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Summary 
Data mining techniques can extract hidden but useful 
information from large databases. Most efficient 
approaches for mining distributed databases suppose that 
all of the data at each site can be shared. However, source 
transaction databases usually include very sensitive 
information. In order to obtain an accurate mining result 
on distributed databases and to preserve the private data 
that is accessed, Kantarcioglu and Clifton proposed a 
scheme to mine association rules on horizontally 
partitioned data. This study proposes an Enhanced 
Kantarcioglu and Clifton Scheme’s (EKCS), which is a 
two-phase, privacy-preserving, distributed data mining 
scheme. It is based on the Kantarcioglu and Clifton’s 
Scheme (KCS) and reduces the quantities of global 
candidates that are encrypted and reduces the transmission 
load without raising the risk of itemsets leak in the first 
phase. Moreover, to increase the security against collusion 
in the second phase, this study proposes two protocols to 
be applied in the communication environment with or 
without a trusted authority, respectively. 
Key words: 
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1. Introduction 

The goal of recent advances in data mining techniques is 
to efficiently discover valuable and non-obvious 
knowledge from large databases [9, 16]. The mining of 
association rules plays an important role in various data 
mining fields, such as financial analysis, the retail industry 
and business decision-making [9]. 

Modern organisations have their own databases, located in 
different places. Most mining techniques assume that the 
data is centralised or the distributed amounts of data can 
efficiently move to a central site to become a single model. 
However, organisations may be willing to share only their 
mining models, not their data. These centralised 
techniques have a high risk of unexpected information 
leaks when data is released [5]. Organisations urgently 
require evaluation to decrease the risk of disclosing 

information. Privacy-Preserving Data Mining (PPDM) can 
run a data mining algorithm to obtain mutually beneficial 
global mining objectives without exposing private data 
[27]. Therefore, PPDM has become an important issue in 
many data mining applications. 

A simple method of PPDM in distributed databases is to 
perturb the original data. The procedure of transforming 
the original database into a new one that hides some 
sensitive association rules is called the sanitisation 
process [5, 12]. Performing a mining process on the 
sanitised database can reduce the risk of revealing the 
sensitive information [5, 12, 19, 20, 24, 26]. However, the 
mining result on the sanitised database is less precise than 
that of the original database.  

In some business environments, the data mining may need 
to be processed among databases. Nevertheless, data may 
be distributed among several sites, but none of the sites is 
allowed to expose its database to another site.  

Consider the following scenario: Some insurance 
companies have their own databases that record their 
insured’s information. For mutual benefit, these 
companies decide to cooperate for insurance fraud 
detection by distributed data mining. The data mining 
model must be high accurate to detect fraud, because a 
mistake results in great loss of revenue or great amounts of 
pay. Moreover, insurance companies cannot share data 
about their customers with other companies, owing to the 
restriction laws (and having a high competitive edge). 
They may share knowledge about fraudulent insurance 
records, but not their data. Each company attempts to 
share their “block-box” models to discover more 
interesting rules on the whole shared information than that 
on their own database, and can protect the exclusive 
records that other companies may find [25]. 

Secure Multiparty Computation (SMC) [6, 7] employs 
distributed algorithms in a secure manner. SMC not only 
preserves individual privacy, but also aims to preserve 
leakage of any information other than the final result. 
However, traditional SMC methods require a high 
communication overhead. They do not scale well with the 
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database size. Therefore, this study focuses on the problem 
of privacy-preserving mining frequent itemsets in multiple 
distributed databases, in which each transaction entirely 
belongs to only one site, with a low communication 
requirement and without perturbing the original data.  

Kantarcioglu and Clifton proposed a two-phase scheme 
for privacy-preserving distributed mining of association 
rules on horizontally partitioned data [15]. This scheme 
transmits and encrypts large amounts of candidates in the 
first phase. In the second phase, the Kantarcioglu and 
Clifton’s scheme has a high risk of collusion between sites. 
Therefore, this study proposes the Enhanced Kantarcioglu 
and Clifton’s Scheme (EKCS) to speed up the process of 
the first phase and reduce the security risk in the second 
phase. 

The rest of this paper is organised as follows: Section 2 
presents the background and an overview of the current 
methods for solving the problem of PPDM. Section 3 
explains the proposed Enhanced Kantarcioglu and 
Clifton’s Scheme (EKCS). Finally, we conclude in Section 
4 with a summary of our work. 

