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Summary 
In this paper, we have addressed the complex problem of 
determining a recovery line for cluster federation and proposed 
an efficient checkpointing / recovery mechanism for it. The main 
objective of the proposed approach is to advance the recovery 
line in a cluster federation such that we can put a limit on the 
amount of rollback by the processes in all the clusters in case of 
failure(s) in the cluster federation; thereby in the worst case only 
limited domino effect is allowed in our work. In this approach, 
processes in different clusters are able to perform their 
responsibility independently and simultaneously. This inherent 
parallelism of the algorithm contributes to its speed of execution. 
We have shown that the proposed approach is superior to the 
existing works, because neither it suffers from any message 
storm, nor it takes any unnecessary checkpoints. 
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1. Introduction 
Cluster is a widely used term meaning independent 
computers combined into a unified system through 
software and networking. At the most fundamental level, 
when two or more computers are used together to solve a 
problem, it is considered a cluster. Clusters are typically 
used for high availability, for greater reliability or for high 
performance computing to provide greater computational 
power than a single computer can provide. Cluster 
computing environments have proved a cost-effective 
solution to many distributed computing problems by 
leveraging inexpensive hardware [1], [2], [9]. Processes in 
a cluster are often linked by a SAN (System Area 
Networks) while clusters are linked by LANs (Local Area 
Network) or WANs (Wide Area Networks) [1], [2]. A 
Cluster federation is a union of clusters, where each 
cluster contains a certain number of processes. 
     Checkpointing and rollback recovery [5] is one of the 
widely used techniques that allow systems to progress in 
spite of failure. The basic idea is to periodically record the 
system state as a checkpoint during normal system 
operation and, upon detection of faults, to restore one of 
the checkpoints and restart the system from there [5], [6]. 
Considering the characteristics of cluster federation 
architecture, different checkpointing mechanisms should 
be used within and between clusters. 

     A system is said to be consistent, if there is no message 
which is recorded in the state of its receiver but not 
recorded in the state of its sender [2], [5], [6]. Each cluster 
determines a consistent local checkpoint set that consists 
of one checkpoint from each process present in it. But this 
consistent local checkpoint set may not be consistent with 
the other clusters’ consistent local checkpoint sets, 
because clusters interact through messages which result in 
dependencies between the clusters. Therefore, a collection 
of consistent local checkpoint sets does not necessarily 
produce a consistent federation level checkpoint set (i.e. a 
federation-wide recovery line) that consists of one 
checkpoint from each process present in the cluster 
federation. Consequently, rollback of one failed cluster 
may force rollback of the other clusters in order to 
maintain consistency of the cluster federation. In the worst 
case, consistency requirement may force the system to 
rollback to the initial state of the system, losing all the 
work performed before a failure. This uncontrolled 
propagation of rollback is termed as domino-effect [10]. 
There is, therefore, a need to have a second level of 
cluster-wide checkpointing algorithm that prevents the 
rollbacks in reaching a consistent federation level 
checkpoint set (i.e., a federation level recovery line). It 
means that, this algorithm has to ensure that the collection 
of all consistent local checkpoints sets always produces a 
consistent federation level checkpoint set. 
 
Problem Formulation: A significant amount of research 
exists in the literature for recovery in distributed systems 
[3]-[8]. However, very few works [1], [2] have been 
reported for handling the problem of recovery in cluster 
federation computing so far. In this work, we address this 
problem in cluster federations. Our objective is to advance 
the recovery line in a cluster federation such that we can 
put a limit on the amount of rollback by the processes in 
all the clusters in case of failure(s) in the cluster 
federation; thereby in the worst case only limited domino 
effect is allowed in our work. The key concept used in this 
work is that it is the sending process that makes sure that 
none of its sent messages can remain an orphan. So any 
process that receives some messages has no responsibility 
to make the received messages non orphan. This is why 
the decision taken by a process P about whether to take a 
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checkpoint or not, does not affect any other process’ 
decision about the same. It results in all processes taking 
their respective check pointing decisions independently 
and simultaneously without the need for sharing of any 
information.  
     The system architecture considered in this paper is 
similar to that considered in [2], where multiple 
coordinated checkpointing subsystems are connected with 
a single independent checkpointing subsystem. An 
example of such architecture is shown in Fig. 1. In this 
figure each coordinated subsystem represents a group of 
smaller coordinated subsystems which have frequent 
message exchanges among them and multiple independent 
subsystems are combined into one larger independent 
subsystem.  Also note that according to this architecture 
the coordinated subsystems CO1, CO2, CO3, and CO4 
interact with each other very infrequently and only via the 
larger independent subsystem. Thus, in the figure we have 
only one independent subsystem and multiple coordinated 
subsystems. From now on we will call the coordinated 
checkpointing subsystem as coordinated cluster subsystem 
and independent checkpointing subsystem as independent 
cluster subsystem.  

