
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

267

Manuscript received November 5, 2006.
Manuscript revised November 25, 2006.

 A New Fair Weighted Fair Queuing Scheduling
Algorithm in Differentiated Services Network

M. A. Elshaikh, M. Othman, S. Shamala and J. Desa
Department of Communication Technology and Network

Faculty of Computer Science and Information Technology
University Putra Malaysia
 Selangor, D.E., Malaysia

Summary
Many new technologies has been proposed by the Internet
Engineering Task Force (IETF) to cover the new real time
applications which are becomes very important in today’s
Internet demands. One such technology is Differentiated
Services (DiffServ). This has been introduced to provide better
QoS where the routers provide PHBs to aggregate traffic for
different levels of services and the scheduling algorithm used by
the DiffServ routers is playing a critical role in implementing
those PHBs. In this paper a new scheduler, Fair Weighted Fair
Queuing (FWFQ), has been proposed that can be used effectively
in a DiffServ networks. We evaluate the performance of our
proposed FWFQ algorithm using extensive network simulation
with a comparison to the current used algorithms WFQ and
WIRR. The results from the simulation studies indicate that the
scheduling algorithm we propose ensures both the required
bandwidth fairness and end-to-end network delay bounds for
QoS in DiffServ networks.

Key words:
Diffserv, FWFQ, Scheduling, QoS

1. Introduction

There is a need for mechanisms to support QoS in the
Internet to provide appropriate services for delay and loss
sensitive applications. The IETF has proposed two
architectures for that, namely, IntServ and DiffServ.

The IP QoS architecture development began with the
IntServ concept [1], which deals with individual flows and
relies on signaling to reserve the network resources
necessary to satisfy QoS requirements for each flow along
the flow’s path. The scalability problem led to the design
and introduction of DiffServ architecture [2], in this
architecture, aggregates of flows are allocated resources in
accordance with a small number of standardized QoS
specifications based on the PHB construct.

1.1 DiffServ
DiffServ model has been developed to provide an efficient
platform for service providers to commit and fulfill

contracts with customers [3]. DiffServ push the flow-
based traffic classification and conditioning to the edge
router of a network domain. The core of that domain is
only having a responsibility of forwarding the packets
according to the PHB associated with each traffic class;
which is identified by the DiffServ Code Point (DSCP)
field in the header of each packet. Currently, the IETF
defines a set of PHBs which includes Expedited
Forwarding (EF) PHB, Assured Forwarding (AF) PHB
and Best Effort (BE) PHB [4, 5, 6]. The implementation
of PHBs relies much on the marker, scheduling and
queuing schemes used in switches and routers [7, 8].

In this paper, a new scheduler is proposed and
implemented using NS-2. The results acquired shown that
the proposed algorithm performs better than the current
available algorithms for DiffServ.

1.2 Unfairness of Weighted Fair Queuing
Generalized Processor Sharing (GPS) is an ideal
scheduling algorithm [9]. In this algorithm, packets from
each flow are classified into different logical queues. GPS
serves non-empty queues in turn and skips the empty
queues. It sends an infinitesimally small amount of data
from each queue, so that in any finite time interval it visits
all the queues at least once [10]. There can be a service
weigh associated with each queue. Queues receive service
according to their associated weights. Because GPS posses
the properties of ideal fairness and complete isolation,
there are many research studies have been done on it.
However, GPS is not implementable because serving an
infinitesimal amount of data from each non-empty queue
is not possible. Thus, various emulations of GPS have
been proposed in the literature, one of those variations,
which used in DiffServ networks is WFQ.

Packet by packet Generalized Processor Sharing (PGPS)
and WFQ algorithms are both approximations of GPS.
The difference between these algorithms and GPS is that
unlike GPS they do not service an infinitesimal amount of
data from each queue. Another improvement, which has

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

268

been done to GPS in these algorithms, is that, in the case
of flows’ variable packet sizes, they need not to know the
average packet size in advance [9, 11]. WFQ is essentially
the same as PGPS, but they were independently developed.
Thus, we only focus on explaining WFQ. WFQ was
developed by Demers, Keshav, and Shenker in 1989. The
idea behind the algorithm is that for each packet, WFQ
computes the time at which service to the packet would be
finished, deploying a GPS scheduler. Then the WFQ
scheduler services the packets in the increasing order of
their finish times. In other words, WFQ simulates GPS on
one side and uses the results of this simulation to
determine the packets’ service order.

