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Summary 
In this paper we presented a novel intrusion detection mode 
based on understandable Neural Network Tree (NNTree). 
NNTree is a modular neural network with the overall structure 
being a Decision Tree (DT), and each non-terminal node being 
an Expert Neural Network (ENN). One crucial advantage of 
using NNTrees is that they keep the non-symbolic model ENN’s 
capability of learning in changing environments. Another 
potential advantage of using NNTrees is that they are actually 
“gray boxes” as they can be interpreted easily if the number of 
inputs for each ENN is limited. The experimental results are 
demonstrated on the KDD Cup 1999 intrusion detection dataset. 
The results show that the trained NNTree achieves a simple ENN 
at each non-terminal node as well as a satisfying recognition rate 
of the network packets dataset. Furthermore, the learned model 
contains the information about those features of critical 
importance for detection. One can accordingly focus his 
observation on those important attributes and hence decrease the 
complexity of the feature space. Besides, the learning results 
may also enlighten researchers on exploring new features for 
those difficult detecting attack types. 
Key words: 
Intrusion detection; Neural Network Tree; Expert Neural 
Network; Decision Tree; Self-organized feature learning. 

1. Introduction 

The rapid expansion in the degree of interconnection of 
computer systems has caused the rising insecurity of 
information assets. Identifying unauthorized usage of a 
computer system is thus become increasing important. 
Intrusion detection systems are the right systems designed 
to implement the identifying process. In recent years, 
numerous researchers have investigated in this field. 
Those interesting methodologies include statistical models, 
immune system approaches, protocol verification, file and 
taint checking, neural networks, whitelisting, expression 
matching, state transition analysis, dedicated languages, 
genetic algorithm, and burglar alarms[1]. Some of the 
examples are as follows. Sung-Bae incorporated neural 
network and fuzzy logic into the Intrusion Detection 
System (IDS) based on anomaly detection using Hidden 
Markov Model (HMM)[2]. He also proposed an effective 
HMM-based IDS that improves the modeling time and 
performance by only considering the privilege transition 

flows based on the domain knowledge of attacks[3]. His 
latest work described an intrusion detection technique 
based on evolutionary neural networks, which determined 
the structure and weights of network during evolution 
process[4]. Richard and Robert proposed a method to 
improve the performance of IDS by improving the 
baseline keywords and using discriminant neural 
network[5]. Azzedine and Kathia, et al. used an immune 
based Intrusion Detection Mode to achieve a significant 
size reduction of the logs file[6]. David and Daniel took 
the advantage of multi-resolution wavelet analysis to 
compress the traffic, and subsequently investigated the 
effect of compression upon the reconstructed signal’s self-
similarity, as measured by its estimated Hurst parameter 
[7]. 

In this paper, a novel intrusion detection approach based 
on understandable Neural Network Tree (NNTree) is 
proposed for intrusion detection. Models for machine 
learning can be roughly divided into two categories: 
symbolic and non-symbolic (or sub-symbolic). Symbolic 
models such as Decision Tree (DT) are generally 
considered understandable because a reasoning procedure 
can be provided for each decision. However, they are not 
good for learning in changing environments. Each time 
some new data are observed, the system must be revised 
substantially or a new system must be designed again. On 
the other hand, non-symbolic models, such as neural 
networks, are good at learning in changing environments 
because the system can be revised easily through re-
training the free parameters. However, non-symbolic 
models are usually “black-boxes” and cannot be 
understood easily. In many situations we need a learning 
model that can have the advantages of both symbolic and 
non-symbolic models. For example, in intrusion detection 
problem, it is required to revise the learner or refine the 
knowledge using data observed each day or even each 
minute. At the same time, it also needs to give the 
understandable reasons for making decisions to confirm 
the reliability. A simple way to solve this problem is to 
learn by a non-symbolic model (e.g., a neural network), 
and to interpret by a symbolic model (say, a Boolean 
function). In general, however, the problem for 
interpreting a trained neural network is NP-complete [8]. 
To solve the above problem, we introduced the NNTree in 
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our study[9]. An NNTree is a DT with each non-terminal 
node being an Expert Neural Network (ENN). Generally 
speaking, NNTrees are more powerful than traditional 
DTs because the ENNs can extract more complex and 
better features for making decisions[10], and the 
performance can be improved through re-training[11]. 
Further, an NNTree can be interpreted easily if we restrict 
the number of inputs of each ENN[12]. Thus, if we use 
NNTrees, the NP-complete problem for interpretation can 
be avoided. 