2. Background and Related Work 

2.1 Association rule mining 

Agrawal et al. first introduced the problem of association 
rule mining over a market-basket transaction database in 
[3]. An example of a rule is as follows: 50% of 
transactions that purchase an 21” LCD monitor also 
purchase a video game. Such rules can provide valuable 
information on the customer buying behavior. The formal 
statement of association rule mining is as follows [3, 4]:  

Let I = {i0, i1, …, in-1} be the set of items. Let DB be a 
transaction database, where each transaction T in DB is a 
set of items, that is, IT ⊆ . A set of items X is also 
referred as an itemset. An itemset that contains k items is 
called a k-itemset. A transaction T supports an itemset X, if 

TX ⊆ . An association rule is denoted as the form X⇒Y, 

where X⊆ I, Y⊆ I and XIY = φ  (For example, I = {A, B, 
C, D, E}, X = {A, C} and Y = {B, E}). A rule X⇒ Y 
includes two important attribute values, support and 
confidence, denoted as Sup(X ⇒ Y) and Conf(X ⇒ Y), 
respectively. Given two user pre-specified minimum 
support (minSup) and minimum confidence (minConf) 
thresholds, a rule X ⇒ Y holds in DB if and only if 
Sup(X⇒ Y) ≥minSup and Conf(X⇒ Y) ≥minConf. The 
support value s% of X⇒Y means that s% of transactions 
in DB contain YX U . The confidence value c% of 

YX ⇒  means that the transactions contain X in DB in 
which c% of them also contain Y. The itemset YX U  
with length k is called a frequent k-itemset if 
Sup(X⇒Y)≥minSup. 

The process of association rule mining includes two main 
sub-problems: the first is to discover all frequent itemsets; 
the second is to use these discovered frequent itemsets to 
generate association rules. Since each association rule can 
easily be derived from the corresponding frequent itemsets, 
the overall performance of the association rule mining is 
determined by the first sub-problem. Therefore, 
researchers usually focus on efficiently discovering 
frequent itemsets. Agrawal et al. presented the Apriori 
algorithm to efficiently identify frequent itemsets [4]. 
Apriori is a level-by-level algorithm including multiple 
passes. In each pass, Apriori generates a candidate set of 
frequent k-itemsets (frequent itemsets with length k). Each 
frequent k-itemset is combined from two arbitrary frequent 
(k-1)-itemsets, in which the first k-2 items are identical. 
Then, Apriori scans the entire transaction database to 
determine the frequent k-itemsets. The process is repeated 
for the next pass until no candidate can be generated. 
Apriori employs the downward closure property to 
efficiently generate candidates in each pass. The property 
indicates that no subset of a frequent itemset is infrequent; 
otherwise the itemset is infrequent. The property can be 
used to eliminate useless candidates to speed up the 
mining process. Other methods have been proposed to 
efficiently discover frequent itemsets, such as level-wise 
algorithms [3, 4, 8, 22] and pattern-growth methods [2, 13, 
14, 17]. 

2.2 Distributed association rule mining 

Association rule mining in a very large database may 
require substantial processing power or be operated on a 
distributed system. Moreover, many large databases are 
distributed in nature [10]. Therefore, several algorithms 
for parallel mining of association rules have been 
proposed [1, 10]. Assume that a distributed system has n 
sites S0, S1, …, Sn-1 and the transaction database DB is 
horizontally divided into n non-overlapping partitions db0, 
db1, …, dbn-1, where DB = db0∪db1∪…∪dbn-1, dbi∩dbj 
= φ , 0≤ i≠ j≤ n - 1. Each partition dbi is assigned to site 
Si, and DB is horizontally distributed. Clearly, |DB| = |db0| 
+ |db1 | + … + |dbn-1|.  

X.supi is the local support count of itemset X at site Si, for 
0≤ i≤ n – 1. The global support count of X in DB is given 

as X.sup = ∑
−

=

1

0
sup.

n

i
iX . X is globally frequent if 

X.sup≥minSup× |DB|. Similarly, X is locally frequent if 
X.supi ≥ minSup × |dbi|. Let Fk be the set of all global 
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frequent k-itemsets and LFk(i) be the set of all local 
frequent k-itemsets at site Si, for 0 ≤ i≤ n – 1. If DB is 
divided into n partitions, then any global frequent itemset 
must appear as a frequent itemset in at least one of the n 

partitions [23]. Therefore, we get Fk ⊆ )(

1

0
ik

n

i
LF

−

=
U ; the 

characteristic can be used to efficiently discover global 
frequent itemsets. Cheung et al. proposed a fast algorithm, 
Fast Distributed Mining (FDM) of association rules, for 
distributed association rule mining [10]. The FDM 
algorithm is briefly described as follows:  

1. In each site, like Apriori, FDM discovers local 
frequent k-itemsets in each pass.  

2. In each pass, each site broadcasts LFk(i) and calculates 

the local support value of itemsets in 
)(

1

0
ik

n

i
LF

−

=
U . 