It has been prove that WFQ have an excellent use in
creating firewalls between classes but at the same time it
does punishing flows or classes [12], in the case of
DiffServ, for using uncontended bandwidth which making
it not suitable for DiffServ architecture.

There are some enhancements have been done for WFQ
[12, 13, 14, 15] although all those algorithms are fair in
the worst-case sense and tend to have low delay, they were
not designed to provide service differentiation among
classes in the context of DiffServ networks.

The rest of the paper is organized as follows. Section 2,
describes the new proposed algorithm (FWFQ). The
scenario of the experiment used in the paper is explained
in section 3. Simulation results and analysis are discussed
in section 4, while Section 5 concludes the paper.

2. FWFQ

FWFQ has been proposed in an attempt to correct the
above-mentioned problem. It proposes the usage of two
types of queue and uses the queue length as a parameter to
in calculating the virtual time to ensure that the flows or
aggregates are not punished for using uncounted
bandwidth.

In FWFQ the virtual time will approach along with the
real time same like the WFQ but will not be fixed so that it
will be moving according to the queue length. Compare
the current queue length with the weight when a packet
arrive or depart.

We can summarize the algorithm as shown in Figure 1.
The basic idea of FWFQ is dealing with current queue
length in respects with the weight of that queue in the
current class, which it can be summarized in the following
equation

 Wi = f (Q lengthi
k) (1)

Assume that Wi is not changing during the transmission
for all i.
Then let Xi be the current number of packets for class Ci in
the output queue and qi is the current queue length, and
Wi

0 is the basic weight for of class i.

Xi= min (Wi
0+ Qi , Wi

max) (2)

Analytically we can prove that the FWFQ resulting in a
delay bound similarly to that of WFQ.

 (3)

The delay of packet k in class i is delayi

k =Di
k – ti

k , similar
to that of WFQ.

Figure 1: FWFQ Algorithm

3. Experimental Model

In this section we outline the model of our proposed
algorithm and the simulation model used to verify the
performance of FWFQ compared to WFQ and WIRR. The
result acquired displays the correlation between the
scheduling mechanisms and the performance metrics.

Packet arrival (Pi)
If (Scheduler not idle)
When a packet arrive at time t

Update the system virtual time v’(t) using the last-vt-
update v’(t) at time β

 V(t) = v’(β) + (t- β)/Sum ; where Sum = ∑ri
 i€B(i)

 Where β <= t < β + 1
 V’(t) = t
Else
 V’(t) = t;
 V(t) = 0;
Previous Queues finish time = last queue finish time /
Gamma;
Compute the finish time for the packet (i.e. time stamp the
packet)

Fill the queues finish time to the previous finish time For
Fj = Fi
Get Sk

i for the new packet
 Sk

i = max (Fi
k-1, V(t))

Calculate
 Fi = Sk

i + Li
k/ri

Place the packet with time stamp to the related queue
 Get Sum = ∑ri
 i€B(i)

V(ti) = V(β) + (ti – β) / Sum

 Get the packet with a minimum V(ti) to be transmitted

< + Ci ×
1

 ƒ(Qk-1) i

Dk
i

Dk-1
i

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

269

3.1 Simulation Model
In [16] performance evaluation of Dynamic DiffServ
Scheduling (DDS) and Priority Queuing Weighted Round
Robin (PQWRR) was performed. However, in this paper
WIRR, WFQ and FWFQ are considered because currently
the most common used algorithms are WIRR and WFQ
algorithms.

The network model shown in Figure 2 is utilized. The
sources are connected with an edge router with link
capacity of 10Mbps and the ingress connected to the core
with a link capacity of 10Mbps and from the core to the
ingress is connected with a link capacity 10Mbps, this core
is connected to the egress edge router with a bottleneck
link capacity 5Mbps and from the edge router (egress) to
the core with a link capacity 5Mbps which is to congestion.
Then, this egress router is connected to the destination
nodes with a link capacity of 10Mbps. The delay time in
all links is set to 5ms.

Figure 2: DiffServ Network configuration used in the simulation

Variable Bit Rate (VBR) traffic is generated from the
sources to the destinations with a different traffic rate
values. A DiffServ domain at its edge may control the
amount of traffic that enters or exits the domain at various
levels of drop precedence. These traffic conditioning may
include traffic shaping, discarding packets and reassigning
of packets to a different traffic class. In this paper the
implementation of traffic conditioning is done via a token
bucket shaper.

3.2 Model Scenario
The result will be discussed by usage of two kinds of
scenarios. In the first one, we have used the model in order
to evaluate our proposed algorithm with respects to delay
losses and jitter. However, in the second scenario, we
focused in the fairness of our proposed algorithm
compared with other algorithm in the case of different
classes are used in the DiffServ network.

