to
learn by a non-symbolic model (e.g., a neural network),
and to interpret by a symbolic model (say, a Boolean
function). In general, however, the problem for
interpreting a trained neural network is NP-complete [8].
To solve the above problem, we introduced the NNTree in

IJCSNS International Journal of Computer Science and Network Security, Vol.6.No.11, November 2006

230

our study[9]. An NNTree is a DT with each non-terminal
node being an Expert Neural Network (ENN). Generally
speaking, NNTrees are more powerful than traditional
DTs because the ENNs can extract more complex and
better features for making decisions[10], and the
performance can be improved through re-training[11].
Further, an NNTree can be interpreted easily if we restrict
the number of inputs of each ENN[12]. Thus, if we use
NNTrees, the NP-complete problem for interpretation can
be avoided.

The organization of this paper is as follows. In the next
section, the evolutionary design process of NNTrees with
self-organized feature learning is provided. In Section 3,
the intrusion detection experimental results are presented
to verify the proposed mode. Section 4 gives the
conclusions.

2. Intrusion Detection Approach Based on
Understandable NNTree

2.1 Split of internal nodes

An NNTree is a hybrid model with the overall structure
being a DT and each non-terminal node of DT being an
ENN. To construct a DT, it is often assumed that a
training set consisting of feature vectors and their
corresponding class labels are available. The DT is then
constructed by partitioning the feature space in such a way
as to recursively generate the tree. The most important
step in the construction process is splitting the nodes. One
of the popular algorithms for designing DT is C4.5[13]. In
C4.5, the information gain ratio is used as the criterion for
splitting nodes. The basic idea is to partition the current
training set in such a way that the average information
required to classify a given example can be reduced most.
Let S stands for the current training set (with S training

examples), and in the number of cases belonging to the
-thi class (1, 2, ,i N= L), the average information (entropy)

needed to identify the class of a given example is

2
1

info() log ()
N

i i

i

n nS
S S=

= −∑ (1)

Now suppose that S is partitioned into n sub-sets
nSSS ,,, 21 ⋅⋅⋅ by some test, the information gain is given

by
gain() info() info ()XX S S= − (2)

Where

1
info () info()

n
i

X i
i

S
S S

S=

= ∑ (3)

By analogy with the definition of entropy, the potential
information generated by partition is

2
1

split _ info() log ()
n

i i

i

S S
X

S S=

= −∑ (4)

Then information gain ratio is defined as follows
gain_ratio() gain() / split_info()X X X= (5)

To design a decision tree recursively, each time the
current training set is partitioned into several sub-sets by
testing the value of one of the features. If the feature has
n values, there will be n sub-sets. If the feature is
continuous, there are two sub-sets. The point is to select
the feature to maximize the information gain ratio.

In an NNTree, all non-terminal nodes are ENNs. Each
ENN in this study is a Multi-Layer Perceptron (MLP) with
one hidden layer and 2 output neurons. For any given
training example, it is assigned to the -thi (0,1i =) sub-
set if the -thi output neuron has the largest value. The
point here is to find an ENN to maximize the information
gain ratio. To find an ENN for each non-terminal node, we
cannot use supervised learning algorithms such as BP
(Back-Propagation) because there are no teacher signals.
Evolutionary Algorithms (EAs) are more suitable for this
purpose. In this study, we just adopted the Standard
Genetic Algorithms (SGAs). There are three basic
operators: truncate selection, one-point crossover, and bit-
by-bit mutation. The genotype of an MLP is the
concatenation of all weight vectors (including the
threshold values) represented by binary numbers.
Information gain ratio is defined as one item of the fitness.

2.2 Understandable NNTree

The crucial advantage of using NNTrees is that they keep
the non-symbolic model ENN’s capability of learning in
changing environments as described in our previous
work[9]. As a potential advantage for intrusion detection,
in this paper, we also consider the understanding aspect of
the NNTrees. The future purpose is to propose methods
for designing intrusion detection approach based on
NNTrees that are both interpretable and comprehensible.
By interpretable here we mean that the NNTree can be
interpreted easily. By comprehensible we mean that the
knowledge obtained through interpretation is
understandable. When we consider interpretation of an
NNTree using a Boolean function, the understandability of
an NNTree can be measured using the complexity of the
Boolean function obtained from it. This measure, however,
cannot be used during learning. Instead, we can measure
the understandability using the complexity of the ENNs,
which in turn can be measured using the number of hidden
neurons. The rationale is that an ENN with more hidden
neurons will produce a more complex decision surface,
and a more complex Boolean function must be used to
interpret it. With the assumption that the inputs are all
binary numbers, the interpretability of an NNTree can be

IJCSNS International Journal of Computer Science and Network Security, Vol.6 No.11, November 2006

231

measured using the computational cost, which is given by
Cost (2)mO N= × ，where N is the number of non-terminal
nodes, and m is the upper bound of the number of inputs
for each ENN. The NNTree will be interpretable if m is a
small integer.