The organization of this paper is as follows. In the next 
section, the evolutionary design process of NNTrees with 
self-organized feature learning is provided. In Section 3, 
the intrusion detection experimental results are presented 
to verify the proposed mode. Section 4 gives the 
conclusions. 

2. Intrusion Detection Approach Based on 
Understandable NNTree 

2.1 Split of internal nodes 

An NNTree is a hybrid model with the overall structure 
being a DT and each non-terminal node of DT being an 
ENN. To construct a DT, it is often assumed that a 
training set consisting of feature vectors and their 
corresponding class labels are available. The DT is then 
constructed by partitioning the feature space in such a way 
as to recursively generate the tree. The most important 
step in the construction process is splitting the nodes. One 
of the popular algorithms for designing DT is C4.5[13]. In 
C4.5, the information gain ratio is used as the criterion for 
splitting nodes. The basic idea is to partition the current 
training set in such a way that the average information 
required to classify a given example can be reduced most. 
Let S  stands for the current training set (with S  training 

examples), and in  the number of cases belonging to the 
-thi  class ( 1, 2, ,i N= L ), the average information (entropy) 

needed to identify the class of a given example is 

2
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By analogy with the definition of entropy, the potential 
information generated by partition is 
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Then information gain ratio is defined as follows 
gain_ratio( ) gain( ) / split_info( )X X X=                 (5) 

To design a decision tree recursively, each time the 
current training set is partitioned into several sub-sets by 
testing the value of one of the features. If the feature has 
n  values, there will be n  sub-sets. If the feature is 
continuous, there are two sub-sets. The point is to select 
the feature to maximize the information gain ratio. 

In an NNTree, all non-terminal nodes are ENNs. Each 
ENN in this study is a Multi-Layer Perceptron (MLP) with 
one hidden layer and 2 output neurons. For any given 
training example, it is assigned to the -thi  ( 0,1i = ) sub-
set if the -thi  output neuron has the largest value. The 
point here is to find an ENN to maximize the information 
gain ratio. To find an ENN for each non-terminal node, we 
cannot use supervised learning algorithms such as BP 
(Back-Propagation) because there are no teacher signals. 
Evolutionary Algorithms (EAs) are more suitable for this 
purpose. In this study, we just adopted the Standard 
Genetic Algorithms (SGAs). There are three basic 
operators: truncate selection, one-point crossover, and bit-
by-bit mutation. The genotype of an MLP is the 
concatenation of all weight vectors (including the 
threshold values) represented by binary numbers. 
Information gain ratio is defined as one item of the fitness. 

2.2 Understandable NNTree 

The crucial advantage of using NNTrees is that they keep 
the non-symbolic model ENN’s capability of learning in 
changing environments as described in our previous 
work[9]. As a potential advantage for intrusion detection, 
in this paper, we also consider the understanding aspect of 
the NNTrees. The future purpose is to propose methods 
for designing intrusion detection approach based on 
NNTrees that are both interpretable and comprehensible. 
By interpretable here we mean that the NNTree can be 
interpreted easily. By comprehensible we mean that the 
knowledge obtained through interpretation is 
understandable. When we consider interpretation of an 
NNTree using a Boolean function, the understandability of 
an NNTree can be measured using the complexity of the 
Boolean function obtained from it. This measure, however, 
cannot be used during learning. Instead, we can measure 
the understandability using the complexity of the ENNs, 
which in turn can be measured using the number of hidden 
neurons. The rationale is that an ENN with more hidden 
neurons will produce a more complex decision surface, 
and a more complex Boolean function must be used to 
interpret it. With the assumption that the inputs are all 
binary numbers, the interpretability of an NNTree can be 
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measured using the computational cost, which is given by 
Cost ( 2 )mO N= × ，where N  is the number of non-terminal 
nodes, and m  is the upper bound of the number of inputs 
for each ENN. The NNTree will be interpretable if m  is a 
small integer.  

If we consider interpretability and comprehensibility 
together, designing an NNTree becomes a Multiple 
Objective Optimization (MOO) problem. The following 
objectives must be optimized together: (1) Maximize the 
partition ability of the ENNs. (2) Maximize the 
interpretability of the ENNs. (3) Maximize the 
comprehendsibility of the ENNs. To solve this problem, 
we proposed a simple MOO based Genetic Algorithm 
(MOO-GA)[14]. Starting from the root node, the MOO-
GA is used recursively for designing the ENNs of the non-
terminal nodes. Note that in our study, the partitioning 
ability is measured by the information gain ratio. 