3. In each pass, each site broadcasts the local support 

values of itemsets in 
)(

1

0
ik

n

i
LF

−

=
U .  

Therefore, each site can determine the global frequent 
k-itemsets Fk. 

2.3 Secure Multiparty Computation 

A Secure Multiparty Computation (SMC) problem is 
defined a situation in which some information can be 
exchanged by ideal functions without a leak of knowledge 
other than the final result [6, 7] among multiparties. The 
generic techniques for SMC have high polynomial-time 
complexity, resulting in it sometimes being impractical [6, 
7]. Several studies focus on finding efficient privacy-
preserving algorithms for specific problems, such as 
privacy-preserving computation of decision trees [18], and 
mining of vertically partitioned databases [11]. 

2.4 Privacy-preserving mining on horizontally 
partitioned databases 

Distributed association rule mining techniques can 
discover association rules among multiple sites [1, 10]. 
They do not require that each site discloses the individual 
database, but each site is required to exchange all global 
candidate itemsets and the corresponding support counts 
with each other. If the support count for each global 
candidate itemset in each individual site is sensitive, the 
above approach reveals such sensitive information to other 
competition companies. Therefore, to enhance the security 
of distributed mining and reduce the computation 
complexity of SMC, Kantarcioglu and Clifton proposed a 
secure scheme for privacy-preserving association rule 
mining on horizontally partitioned databases [15].For the 
simplicity, we refer Kantarcioglu and Clifton’s Scheme as 
KCS for the rest of the paper. For this issue, Veloso et al. 

also proposed an efficient method to speed up the global 
candidate generation and concern the privacy-preserving 
for discovering frequent itemsets on distributed databases 
[25]. 

For a two-party case, no doubt, a site obtains the global 
support count of an itemset X, and the local support count 
of X in another site must be revealed by a simple 
subtraction operation. Therefore, KCS preserves the 
privacy of individual site results for three or more parties 
[15]. 

Let n be the number of sites, where n ≥ 3. Each site 
maintains a private transaction database dbi, where 
0≤ i≤ n-1. Users assign the minSup and minConf values 
for the global database DB = db0∪db1∪…∪dbn-1, where 
dbi∩dbj = φ  and 0 ≤ i ≠ j ≤ n-1. KCS discovers all 
association rules satisfying the two thresholds in the 
disclosure restriction, in which no site can access the data 
and know the support count for any global candidate 
itemset of any other site except for its own data and the 
final result. The KCS process includes two phases: 
securely generating candidate frequent itemsets and 
finding global frequent itemsets without revealing support 
count. KCS is described as follows:  

In the first phase, KCS applies commutative encryption 
[21] to preserve the global candidate itemsets in each site. 
Each site encrypts its own local frequent itemsets and 
some fake itemsets, then sends the encrypted itemsets to 
the next site until all sites have encrypted all itemsets. 
Then, KCS merges all encrypted itemsets to S0 by 
eliminating duplicates. All encrypted itemsets are then 
decrypted site by site. The site Sn-1 obtains the all global 
candidate itemsets and broadcasts them to each site. As 
shown in Figure 1, {A, B}, {A, C} and {A, D} are the local 
frequent 2-itemsets in S0, S1 and S2, respectively. The top 
of Figure 1 shows that S0 has merged five encrypted 
itemsets by three sites including three local frequent 
itemsets and two fake itemsets {{A, E}, {A, F}}. S0 
decrypts the five three-scale encrypted itemsets and sends 
them to S1. Similarly, S1 decrypts the five two-scale 
encrypted itemsets and sends them to S2. Finally, S2 
obtains the five global candidate itemsets {{A, B}, {A, C}, 
{A, D}, {A, E}, {A, F}} and broadcasts them to each site. 