4. Results and Discussions

The key aspects of our experiments in this paper is to
evaluate FWFQ algorithm on its guarantee of bounds
delay and jitter, as well as the minimum guaranteed
bandwidth for the class that was given high priority, while
equally observing its fair allocation of link bandwidth to
other low priority service classes. These performance
characteristics enable to determine whether the suggested
algorithm is fair and efficient, thus it can support
applications in DiffServ networks in order to achieve an
acceptable performance.

Figure 3 show that WFQ has a better performance among
all of the mechanisms used in terms of Idrop, which
represents the packet drop due to an overflow. However,
for the range of 10% up to 50% network provision FWFQ
is performing better than the other algorithms.

0

5000
10000

15000
20000

25000

20 40 60 80

% Network Provision

P
ac

ke
ts WIRR

WFQ
FWFQ

Figure 3: Idrop

In terms of the dropping due to a Random Early drop
(RED) mechanism, which we denoted as Edrop, Figure 4;
WIRR has a better performance as compared to WFQ and
FWFQ. While up to 50% network provision FWFQ is
performing better than WFQ algorithm.

0
50

100
150
200
250
300

20 40 60 80

% Network Provision

Pa
ck

et
s WIRR

WFQ
FWFQ

Figure 4: Edrop

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

270

In comparison of total packets dropped, it is observed that,
as shown in Figure 5, WIRR has a better performance
overall among the all compared algorithms making it more
suitable for those sensitive to loss applications. However
up to 50% network provision FWFQ performs better.

0

5000
10000

15000
20000

25000

20 40 60 80

% Network Provision

Pa
ck

et
s WIRR

WFQ
FWFQ

Figure 5: Total Drop

Table 1 show that, in contexts of delay FWFQ has almost
a similar performance like WFQ, which is better than
WIRR and in terms of jitter FWFQ is outperforms WFQ.

Table 1: Average Delay, Loss and Jitter

0

0.02

0.04

0.06

0.08

20 30 40 50 60 70 80 90

Network Provision (%)

Fa
irn

es
s

A
m

on
g

C
la

ss
es

WFQ Class1
WFQ Class2

Figure 6: WFQ Fairness Index for Different Classes

Figure 6 shows the service fairness index for different
DiffServ classes uses WFQ, it is clear that the algorithm is
experiencing some sort of unfairness among the classes
sharing the DiffServ domain.

0
0.01
0.02
0.03
0.04
0.05
0.06

20 30 40 50 60 70 80 90

Network Provision (%)

Fa
irn

es
s

A
m

on
g

C
la

ss
es

FWFQ Class 1
FWFQ Class2

Figure 7: FWFQ Fairness Index for Different Classes

In Figure 7, it is clear that by using our proposed FWFQ
the fairness of the classes sharing the DiffServ network
becomes better making our algorithm suits the DiffServ
architecture.

5. Conclusion

In this paper we have proposed a new scheduler that it can
be used effectively in a DiffServ networks and
investigated the effects of using different scheduling
mechanisms on a traffic stream entering a DiffServ
network. It has been shown that for loss sensitive
applications WFQ is the most appropriate since it has the
smallest number of dropped packets in Idrop and overall
dropped although WIRR performs better in terms of Edrop
however in both cases FWFQ performs better up to 50%
network provision level. In general we can see that WFQ
has a better performance overall among the all compared
algorithms making it more suitable for those sensitive to
loss applications. However up to 50% network provision
FWFQ performs better. For delay sensitive applications,
FWFQ is better; it gives a better performance in terms of
delay and delay jitter. We have also presents the
evaluation results of a simulation based study on the
fairness criteria of packet scheduling algorithms to support
QoS in DiffServ networks and it shown that FWFQ is the
most suitable one.

The simulation study evaluates the performance of our
proposed FWFQ algorithm using extensive network
simulation in comparison to WFQ and WIRR. For delay
sensitive applications FWFQ is better; it gives a better
performance in terms of delay and delay jitter and ensures
the required bandwidth fairness among the classes sharing
the DiffServ networks and also suites the loss sensitive
applications in the rang of 10% to 50% network provision
level.

Scheduler
Type Delay (ms) Jitter (ms) Loss (%

packets)
WIRR 215.185 42.1721 62.08
WFQ 194.095 47.4337 58.43

FWFQ 189.817 43.7446 58.65

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

271

References
[1] R. Braden, D. Clark, and S. Shenker, “Integrated services

in the Internet: an overview”, RFC1633,
www.ietf.org/rfc/rfc1633.txt.