If we consider interpretability and comprehensibility
together, designing an NNTree becomes a Multiple
Objective Optimization (MOO) problem. The following
objectives must be optimized together: (1) Maximize the
partition ability of the ENNs. (2) Maximize the
interpretability of the ENNs. (3) Maximize the
comprehendsibility of the ENNs. To solve this problem,
we proposed a simple MOO based Genetic Algorithm
(MOO-GA)[14]. Starting from the root node, the MOO-
GA is used recursively for designing the ENNs of the non-
terminal nodes. Note that in our study, the partitioning
ability is measured by the information gain ratio.

One approach for solving MOO problems is to use
weighted sum method, to reduce the objectives to a single
one. In this method, we often consider one of the
objectives as the main goal to optimize, and all others are
used as penalties. In our study, we introduced a simple
MOO based GA for evolutionary design of NNTrees[14].
The algorithm is a modified version of Goldberg’s method,
which is a kind of Pareto-ranking approach[15]. The
information gain ratio and the number of hidden neurons
are taken as the two fitness items, i.e. the node has both a
high information gain ratio and a small number of hidden
neurons ranks ahead. The modification is to sort the
individual ENNs again according to their information gain
ratio when they have the same rank. The modified
algorithm can provide one (the best individual) unique
solution, rather than a set of non-dominating solutions.
This is a simple method for automatic selection of the best
solutions. It is also reasonable because we usually assign a
higher priority to individuals with larger information gain
ratio, or better partitioning ability. Note that it is very
important to keep the partitioning ability of the ENNs
while trying to reduce the number of hidden neurons and
the number of inputs. If the partitioning ability is reduced,
the tree can become very large, even if each ENN is small.
Such kinds of NNTrees are no more comprehensible. If
we use ENNs with proper number of hidden neurons and
proper number of inputs, the NNTree can be learnable,
reliable, interpretable and comprehensible.

2.3 Self-organized feature learning

So far we have considered the case in which all inputs are
binary. However, in many applications (e.g. intrusion
detection), the inputs are continuous. If the inputs of an
NNTree are real numbers represented by binary numbers
of B bits, the cost for interpretation will
be Cost (2)mBO N= × . For instance, if 4m = and 16B = , the

computation cost will be proportional to 642N × . Thus,
even if the number of inputs for each ENN is small, the
NNTree may not be interpretable. To reduce the
computational complexity, especially the spatial
complexity, we propose in this paper to discretize the
continuous inputs using self-organized learning in each
dimension. The basic idea is to find a small number of
critical points for each continuous input by self-organized
feature learning, and discretize the input using the critical
points. For example, if there are 8 critical points for each
continuous input, the total number of binary inputs for
each ENN will be less than 3m , and the interpretability of
the NNTree will be much better than uniform
discretization. Since the values for each input are usually
not uniformly distributed, non-uniform discretization can
reduce the number of discrete values greatly.

At the beginning, we have also tried to draw the class
labels along each dimension and discretize the feature
according to the number of changing points. However, this
method is not good because too many discrete points are
usually produced. In this paper, we discretize the features
of the datasets in two steps. First, we draw the histogram
for each dimension and decide roughly the number of
critical points according to the distribution of the higher
peaks in the histogram. Then we find the positions of the
critical points using one-dimensional self-organized
learning. In this paper, the well-known Winner-Take-All
(WTA) learning rule is adopted[16].
 Suppose that C critical points, 1 2, , ,k k k

Cw w wL , are used
to discretize the -thk feature, the critical points can be
found as follows:
Step1 Initialize (1,2, ,)k

iw i C= L at random. Usually, both
the feature values and the critical points are normalized so
that they take values from [0,1].
Step2 Given a training example x , find the winner

(1,2, ,)k
iw i C= L such that

1
mink k k k

i j
j m

x w x w
≤ ≤

− = − (6)

where kx is the -thk element of x .
Step3 Modify the winner as follows:

()k k k k
i i iw w x wα← + − (7)

where (0,1)α ∈ is the learning rate.
Step4 Terminate the iteration if some condition is
satisfied; otherwise, return to Step 2.