 
     This paper is organized as follows. In Section 2 we 
have stated the necessary data structures used in our 
algorithm. Section 3 describes the working principle of the 
algorithm. In Section 4, we have stated some simple 
observations necessary to design the algorithm. In Section 
5, we have presented our roll-forward federation wide 
checkpointing algorithm along with a comparison with 
existing works. Finally, Section 6 concludes this paper. 
 
2. Relevant Data Structures 
Before we state the relevant data structures and their use 
we need to define the following: 
Regular checkpoint: Inside the coordinated cluster 
subsystem, processes use the single phase non-blocking 
checkpointing protocol reported in [3] to take checkpoints. 
Inside an independent cluster subsystem, processes take 

checkpoints independently according to their respective 
time periods. 
Forced checkpoint: Besides the regular checkpoints, a 
cluster subsystem may also have to take forced 
checkpoints. The conditions for taking a forced checkpoint 
are explained in detail in Section 3. 
      In our approach, communication between two clusters 
means communication between two processes belonging 
to the two clusters respectively. Failure of a cluster means 
failure of its one or more processes. 
      Let us consider a set of n coordinated cluster 
subsystems, {CO1, CO2,…, COn} and an independent 
cluster subsystem denoted by IN. Each cluster subsystem 
consists of several processes. We use the following 
notations to represent a cluster subsystem and its processes. 
The jth process of ith coordinated cluster subsystem COi is 
denoted as pj

i, and the kth process of the independent 
cluster subsystem IN is denoted as pk. Each process pk in 
independent cluster subsystem (IN) maintains a flag ck 
(Boolean). The flag is initially set at zero. Flag ck is set at 
1 when process pk sends its first intercluster or intracluster 
application message after its latest checkpoint. Flag ck is 
reset to 0 again after process pk takes a checkpoint. Note 
that the flag ck of process pk is set to 1 only once 
independent of how many messages process pk sends after 
its latest checkpoint. In addition, process pk maintains an 
integer variable Sk, which is initially set at 0 and is 
incremented by 1 each time the roll-forward federation 
wide checkpointing algorithm is invoked. When process 
pk of the independent cluster subsystem takes its xth 
checkpoint, then this checkpoint is represented as CNk(x).  
      Similarly, each process pj

i in COi (for i =1 to n) also 
maintains a boolean flag cj

i which is initially set at zero. 
Flag cj

i is set at 1 only when process pj
i sends its first 

intercluster or intracluster application message after its 
latest checkpoint. It is reset to 0 again after process pj

i 
takes a checkpoint. Note that the flag cj

i of process pj
i is 

set to 1 only once independent of how many messages 
process pj

i sends after its latest checkpoint. In addition, 
process pj

i maintains an integer variable Sj
i, which is 

initially set at 0 and is incremented by 1 each time the roll-
forward federation wide checkpointing algorithm is 
invoked. When process pj

i of the coordinated cluster 
subsystem takes its xth checkpoint then this checkpoint is 
represented as CNj(x)

i
. 