One approach for solving MOO problems is to use 
weighted sum method, to reduce the objectives to a single 
one. In this method, we often consider one of the 
objectives as the main goal to optimize, and all others are 
used as penalties. In our study, we introduced a simple 
MOO based GA for evolutionary design of NNTrees[14]. 
The algorithm is a modified version of Goldberg’s method, 
which is a kind of Pareto-ranking approach[15]. The 
information gain ratio and the number of hidden neurons 
are taken as the two fitness items, i.e. the node has both a 
high information gain ratio and a small number of hidden 
neurons ranks ahead. The modification is to sort the 
individual ENNs again according to their information gain 
ratio when they have the same rank. The modified 
algorithm can provide one (the best individual) unique 
solution, rather than a set of non-dominating solutions. 
This is a simple method for automatic selection of the best 
solutions. It is also reasonable because we usually assign a 
higher priority to individuals with larger information gain 
ratio, or better partitioning ability. Note that it is very 
important to keep the partitioning ability of the ENNs 
while trying to reduce the number of hidden neurons and 
the number of inputs. If the partitioning ability is reduced, 
the tree can become very large, even if each ENN is small. 
Such kinds of NNTrees are no more comprehensible. If 
we use ENNs with proper number of hidden neurons and 
proper number of inputs, the NNTree can be learnable, 
reliable, interpretable and comprehensible. 

2.3 Self-organized feature learning 

So far we have considered the case in which all inputs are 
binary. However, in many applications (e.g. intrusion 
detection), the inputs are continuous. If the inputs of an 
NNTree are real numbers represented by binary numbers 
of B  bits, the cost for interpretation will 
be Cost ( 2 )mBO N= × . For instance, if 4m =  and 16B = , the 

computation cost will be proportional to 642N × . Thus, 
even if the number of inputs for each ENN is small, the 
NNTree may not be interpretable. To reduce the 
computational complexity, especially the spatial 
complexity, we propose in this paper to discretize the 
continuous inputs using self-organized learning in each 
dimension. The basic idea is to find a small number of 
critical points for each continuous input by self-organized 
feature learning, and discretize the input using the critical 
points. For example, if there are 8 critical points for each 
continuous input, the total number of binary inputs for 
each ENN will be less than 3m , and the interpretability of 
the NNTree will be much better than uniform 
discretization. Since the values for each input are usually 
not uniformly distributed, non-uniform discretization can 
reduce the number of discrete values greatly. 

At the beginning, we have also tried to draw the class 
labels along each dimension and discretize the feature 
according to the number of changing points. However, this 
method is not good because too many discrete points are 
usually produced. In this paper, we discretize the features 
of the datasets in two steps. First, we draw the histogram 
for each dimension and decide roughly the number of 
critical points according to the distribution of the higher 
peaks in the histogram. Then we find the positions of the 
critical points using one-dimensional self-organized 
learning. In this paper, the well-known Winner-Take-All 
(WTA) learning rule is adopted[16]. 
   Suppose that C  critical points, 1 2, , ,k k k

Cw w wL , are used 
to discretize the -thk feature, the critical points can be 
found as follows: 
Step1 Initialize ( 1,2, , )k

iw i C= L  at random. Usually, both 
the feature values and the critical points are normalized so 
that they take values from [0,1]. 
Step2 Given a training example x , find the winner 

( 1,2, , )k
iw i C= L  such that  

1
mink k k k

i j
j m

x w x w
≤ ≤

− = −                                             (6) 

where kx  is the -thk  element of x . 
Step3 Modify the winner as follows:  

( )k k k k
i i iw w x wα← + −                                                (7) 

where (0,1)α ∈  is the learning rate. 
Step4 Terminate the iteration if some condition is 
satisfied; otherwise, return to Step 2. 

In this study, the initial value of the learning rate is 0.5, 
and it is reduced linearly in each learning cycle. The 
terminating condition is simply to see if the number of 
learning cycles (or epochs) reaches to a given number T, 
which is set to 100 through our experiments. 
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3. Experimental Results and Discussion 