After all global candidate itemsets are generated, KCS 
performs the second phase to test whether each itemsets is 
frequent. Start with an initial site Si, 0≤ i≤ n-1, for any 
candidate itemset X, Si selects a distinct random number Ri 
and adds Ri with an excess support count of X (X.supi - 
minSup× |dbi|) then sends the result to next site. Except for 
the initial site Si, each site Sj does not select a random 
number and only adds the calculating result of the 
previous site of X with X.supi - minSup× |dbi|. The final 
site Sj obtains the result to determine whether X is globally 
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frequent, j ≡  n+i-1 (mod n). In Figure 2, KCS selects the 
random number R0 = 19 for 2-itemset {A, B} in S0, 
meanwhile {A, B}.sup0 =18, |db0| = 100 and minSup = 
10%. KCS sends the result, r0 = 27 (19+18-10%×100), to 
site S1. Site S1 adds 27 with the excess support count -3 (7-
10%×100) and sends the result 24 to site S2. Site S2 adds 
24 with the excess support count -8 (12-10%×200) and 
obtains the final result, r2 = 16. Since the final result is less 
than the random number R0, itemset {A, B} is infrequent. 

 

 
Fig. 1. Generating global candidate 2-itemsets 

3. Enhanced Kantarcioglu and Clifton’s 
Scheme (EKCS) 

Like KCS, the proposed Enhanced Kantarcioglu and 
Clifton’s Scheme (EKCS) is also a two-phase method. The 
useful notations of the proposed scheme are described as 
follows: 

DB: The global database 
minSup : The pre-specified minimum support threshold 
X: An itemset 
Si: A local sites, for 0≤ i≤ n-1 

idb : A local database on site Si 

X.supi: The local support count of X at site Si 
X.sup: The global support count of X, where 

∑
−

=
=

1

0

n

i
iX.supX.sup  

F: The set of all global frequent itemsets in DB 
LF(i): All local frequent itemset at site Si 

3.1 First phase of EKCS 

This study proposes EKCS to reduce the communication 
overhead of KCS in the first phase. KCS requires k round 
of communication to transmit all local frequent itemsets 
during the distributed mining operation. According to the 
downward closure property of Apriori, a frequent k-

itemset contains 2k-1 frequent sub-itemsets. A frequent 
itemset has no frequent superset is called a maximum 
frequent itemset (MFI). In database DB, the set of all MFIs 
by deleting the redundant frequent sub-itemsets from F 
can represent all frequent itemsets. In other words, once 
all maximum frequent itemsets are found, it is 
straightforward to obtain all frequent itemsets. Veloso et al. 
[25] have proposed another scheme, which applied the set 
of all MFIs to reduce the number of transmitted itemsets, 
and to speed up the first phase of KCS. However, this 
scheme requires a trusted authority to combine all 
maximum frequent itemsets among sites. 

In the first phase, EKCS combines the advantages of 
Veloso et al. and KCS schemes to efficiently unite all 
global candidate itemsets. After each site Si discovers all 
local frequent itemsets, LF(i), EKCS selects local frequent 
itemsets from longest k-itemsets to 2-itemsets to delete 
their frequent subsets from LF(i) level-by-level. Meanwhile, 
EKCS adds some fake itemsets into LF(i) and deletes their 
sub-itemsets from LF(i). In each site, the final LF(i), which 
only contains maximum frequent itemsets and some fake 
itemsets, is denoted as LMF(i). Then, EKCS applies 
commutative encryption to encrypt each itemset in LMF(i). 
Each site Si encrypts itemsets in LMF(i) and sends the 
encrypted itemsets to the next site Sj  (j = i+1 mod n), then 
Sj encrypts them and sends them to next, until itemsets 
have be encrypted by all sites. The mergence and 
decryption steps are similar to KCS. After the site, Sn-1, 
obtains all local maximum frequent itemsets LMF 
(including fake itemsets), EKCS merges and deletes the 
redundant itemsets (the redundant itemset is a subset of 
another arbitrary itemset in LMF) and broadcasts them to 
every other site. These fake itemsets must be globally 
infrequent and do not alter the counting result of global 
frequent itemsets in the second phase.  
EKCS and KCS utilize the same encryption technique in 
this phase. However, EKCS requires only one circular 
round of encryption processes. Clearly, EKCS transmits 
less itemsets than KCS. Therefore, EKCS is a more 
efficient method than KCS without increasing the security 
risk. 