 
3. Working Principle 
In this paper, we consider the complex problem of 
determining a federation wide recovery line (i.e. globally 
consistent checkpoints for all process of all clusters). This 
federation wide recovery line can be defined as a set of 
checkpoints, one from each process, such that these 
checkpoints are mutually consistent; that is, there is no 
orphan message in the system with respect to this set of 
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checkpoints. Our main objective is to make this recovery 
algorithm roll-forward in nature [7], [8], that is, we will 
allow only limited domino-effect. In our approach, 
processes in a coordinated cluster subsystem takes their 
respective local checkpoints periodically following the 
checkpointing protocol reported in [3]; where as processes 
in the independent cluster subsystem take their respective 
local checkpoints independently (asynchronously) [10] 
according to their respective time periods. However, as 
mentioned earlier that the consistent local checkpoint set 
of one cluster may not be consistent with the other 
clusters’ consistent local checkpoint sets, because clusters 
interact through messages which result in dependencies 
between the clusters. Hence, to determine a federation 
wide recovery line (i.e. the federation wide globally 
consistent checkpoints) we design a roll-forward 
federation wide checkpointing algorithm which is 
executed periodically (say the time period is T) by a 
process in the independent cluster subsystem. Now if a 
failure occurs in any cluster (s), then after the system 
recovers from the failure, all processes of all the clusters 
can restart from their respective federation wide globally 
consistent checkpoints as determined by the last execution 
of the roll-forward algorithm. Therefore, in the worst case, 
the effect of the domino phenomenon is limited by the 
time period T. Hence we call it roll forward recovery. 
Note that the recovery becomes as simple as in the 
synchronous approach [10]. Also, it is understood that the 
time period T used by the proposed algorithm is much 
larger than the individual time periods used by any process 
in the independent cluster system. It is also much larger 
than the time periods used in the coordinated cluster 
subsystems.  
       
     We now briefly outline the situations about when a 
process needs to take a checkpoint while the algorithm is 
executed. Assume that process pk of cluster IN initiates 
periodically the roll-forward federation wide 
checkpointing algorithm. It first checks its local flag ck. If 
it is set to 1, then it takes a forced checkpoint and 
increments its integer variable Sk by 1; otherwise, it only 
increments Sk by 1. It then sends a control message Mc 
piggybacked with its updated Sk value to all processes in 
its subsystem as well as to all coordinated subsystems. A 
process pq (or pj

i) in IN (or COi) on receiving this control 
message Mc checks its local flag cq (or cj

i). If it is set to 1 
then it takes a forced checkpoint and updates its integer 
variable Sq (Sj

i); if it is set to 0 then it skips taking a forced 
checkpoint, but it updates its local integer variable Sq (Sj

i) 
with Sk which is piggybacked with the control message Mc 
sent by the process pk. If process pq (pj

i) skips taking 
forced checkpoint then its latest checkpoint will be its 
federation wide globally consistent checkpoint; otherwise 

the forced checkpoint it takes becomes a federation wide 
globally consistent checkpoint. 
     Any process pk (pj

i) after implementing its decision 
whether to take a forced checkpoint or not, must 
piggyback its Sk (Sj

i) value with its first application which 
is sent to any other process before the next invocation of 
the algorithm. However, the process pk (pj

i) does not need 
to piggyback Sk (Sj

i) value if it sends any other message to 
the same process in the system before the next invocation 
of the proposed algorithm [3]. The advantage of sending 
this piggybacked application message is that, if a process 
pq (or pr

i) of cluster IN (or COi) receives this application 
message before the control message Mc, it compares its Sq 
(Sr

i) value with the piggybacked value of the received 
application message. If Sk (Sj

i) value is greater than Sq (Sr
i) 

then process pq (pr
i) comes to know that the algorithm has 

already been initiated, but it has not yet received the 
control message from the initiator process pk. Therefore 
instead of waiting for control message Mc to arrive, the 
process pq (pr

i) of cluster IN (COi) checks its flag cq (cr
i). If 

it is set to 1, it takes a forced checkpoint, updates its Sq 
(Sr

i) value with the piggybacked Sk (Sj
i) value, and then 

processes the received application message. On the other 
hand, if flag cq (cr

i) value is 0, it just updates its Sq (Sr
i) 

value and then processes the application message. 
 