Experiments were conducted to verify the performance of 
intrusion detection approach based on understandable 
NNTrees. We trained the NNTrees using 1000 instances 
randomly selected from the shuffled dataset, and tested the 
NNTrees using 4000 instances randomly selected from the 
remained dataset. All the experimental data is available 
from the corrected intrusion data set of KDD cup 1999. It 
includes 60593 normal instances and 4 types of  attack 
data listed in Table 1. The continuous features include 
duration, src_bytes, dst_bytes,wrong_fragment, urgent, 
hot, num_failed_logins, num_compromised, root_shell, 
su_attempted, num_root, num_file_creations, num_shells, 
num_access_files, num_ outbound_cmds, count, srv_count, 
serror_rate, srv_serror _rate, rerror_rate, 
srv_rerror_rate, same_srv_rate, diff_ srv_rate, 
srv_diff_host_rate, dst_host_count, dst_host_srv _count, 
dst_host_same_srv_ rate, dst_host_diff_srv_rate, 
dst_host_same_src_port_rate, dst_host_srv_diff_host_rate, 
dst_host_serror_rate, dst_host_srv_serror_rate, dst_host_ 
rerror_rate, dst_host_srv_rerror_rate; the symbolic 
features include protocol_type, service, flag, land, 
logged_in, is_host_login, is_guest_login. 

Table 1: The attack types 

Attack types Instances Class 
Dos attack 229853 1 

U2R attack 70 2 

R2L attack 16347 3 

Probe attack 4166 4 

 
Table 2 listed the results of NNTrees constructed on 

different number of input features and other compared 
methods averaged on 8 runs. The number of critical points 
for each continuous feature is 4=C . We considered four 
items in the experiments: recognition rate on training 
set( trainR ), recognition rate on test set( testR ), size of the 
NNTrees( sizeT ) and average number of hidden neurons of 
each ENN( HN ) or support vectors for SVM.. The results 
listed in the table showed that as the number of inputs 
grew from 2 to 8, the average number of hidden neurons 
for the ENNs decreased from 4.0 to 3.6, and the average 
size of those NNTrees behaved a mild variation. While 8 
inputs were select for each ENN, the number of hidden 
neurons deccreased from 4.0 to 3.6 and the average size of 
NNTrees decreased from 13.1 to 8.5. Both the training 
recognition rate and the test one listed in Tab. 3 were 
satisfying. It suggests that when proper number of inputs 
is selected, one can construct an NNTree with small tree 
size, simple ENN as well as high recognition rate. It 

indicates that a relative ordinary decision surface can be 
achieved and thus comparatively simple Boolean function 
could perform the interpretation for each node. 

In this work, we also compared the performance of 
intrusion detection mode based on understandable NNTree 
with the one based on a three layer BP neural network 
(BP-NN) and support vector machine (SVM). The BP-NN 
was set to a given number of hidden neurons compared to 
the average sum of the hidden neurons used in the whole 
NNTree. It suggested NNTree based intrusion detection 
approach reached better detection accuracy than both 
SVM and BP-NN. Further, when turned to the 
interpretation step, a more complex Boolean function 
seemed to be required to interpret the complex decision 
surface produced by an SVM with large number of 
support vectors or a neural network with a large number of 
hidden neurons. While taking an NNTree into account, 
owed to its fine topology, one could firstly interpret each 
node with a simple Boolean function and then combined 
all the nodes to get an understandable result, and that the 
NP-complete problem was also avoided. 

Table 2: The compared detection rate of intrusion detection approach 
based on NNTrees 

Method inputn trainR  (%) testR  (%) sizeT HN

2 98.58 97.69 13.1 4.0

4 98.84 97.77 10.0 3.9

6 98.86 98.01 10.6 3.6
NNTree

8 98.85 98.15 8.5 3.6

SVM 41 98.08 96.32 -- 78.2

BP-NN 41 80.53 78.36 -- 40.0

 
One example of NNTrees constructed on the training set 

is given in Fig.1, where 1C  and 2C  is the class distribution 
of training data and testing data, respectively. 0L =  and 1 
denote those normal instances and attacked ones, 
respectively. For instance, the training sample distribution 
at node 1E  was 209 normal instances and 791 attacked 
ones, and the testing sample distribution was 807 normal 
instances and 3193 attacked ones. The features ( selectF ) 
selected by the evolution process and the number of 
hidden neurons HN  of each ENN is listed in Table 3. In 
the example, the number of inputs for each ENN and 
critical points for all continuous features was both 
empirically set to 4. It has been proved efficient enough by 
the statistical result described in the latter experiments. 
The example showed that at most condition the number of 
hidden neurons for each non-terminal node was less than 5. 
It suggests that all the ENNs embedded in the DT are quite 
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simple but really efficient, which means a relative simple 
decision surface can be achieved at each node and thus a 
simple Boolean function may be competent for 
interpretation. 