3.2 Second phase of EKCS 

Each site receives LMF from the first phase result of 
EKCS. All global candidates can be straightforwardly 
derived from LMF. The second phase determines whether 
each global candidate itemset is globally frequent. A 
global frequent itemset, X, satisfies the inequality 
X.sup || DBminSup×≥ . Therefore,  

|| DBminSupX.sup ×−   
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= ∑∑
−

=

−

=
×−

1

0

1

0
||

n

i
i

n

i
i dbminSupX.sup  

 

= 0|)|(
1

0
≥×−∑

−

=
i

n

i
i dbminSupX.sup . (1)

Equation 1 can be used to determine whether a candidate 
itemset is globally frequent or not, without revealing 
X.supi or |dbi|. The value, || ii dbminSupX.sup ×− , is 
called the excess support count at site Si. 
In the second phase, KCS cannot resist the collusion attack. 
Moreover, if an attacker intercepts the input and output 
data from site Si, each intercepted itemset can easily be 
derived whether it is locally frequent by a simple 
subtraction operation. For example, in Figure 2, an 
attacker acquires the r0 and r1 values of itemset {A, B} by 
monitoring S1. {A, B} is locally infrequent in S1 because 
the excess support count r1 – r0 = 24 – 27 = -3 < 0. If |db1| 
has also been leaked out, the local support count 
(10%×100 - 3) of {A, B} appears. 
Therefore, this study proposes two protocols, which have 
the resilience against collusions, to be applied in a 
communication environment with or without a trusted 
authority, respectively.  

 
Fig. 2. Determining if the candidate 2-itemset {A, B} is 

globally frequent 

Protocol A (With a trusted authority) 
Instead of generating a random number only at an initial 
site for each global candidate itemset, the trusted authority 
(TA) generates an individual random number Ri for each 
site Si. Then, each site Si computes the locally resulting 
value ri, where iiii RdbminSupX.supr +×−= || . That 
is, the resulting value is the sum of the locally excess 
support value and the corresponding random number. Let 

Rsum = ∑
−

=

1

0

n

i
iR . The globally excess support value of a 

global candidate itemset X, GE, can be calculated as 
follows: 
GE || DBminSupX.sup ×−=   

∑
−

=
×−=

1

0
|)|(

n

i
ii dbminSupX.sup  

)(||
1

0

1

0
RsumRsumdbminSupX.sup

n

i
i

n

i
i −+×−= ∑∑

−

=

−

=
 

RsumRdbminSupX.sup
n

i
i

n

i
i

n

i
i −+×−= ∑∑∑

−

=

−

=

−

=

1

0

1

0

1

0
||  

RsumRdbminSupX.sup
n

i
iii −+×−= ∑

−

=

1

0
)||(  

Rsumr
n

i
i −= ∑

−

=

1

0
 

If 0≥GE , X is a frequent itemset; otherwise, X is 

infrequent. In a communication environment with a trusted 

authority, the steps of the protocol are as follows: 

Step1. For each global candidate itemset, a trusted 
authority (TA) generates n random number {R0, R1, …, 

Rn-1}; then, TA calculates Rsum = ∑
−

=

1

0

n

i
iR . 

Step 2. For each global candidate itemset, TA distributes 
the number pair (Ri, Rsum) to site Si over a secured 
channel, then each site Si calculates the locally 
resulting value ri, where 

iiii RdbminSupX.supr +×−= || . 
Step 3. Each site Si broadcasts the locally resulting value ri 

of each global candidate itemset X to every other site. 
Step 4. Each site Si computes the globally excess support 

count, GE Rsumr
n

i
i −= ∑

−

=

1

0
, of each global candidate 

itemset. Then, it determines whether each global 
candidate itemset is globally frequent or not. 

Example 3.1: 
Consider three local sites S0, S1 and S2. The transaction 
numbers of 0db , 1db  and 2db  are 100, 100 and 200, 
respectively. Let X = {A, B} be a global candidate itemset. 
As shown in Figure 3, the support counts of X in 0db , 

1db  and 2db  are 18, 7 and 12, respectively. Let the 
minimum support threshold minSup  be 10%. The 
following steps determine if X is globally frequent. 
Step 1. TA randomly selects 90 =R , 121 =R  and 

72 =R ; Rsum = 28. 
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Step 2. Over a secured channel, TA sends (9, 28), (12, 28) 

and (7, 28) to S0, S1 and S2, respectively. S0, S1 and S2 

independently calculate 179100%10180 =+×−=r , 

912100%1071 =+×−=r  and 

17200%10122 −=+×−=r , respectively. 

Step 3. Sites S0, S1 and S2 broadcast r0, r1 and r2 to every 

other site, respectively. 

Step 4. Each site computes GE 03281917 <−=−−+= . 

Therefore, X is globally infrequent. 