An illustration: Fig. 2 shows a sample execution of our 
algorithm with different situations. Without any loss of 
generality let us assume that process p2 of cluster IN is the 
initiator of the algorithm to determine a consistent global 
checkpoint of the cluster federation. Process p2 first 
checks its flag c2 and finds that it is set to 1 because it has 
sent two application messages m2 and m4 since its last 
checkpoint CN2(2). So process p2 takes a forced checkpoint 
CN2(3), updates its integer variable S2 to 1 and resets its 
flag c2 to 0. It now sends the control message Mc 
piggybacked with S2 value to processes in its cluster and 
to other clusters. Process p2

1 of cluster CO1 on receiving 
the control message Mc takes the forced checkpoint 
CN2(3)

1 because flag c2
1 is set to 1and updates its integer 

variable S2
1 to 1.  

      Now consider the next situation. Processes p1
2 and p2

2 
of cluster CO2 on receiving this control message finds that 
their respective flags c1

2, c2
2 are set to 0. So, they skip 

taking forced checkpoints, but update their S1
2

 and S2
2 

values to 1. So federation wide globally consistent 
checkpoints for processes p1

2 and p2
2 are CN1(2)

2, CN2(2)
2.  

      Now assume that process p2 of cluster IN sends an 
application message m7 piggybacked with S2=1 to process 
p3

1 after its checkpoint CN2(3). Process P3
1 of cluster CO1 

receives this application message before the control 
message Mc. Process p3

1 learns from the piggybacked 
application message <m7, S2=1> that the algorithm to 
determine the federation wide recovery line has already 
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been invoked, because its own S3
1 value is 0. So instead of 

waiting to receive the control message Mc, process p3
1 

checks its flag c3
1, which is set to 1. So it takes a forced 

checkpoint CN3(3)
1, increments its S3

1 value to 1, and then 
processes the application message m7. Process p3

1 receives 
the control message Mc after it has already implemented 
its decision whether to take a forced checkpoint or not. So 
it just neglects this message. 
      Now assume the following situation. Process p2

2 of 
cluster CO2 sends a piggybacked application message <m8, 
S2

2=1> to process p1 of cluster IN after its latest 
checkpoint CN2(2)

2, which is received by process p1 before 
receiving the control message Mc. Process p1 learns from 
the piggybacked application message <m8, S2

2=1> that the 
algorithm to determine the federation wide recovery line 
has already been invoked, because its own S1 value is 0. 
So process p1 checks its flag c1, which is set to 1 and takes 
the forced checkpoint CN1(3), increments its S1 value to 1 
and then processes the application message m8.  
      Next consider that process p2

1 of cluster CO1 sends a 
piggybacked application message <m9, S2

1=1> to process 
p1

1 which belongs to its own cluster after its latest 
checkpoint CN2(3)

1. Process p1
1 has not yet received the 

control message Mc. As S2
1 > S1

1 process p1
1 knows that 

the algorithm to determine the federation wide recovery 
line has already been invoked. So instead of waiting for 
this control message, process p1

1 checks its flag c1
1, which 

is set to 1 and takes a forced checkpoint CN1(3)
1, 

increments its S1
1 value to 1 and then processes the 

application message m9. Therefore, federation wide 
globally consistent checkpoints for the given example are 
CN1(3)

1, CN2(3)
1, CN3(3)

1, CN1(3), CN2(3), CN1(2)
2 and CN2(2)

2. 
      Now, suppose if process p1 of cluster IN fails, it rolls 
back to its federation wide globally consistent checkpoint 
CN1(3) and  initiates the recovery algorithm by broadcasting 
a control message to all processes in its cluster and to 
other clusters telling them to rollback to their respective 
latest federation wide globally consistent checkpoints. 
Processes on receiving this control message rollback to 
their respective latest federation wide globally consistent 
checkpoints and restart their computations. 
 