In this study, the initial value of the learning rate is 0.5,
and it is reduced linearly in each learning cycle. The
terminating condition is simply to see if the number of
learning cycles (or epochs) reaches to a given number T,
which is set to 100 through our experiments.

IJCSNS International Journal of Computer Science and Network Security, Vol.6.No.11, November 2006

232

3. Experimental Results and Discussion

Experiments were conducted to verify the performance of
intrusion detection approach based on understandable
NNTrees. We trained the NNTrees using 1000 instances
randomly selected from the shuffled dataset, and tested the
NNTrees using 4000 instances randomly selected from the
remained dataset. All the experimental data is available
from the corrected intrusion data set of KDD cup 1999. It
includes 60593 normal instances and 4 types of attack
data listed in Table 1. The continuous features include
duration, src_bytes, dst_bytes,wrong_fragment, urgent,
hot, num_failed_logins, num_compromised, root_shell,
su_attempted, num_root, num_file_creations, num_shells,
num_access_files, num_ outbound_cmds, count, srv_count,
serror_rate, srv_serror _rate, rerror_rate,
srv_rerror_rate, same_srv_rate, diff_ srv_rate,
srv_diff_host_rate, dst_host_count, dst_host_srv _count,
dst_host_same_srv_ rate, dst_host_diff_srv_rate,
dst_host_same_src_port_rate, dst_host_srv_diff_host_rate,
dst_host_serror_rate, dst_host_srv_serror_rate, dst_host_
rerror_rate, dst_host_srv_rerror_rate; the symbolic
features include protocol_type, service, flag, land,
logged_in, is_host_login, is_guest_login.

Table 1: The attack types

Attack types Instances Class
Dos attack 229853 1

U2R attack 70 2

R2L attack 16347 3

Probe attack 4166 4

Table 2 listed the results of NNTrees constructed on

different number of input features and other compared
methods averaged on 8 runs. The number of critical points
for each continuous feature is 4=C . We considered four
items in the experiments: recognition rate on training
set(trainR), recognition rate on test set(testR), size of the
NNTrees(sizeT) and average number of hidden neurons of
each ENN(HN) or support vectors for SVM.. The results
listed in the table showed that as the number of inputs
grew from 2 to 8, the average number of hidden neurons
for the ENNs decreased from 4.0 to 3.6, and the average
size of those NNTrees behaved a mild variation. While 8
inputs were select for each ENN, the number of hidden
neurons deccreased from 4.0 to 3.6 and the average size of
NNTrees decreased from 13.1 to 8.5. Both the training
recognition rate and the test one listed in Tab. 3 were
satisfying. It suggests that when proper number of inputs
is selected, one can construct an NNTree with small tree
size, simple ENN as well as high recognition rate. It

indicates that a relative ordinary decision surface can be
achieved and thus comparatively simple Boolean function
could perform the interpretation for each node.

In this work, we also compared the performance of
intrusion detection mode based on understandable NNTree
with the one based on a three layer BP neural network
(BP-NN) and support vector machine (SVM). The BP-NN
was set to a given number of hidden neurons compared to
the average sum of the hidden neurons used in the whole
NNTree. It suggested NNTree based intrusion detection
approach reached better detection accuracy than both
SVM and BP-NN. Further, when turned to the
interpretation step, a more complex Boolean function
seemed to be required to interpret the complex decision
surface produced by an SVM with large number of
support vectors or a neural network with a large number of
hidden neurons. While taking an NNTree into account,
owed to its fine topology, one could firstly interpret each
node with a simple Boolean function and then combined
all the nodes to get an understandable result, and that the
NP-complete problem was also avoided.

Table 2: The compared detection rate of intrusion detection approach
based on NNTrees

Method inputn trainR (%) testR (%) sizeT HN

2 98.58 97.69 13.1 4.0

4 98.84 97.77 10.0 3.9

6 98.86 98.01 10.6 3.6
NNTree

8 98.85 98.15 8.5 3.6

SVM 41 98.08 96.32 -- 78.2

BP-NN 41 80.53 78.36 -- 40.0

One example of NNTrees constructed on the training set

is given in Fig.1, where 1C and 2C is the class distribution
of training data and testing data, respectively. 0L = and 1
denote those normal instances and attacked ones,
respectively. For instance, the training sample distribution
at node 1E was 209 normal instances and 791 attacked
ones, and the testing sample distribution was 807 normal
instances and 3193 attacked ones. The features (selectF)
selected by the evolution process and the number of
hidden neurons HN of each ENN is listed in Table 3. In
the example, the number of inputs for each ENN and
critical points for all continuous features was both
empirically set to 4. It has been proved efficient enough by
the statistical result described in the latter experiments.
The example showed that at most condition the number of
hidden neurons for each non-terminal node was less than 5.
It suggests that all the ENNs embedded in the DT are quite

IJCSNS International Journal of Computer Science and Network Security, Vol.6 No.11, November 2006

233

simple but really efficient, which means a relative simple
decision surface can be achieved at each node and thus a
simple Boolean function may be competent for
interpretation.