 
Fig. 3. Determining if the global candidate 2-itemset {A, 

B} is globally frequent 

Protocol B (Without a trusted authority) 
Instead of generating a random number for each global 
candidate itemset only at an initial site, EKCS generates 
an individual random number Ri for each site Si. Then, 
each site Si sends Ri to the next site Rj, where j ≡  i+1(mod 
n). Then, the initial site Si computes the locally resulting 
value ri, where jiiii RRdbminSupX.supr −+×−= ||  
and j ≡  n+i-1(mod n). Except for the initial site Si, each 
site Si’ computes the locally resulting value ri’, where 

jiiiji RRdbminSupX.suprr −+×−+= '''' ||  and j ≡  
n+i’-1(mod n). Let S0 be the initial site. The globally 
excess support value of a global candidate itemset X, GE, 
can be calculated as follows: 
GE || DBminSupX.sup ×−=  

∑∑∑∑
−

=

−

=

−

=

−

=
−+×−=

1

0

1

0

1

0

1

0
||

n

i
i

n

i
i

n

i
i

n

i
i RRdbminSupX.sup  

)||(
1

0
j

n

i
iii RRdbminSupX.sup −+×−= ∑

−

=
, where j 

≡  n+i-1(mod n) 

)||(
1

1
0 j

n

i
iii RRdbminSupX.supr −+×−+= ∑

−

=
 

)||(
1

2
1 j

n

i
iii RRdbminSupX.supr −+×−+= ∑

−

=
 

...=  

)||(
1

1
2 j

n

ni
iiin RRdbminSupX.supr −+×−+= ∑

−

−=
−  

1−= nr  
If 01 ≥= −nrGE , X is a frequent itemset; otherwise, 

X is infrequent. In a communication environment without a 
trusted authority, the steps of the protocol are as follows: 
Step1. Each site Si randomly selects Ri, and sends Ri to site 

Sj via a secured channel, where ) mod(  1 nij +≡ . 
Step 2. Select an initial site Si, then calculate 

jiiii RRdbminSupX.supr −+×−= ||  to site 'iS , 

where ) mod(  1 ninj −+≡  and ) mod(  1' nii +≡ .  

Step 3. For each non-initial site iS , EKCS calculates ri = 

rj+ || ii dbminSupX.sup ×−  +Ri-Rj and sends ir  to 

the next site 'iS , where j ≡  n+i-1(mod n) and i’ ≡  
i+1 (mod n). Then, it determines whether each global 
candidate itemset is globally frequent or not at the final 
site.  

Step 4. The final site iS  broadcasts the determined result 
of each global candidate itemset (X is frequent or not) 
to every other site. 

Example 3.2: 
Consider the example as shown in Figure 4. Let X = {A, 
B} be a global candidate frequent itemset. The transaction 
number of each site, the local support count of each site, 
and the minimum support threshold are the same as given 
in Example 3.1. The following steps determine if X is 
globally frequent. 
Step 1. Sites S0, S1 and S2 randomly select R0 = 9, R1 = 12 

and R2 = 7, respectively. S0 sends 9 to S1; S1 sends 12 
to S2; S2 sends 7 to S0. 

Step 2. Let S0 be the initial site, EKCS calculates 
1079100%10180 =−+×−=r  and sends r0 to S1.  

Step 3. Site S1 calculates 
10)912100%107(01 =−+×−+= rr . Then, S1 

sends r1 to S2. Finally, site S2 computes 
3)127200%1012(12 −=−+×−+= rr . Therefore, 

X is globally infrequent. 
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Step 4. Site S2 broadcasts that X is globally infrequent to 
sites S0 and S1. 

 
Fig. 4. Determining if the global candidate 2-itemset {A, 

B} is globally frequent 

4. Conclusions 

Data mining techniques are very useful in extracting 
interesting information from databases. In this competitive 
but also cooperative business environment, companies 
need to share information with others, but not sharing the 
data. The research of privacy-preserving data mining on 
distributed databases has become an important issue. This 
study proposes an Enhanced Kantarcioglu and Clifton 
Scheme (EKCS) based on the two-phase method of the 
Kantarcioglu and Clifton Scheme (KCS). In the first phase, 
EKCS reduces the number of itemsets to be encrypted and 
transmitted without increasing the security risk. 
Furthermore, in the second phase, this study introduces 
two protocols for enhancing security against collusion.  
Now, we are investigating the development of superior 
privacy-preserving algorithms to further reduce 
computation complexity and increase the security without 
sharing the data in distributed database environments. 
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