4. Relevant Observations 
Below, we state some simple but important observations 
used in the proposed algorithm. 
 
Theorem 1: If at any given time t, if ck (cj

i) = 0 for process 
pk (pj

i) with CNk(x+1) (CNj(x+1)
i) being its latest checkpoint, 

none of the messages sent by pk (pj
i) remains an orphan at 

time t. 
Proof: Flag ck (cj

i) can have the value 1 between two 
successive checkpoints, say CNk(x) (CNj(x)

i) and CNk(x+1) 
(CNj(x+1)

i), of a process pk (pj
i) if and only if process pk (pj

i) 
has sent at least one message mn between these two 

checkpoints. It can also be 1 if pk (pj
i) has sent at least a 

message after taking its latest checkpoint. It is reset to 0 at 
each checkpoint. On the other hand, it will have the value 
0 either between two successive checkpoints, say CNk(x) 
(CNj(x)

i) and CNk(x+1) (CNj(x+1)
i), if process pk (pj

i) has not 
sent any message between these checkpoints, or pk (pj

i) 
has not sent any message after its latest checkpoint. 
Therefore, ck (cj

i) = 0 at time t means either of the 
following two: (1) ck (cj

i) = 0 at CNk(x+1) (CNj(x+1)
i) and this 

checkpoint has been taken at time t. It means that any 
message mn sent by pk (pj

i) (if any) to any other process 
between CNk(x) (CNj(x)

i) and CNk(x+1) (CNj(x+1)
i) must have 

been recorded by the sending process pk (pj
i) at the 

checkpoint CNk(x+1) (CNj(x+1)
i). So message mn can not be 

an orphan; (2) ck (cj
i) = 0 at time t and pk (pj

i) has taken its 
latest checkpoint CNk(x+1) (CNj(x+1)

i) before time t. It means 
that process pk (pj

i) has not sent any message after its latest 
checkpoint till time t. Hence at time t, there does not exit 
any orphan message sent by pk (pj

i) after its latest 
checkpoint. ■         
   
Theorem 2: If flag ck (cj

i) = 1, where CNk(x) (CNj(x)
i) is the 

latest checkpoint of process pk (pj
i), some message(s) sent 

by pk (pj
i) to other processes may become an orphan. 

Proof: The flag ck (cj
i) is reset to 0 at every checkpoint. It 

can have the value 1 only between two successive 
checkpoints of any process pk (pj

i) if and only if process pk 
(pj

i) sends at least one message mn between the 
checkpoints. Therefore, ck (cj

i) = 1 means that pk (pj
i) is yet 

to take its next checkpoint following CNk(x) (CNj(x)
i). 

Therefore, the sending event of the message(s) sent by pk 
(pj

i) after its latest checkpoint CNk(x) (CNj(x)
i) is not yet 

recorded. Now if some other process receives one or more 
of these messages sent by pk (pj

i) and then takes its latest 
checkpoint before process pk (pj

i) takes its next checkpoint 
CNk(x+1) (CNj(x+1)

i), then this received message(s) will 
become orphan. Hence the proof follows. ■    
    
Theorem 3: If Sk (= x) > Sj

i (= x-1), the piggybacked 
application message < mn, Sk > sent by process pk and 
received by a process pj

i can never be an orphan.    
Proof: When Sk (= x) > Sj

i (= x-1), process pj
i knows that 

the xth execution of the roll-forward federation wide 
checkpointing algorithm has already begun and so very 
soon it will also receive the message Mc from the initiator 
process associated with this execution. So instead of 
waiting for Mc to arrive, it decides if it needs to take a 
checkpoint and implements its decision, and then 
processes the message mn. This means that the receiving 
event of the message mn is not recorded at the receiver. 
Therefore, message mn can never be an orphan. ■ 
 
Theorem 4: If Sk = Sj

i = x, process pj
i can immediately 

process the received piggybacked application message < 
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mn, Sk > and this application message sent by process pk 
can never be an orphan. 

Proof: If Sk = Sj
i = x, like process pk, process pj

i has 
already received the control message Mc associated with 
the latest execution (xth) of the roll-forward federation 
wide checkpointing algorithm and has taken its 
checkpointing decision and has already implemented that 
decision. Therefore, process pj

i now processes the message 
mn. It ensures that message mn can never be an orphan, 
because both the sending and the receiving events of 
message mn have not been recoded yet by the sender pk 
and the receiver pj

i respectively. ■ 
 
5. Algorithm Recovery 
We now state the algorithm. It is a single phase algorithm 
because the initiator process interacts with the other 
processes only once via the control message Mc. Also a 
process after its participation in the algorithm does not 
wait for the algorithm to terminate before resuming its 
normal operation. That is, it is a non-blocking algorithm. 
The responsibilities of the initiator process and any other 
process are stated separately. 
 