[2] S. Blake et al, “An architecture for differentiated services”,
RFC2474, www.ietf.org/rfc/rfc2475.txt

[3] J. A. Zubairi, M. A. Elshaikh and O. Mahmoud, “A study of
VBR traffic treatment in DiffServ domain”, International
Journal of Modeling and Simulation, Vol. 23, No. 3, pp
187-193, 2003.

[4] B. Carpenter, and K. Nichols, “Differentiated services in the
Internet” In proc. IEEE, vol. 90, No. 9, Sept. 2002, pp.
1479- 1494.

[5] M. A. Elshaikh and M. Othman, “Differentiated services:
architecture overview study”, Journal of Technology
and Management, Vol. 1, No. 1, pp 7-11, 2003.

[6] D. Hang, H. Shao, W. Zhu, and Y.Q. Zhang, “TD2FQ: An
integrated traffic scheduling and shaping scheme for
DiffServ networks”, in IEEE International Workshop on
High Performance Switching and Routing, 2001.

[7] M. A. Elshaikh, M. Othman, S. Subramaniam and R. Johari,
“An Enhancement of TSWTCM Algorithm to Improve
Fairness in DiffServ Networks: Design and
Implementation”, Brunei International Conference of
Engineering and Technology 2005, BICET 2005, Vol. 3, pp.
89 – 96, 2005.

[8] M. A. Elshaikh, M. Othman, S. Subramaniam and R. Johari,
“Enhanced TSWTCM to Improve Fairness in DiffServ
Networks”, 13th IEEE International Conference on
Networks, IEEE MICC-ICON Proceeding, Kuala Lumpur,
Malaysia, pp. 302 – 307, 2005.

[9] Parekh, A., Gallager, R., “ Generalized Processor Sharing
Approach to Flow Control in Integrated Services
Networks: the Single Node Case”, IEEE/ACM
Transactions on Networking, Vol. 1, No. 3, pp. 344-357,
1993.

[10] Keshav, S., “An Engineering Approach to Computer
Networking”, Addison Wesley, 1997.

[11] Parekh, A., Gallager, R., “ Generalized Processor Sharing
Approach to Flow Control in Integrated Services
Networks: the Multiple Node Case”, IEEE/ACM
Transactions on Networking, Vol. 2, No. 2, pp. 137-150,
1994.

[12] CISCO Systems, “Documentation on QoS”,
http://www.cisco.com/warp/public/732/Tech/qos, 2002.

[13] Golestani, S., “A self-Clocked Fair Queuing Scheme for
Broadband Applications”, in Proc. Of IEEE INFOCOM’94,
Toronto, Canada, Vol. 2, pp. 636-646, 1994.

[14] J. Heinanen , Telia Finland, R. Guerin, “A two rate tree
color marker”, RFC 2698, September 1999.

[15] Risso, F., “Quality of Service on Packet Switched
Networks”, PhD thesis, Faculty of Computer Science,
Torino Polytechnic, Italy, 2000.

[16] Yang, M., Lu, E., Zheng, S., “Scheduling with Dynamic
Bandwidth Allocation for DiffServ Classes”, 12th
International Conference on Computer Communications and
Networks (ICCCN 2003), Dallas, TX, 2003.

M.A. Elshaikh received his BSc. in
Computer Science from Sudan University
of Science and Technology (SUST), Sudan
and his MSc. in Computer Engineering
from the International Islamic University
Malaysia (IIUM), Malaysia; He worked as
teaching and research assistant at SUST
and IIUM. Currently he is a PhD student at

University Putra Malaysia (UPM). His research interest includes
network traffic engineering, parallel computation, distributed
systems, mobile communication, network analysis, performance
and design.

M. Othman completed PhD from
University Kebangsaan Malaysia in
1999 (with best PhD thesis awarded
by Sime Darby Malaysia and
Malaysian Mathematical Science
Society). Currently, he is Associate
professor at the Department of
Communication Technology and
Networks, Faculty of Computer

Science and Information Technology, Universiti Putra Malaysia.
His research interest includes parallel and distributed algorithms,
high speed computer network, multiprocessor system on chip
(MSoC), network management (network security and traffic
monitoring) and scientific computing. He has published more
than 80 articles in journals comprising of both local and
international. He is associate researcher and the coordinator for
the High Performance Computing at the Institute of
Mathematical Research (INSPEM), University Putra Malaysia.