E1

C1:209,791;C2:807,3193

C1:2,28;C2:4,131;L:1

Internal node

Leaf node

E2

E3 E8

E9

L17

L16

L15E10

L12

L14

L5

L13

L6

L7E4

E11

C1:69,790;C2:277,3187

C1:1,736;C2
:9,2918;L:1

C1:64,54;C2:248,266C1:5,736;C2:29,2921

C1:38,25;C2:171,120

C1:4,736;C2:28,2920

C1:0,1;C2:0,7;L:1
C1:3,0;C2:
19,2;L:0

C1:1,0;C2:
1,1;L:0

C1:62,25;C2:
224,128

C1:0,18;C2:2,91;L:1

C1 : 6 2 , 2 6 ;
C2:244,135

C1:38,7;C2:169,29;L:0

C1:140,1;C2:530,6;L:0

C1:24,0;C2:73,8;L:0

Ei

Li

 

Fig. 1 An example of NNTrees constructed on the database 

Table 3: Features selected and number of hidden neurons of each ENN 
Node Fselect HN

E1 service, hot, num_shells, serror_rate 4 

E2 
flag, srv_count, srv_serror_rate, 
dst_host_same_src_port_ rate 

5 

E3 hot, su_attempted, count, diff_srv_rate 4 

E4 
is_guest_login, same_srv_rate, 
dst_host_same_src_port_ rate, 

dst_host_srv_serror_rate 
2 

E8 
num_failed_logins, is_host_login, is_guest_login, 

dst_host_srv_serror_rate 
3 

E9 
protocol_type, logged_in, num_outbound_cmds, 

dst_host_srv_count 
3 

E10 
root_shell, su_attempted, srv_diff_host _rate, 

dst_host_srv_count 
5 

E11 
src_bytes, num_shells, count, 

dst_host_srv_rerror_rate 
5 

 
The training distribution rate of each attack at each leaf 

node is shown in Fig.2(a), where the -labelx  
{1,2, ,8,9}L corresponds to those leaf nodes  { 5,6,7,12,13,i iL =  
14, 15, 16, 17} in Fig.1. As the training result showed that the 
distribution rates of the Dos and Probe attack instances 
were much higher at 6L  than any other remained leaf 
nodes. It suggests that features used at 4E , i.e., 
is_guest_login, same_srv_rate, dst_host_same_src_port_ 
rate, dst_host_srv_serror_rate have much higher authority 
in recognizing those 2 types of attacks. Analogically, 
features selected at 4E  and 11E  are efficient for 

recognition of the U2R attack instances; features selected 
at 8E  and 11E  are efficient for detection of R2L attack 
instances. The Dos and Probe attack instances are the two 
most legible attack types since more than 96% of these 
instances were recognized at the first leaf node 6L . While 
the R2L attack instances were difficult to recognize and 
time-consuming, since it needed more features including 
the ones selected at 4E , 8E , and 11E . The distribution rate 
of each attack type at each leaf node for test was shown in 
Fig.2 (b). The result was quite close to that of training set, 
which indicated that the generalization ability of proposed 
mode was satisfying. 

 
(a) The distribution rate of instances for traning 

 
(b) Theditribution rate of instances for test 

Fig. 2 The histogram of distribution of the attack and normal instances at 
each leaf node of the trained NNTree for training and test,respectively. 

4. Conclusions 

In this paper, we proposed a novel intrusion detection 
mode based on understandable NNTrees. Experimental 
results showed that the NNTrees built from the self-
organized feature learned training data were satisfying for 
the high recognition rate and a better generalization ability. 
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Furthermore, the learned model contains the information 
about those features of critical importance for detection. 
One can accordingly focus his observation on those 
important attributes and hence decrease the complexity of 
the feature space. Besides, the learning results may also 
enlighten researchers on exploring new features for those 
difficult detecting attack types.  

We also observed that the number of critical points in 
each dimension is usually small for the datasets we used. 
This means that a few (e.g. 3 or 4) binary bits are enough 
to represent each continuous input. The number of inputs 
for each ENN is also limited and 8 inputs are proved to be 
efficient enough to construct an NNTree with both small 
tree size and hidden neuron number in the experiment, and 
thus, the NNTrees so obtained are much more 
interpretable.  

We have tried to design an intrusion detection mode 
based on both interpretable and comprehensible NNTrees. 
The design process itself, however, may be time 
consuming because GA is used. Currently, we are trying 
to propose more efficient and effective algorithms for 
designing the NNTrees. Another point is that in this paper 
we have not interpreted the NNTrees explicitly. We will 
complete this part in the next step, and compare the 
extracted rules (Boolean functions) with those obtained 
using other methods. As for the quantization of the dataset, 
we may use some algorithms (say the 4R -rule) for finding 
the critical points automatically. We will study this topic 
in the future.  
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