E1

C1:209,791;C2:807,3193

C1:2,28;C2:4,131;L:1

Internal node

Leaf node

E2

E3 E8

E9

L17

L16

L15E10

L12

L14

L5

L13

L6

L7E4

E11

C1:69,790;C2:277,3187

C1:1,736;C2
:9,2918;L:1

C1:64,54;C2:248,266C1:5,736;C2:29,2921

C1:38,25;C2:171,120

C1:4,736;C2:28,2920

C1:0,1;C2:0,7;L:1
C1:3,0;C2:
19,2;L:0

C1:1,0;C2:
1,1;L:0

C1:62,25;C2:
224,128

C1:0,18;C2:2,91;L:1

C1 : 6 2 , 2 6 ;
C2:244,135

C1:38,7;C2:169,29;L:0

C1:140,1;C2:530,6;L:0

C1:24,0;C2:73,8;L:0

Ei

Li

Fig. 1 An example of NNTrees constructed on the database

Table 3: Features selected and number of hidden neurons of each ENN
Node Fselect HN

E1 service, hot, num_shells, serror_rate 4

E2
flag, srv_count, srv_serror_rate,
dst_host_same_src_port_ rate

5

E3 hot, su_attempted, count, diff_srv_rate 4

E4
is_guest_login, same_srv_rate,
dst_host_same_src_port_ rate,

dst_host_srv_serror_rate
2

E8
num_failed_logins, is_host_login, is_guest_login,

dst_host_srv_serror_rate
3

E9
protocol_type, logged_in, num_outbound_cmds,

dst_host_srv_count
3

E10
root_shell, su_attempted, srv_diff_host _rate,

dst_host_srv_count
5

E11
src_bytes, num_shells, count,

dst_host_srv_rerror_rate
5

The training distribution rate of each attack at each leaf

node is shown in Fig.2(a), where the -labelx
{1,2, ,8,9}L corresponds to those leaf nodes { 5,6,7,12,13,i iL =
14, 15, 16, 17} in Fig.1. As the training result showed that the
distribution rates of the Dos and Probe attack instances
were much higher at 6L than any other remained leaf
nodes. It suggests that features used at 4E , i.e.,
is_guest_login, same_srv_rate, dst_host_same_src_port_
rate, dst_host_srv_serror_rate have much higher authority
in recognizing those 2 types of attacks. Analogically,
features selected at 4E and 11E are efficient for

recognition of the U2R attack instances; features selected
at 8E and 11E are efficient for detection of R2L attack
instances. The Dos and Probe attack instances are the two
most legible attack types since more than 96% of these
instances were recognized at the first leaf node 6L . While
the R2L attack instances were difficult to recognize and
time-consuming, since it needed more features including
the ones selected at 4E , 8E , and 11E . The distribution rate
of each attack type at each leaf node for test was shown in
Fig.2 (b). The result was quite close to that of training set,
which indicated that the generalization ability of proposed
mode was satisfying.

(a) The distribution rate of instances for traning

(b) Theditribution rate of instances for test

Fig. 2 The histogram of distribution of the attack and normal instances at
each leaf node of the trained NNTree for training and test,respectively.

4. Conclusions

In this paper, we proposed a novel intrusion detection
mode based on understandable NNTrees. Experimental
results showed that the NNTrees built from the self-
organized feature learned training data were satisfying for
the high recognition rate and a better generalization ability.

IJCSNS International Journal of Computer Science and Network Security, Vol.6.No.11, November 2006

234

Furthermore, the learned model contains the information
about those features of critical importance for detection.
One can accordingly focus his observation on those
important attributes and hence decrease the complexity of
the feature space. Besides, the learning results may also
enlighten researchers on exploring new features for those
difficult detecting attack types.

We also observed that the number of critical points in
each dimension is usually small for the datasets we used.
This means that a few (e.g. 3 or 4) binary bits are enough
to represent each continuous input. The number of inputs
for each ENN is also limited and 8 inputs are proved to be
efficient enough to construct an NNTree with both small
tree size and hidden neuron number in the experiment, and
thus, the NNTrees so obtained are much more
interpretable.

We have tried to design an intrusion detection mode
based on both interpretable and comprehensible NNTrees.
The design process itself, however, may be time
consuming because GA is used. Currently, we are trying
to propose more efficient and effective algorithms for
designing the NNTrees. Another point is that in this paper
we have not interpreted the NNTrees explicitly. We will
complete this part in the next step, and compare the
extracted rules (Boolean functions) with those obtained
using other methods. As for the quantization of the dataset,
we may use some algorithms (say the 4R -rule) for finding
the critical points automatically. We will study this topic
in the future.

Acknowledgments

This work was partly supported by the Project of
NSFC(Grant 60672095), National High Technology
Project (Grant 2003AA143040) of China, a Foundation of
Excellent Doctoral Dissertation of Southeast University
(YBJJ0412) and the Project of NSFJS (Grant BK2001042).

References
[1] E. Biermann, E.Cloete, L.M. Venter, A comparison of

Intrusion detection systems, Computers and Security,
20(2001)8, 676–683.

[2] Cho Sung-Bae, Incorporating soft computing techniques
into a probabilistic intrusion detection system, IEEE Trans.
on Systems, Man, and Cybernetics—Part C: Applications
and Reviews, 32(2002)2, 154–160.

[3] Cho Sung-Bae, Park Hyuk-Jang, Efficient anomaly
detection by modeling privilege flows using hidden Markov
model, Computers and Security, 22(2003)1, 45–55.

[4] Sang-Jun Han, Sung-Bae Cho, Evolutionary Neural
Networks for Anomaly Detection Based on the Behavior of
a Program, IEEE Transactions on Systems, Man and
Cybernetics—Part B, 36(2006)3, 559–570

[5] Richard P. Lippmann, Robert K. Cunningham, Improving
intrusion detection performance using keyword selection

and neural networks, Computer Networks, 34(2000)4, 597–
603.

[6] Boukerche Azzedine, Jucá Kathia Regina Lemos, Sobral
João Bosco, Notare Mirela Sechi Moretti Annoni, An
artificial immune based intrusion detection model for
computer and telecommunication systems, Parallel
Computing, 30(2004)5/6, 629–646.

[7] David A. Nash, Daniel J. Ragsdale, Simulation of self-
similarity in network utilization patterns as a precursor to
automated testing of intrusion detection systems, IEEE
Trans. on Systems, Man, and Cybernetics—Part A: System
and Humans, 31(2001)4, 327–331.

[8] Hiroshi Tsukimoto, Extracting Rules from trained neural
networks, IEEE Trans. on Neural Networks, 11(2000)2,
377–389.

[9] Q.Z. Xu, Q.F. Zhao, W.J. Pei, L.X. Yang, Z.Y. He,
Interpretable Neural Network Tree for Continuous-Feature
Data Sets, Neural Information and Processing—letters and
reviews, 3(2004)3, 77–84.

[10] H. Guo, S. B. Gelfand, Classification trees with neural
network feature extraction, IEEE Trans. on Neural
Networks, 3(1992)6, 923–933.

[11] T. Takeda, Q.F. Zhao, Growing Neural Network Trees
Efficiently and Effectively, Proc. International Conference
on Hybrid Intelligent Systems (HIS’03), Melbourne, 2003,
107–115.

[12] S. Mizuno, Q.F. Zhao, Neural network trees with nodes of
limited inputs are good for learning and understanding, Proc.
4th Asia-Pacific Conference on Simulated Evolution And
Learning (SEAL2002), Singapore, 2002, 573–576.

[13] J. R. Quinlan, C4.5: Programs for Machine Learning, San
Mateo, Morgan Kaufmann Publishers, 1993, 17–25.

[14] C. Lu, Q. F. Zhao, W. J. Pei, Z. Y. He, A multiple objective
optimization based GA for designing interpretable and
comprehensible neural network trees, Proc. IEEE
International Conference on Neural Networks & Signal
Processing, China, 2003, 518–521.

[15] D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Boston, Addison-
Wesley, 1989, 1–217.

[16] T. Kohonen, The self-organizing map, Proceedings of the
IEEE, 78(1990)9, 1464–1480.

Qinzhen Xu QinZhen Xu received the M.S. degree from
Biomedical Engineering Department of Southeast University in
2000, and currently a Ph.D. student of Radio Engineering
Department of Southeast University, China. Her research
interests include hybrid learning model, infromation security and
image processing.