Process pk in cluster IN: 
 
if pk is the initiator        
        if ck = 1     /* it has sent at least one message after its latest                     
                             checkpoint */ 
                takes a forced checkpoint; 
                ck = 0; 
                Sk = Sk +1; 
                sends <Mc, Sk> to all processes in cluster IN as well as to all                 
                other cluster subsystems; 
                continues its normal operation; 
        else      
                Sk = Sk +1; 
                sends <Mc, Sk> to all processes in cluster IN as well as to all 
                other cluster subsystems; continues its normal operation; 
else if pk receives < Mc, Sq >  /* pq in cluster IN is the initiator*/ 

        if ck = 1   
                takes a forced checkpoint; 

                ck = 0; 
                Sk = Sk +1; 
                continues its normal operation; 
        else           
                Sk = Sk +1; 
                continues its normal operation; 
else if pk receives < mn, Sq > && pk  has not yet received < Mc, Sq >      
        if Sk < Sq 
                if ck = 1     
                        takes a forced checkpoint without waiting for <Mc, Sq>; 
                        ck = 0; 
                        Sk = Sk +1; 
                        processes the received message mn and ignores Mc when 
                        received later; 
                 else         
                        Sk = Sk +1; 
                        processes the received message mn and ignores Mc when  
                           received later; 
        else 
                processes the received message mn and ignores Mc when  
                received later; 
else if pk receives < mn, Sj

i > && pk  has not yet received <Mc, Sq>   
        if Sk < Sj

i 
                if ck = 1 

                        takes a forced checkpoint with out waiting for <Mc, Sq>; 
                        ck = 0; 
                        Sk = Sk +1; 
                        processes the received message mn and ignores Mc when  
                        received later; 
                 else        
                        Sk = Sk +1; 
                        processes the received message mn and ignores Mc when  
                        received later; 
        else 
                processes the received message mn and ignores Mc when  
                received later; 
else 
        continues its normal operation; 
----------------------------------------------------------------------- 
Process pj

i in cluster COi (for i = 1 to n): 
 
if pj

i receives < Mc, Sk > 
        if cj

i = 1   
                takes a forced checkpoint; 
                cj

i = 0; 
                Sj

i = Sj
i +1; 

                continues its normal operation; 
        else        
                Sj

i = Sj
i +1; 

                continues its normal operation; 
else if pj

i receives < mn, Sk > && pj
i
  has not yet received <Mc, Sk>   

        if Sj
i
 < Sk 

                if cj
i = 1  

                        takes a forced checkpoint with out waiting for <Mc, Sk>; 
                        cj

i = 0; 
                        Sj

i = Sj
i +1; 

                        processes the received message mn and ignores Mc when  
                        received later; 
                 else           
                        Sj

i = Sj
i +1; 

                        processes the received message mn and ignores Mc when  
                        received later; 
        else 
                processes the received message mn and ignores Mc when 
        received later; 
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else if pj
i receives < mn, Sr

i > && pj
i
  has not yet received <Mc, Sk>      

       if Sj
i
 < Sr

i 
                if cj

i = 1     
                        takes a  forced checkpoint with out waiting for <Mc, Sk>; 
                        cj

i = 0; 
                        Sj

i = Sj
i +1; 

                        processes the received message mn and ignores Mc when  
                        received later; 
                 else     
                        Sj

i = Sj
i +1; 

                        processes the received message mn and ignores Mc when  
                        received later; 
        else 
                processes the received message mn and ignores Mc when  
                received later; 
else 
        continues its normal operation; 
 
Proof of Correctness: Each process pk of cluster IN in the 
first ‘if else’ and ‘else if’ blocks of its pseudo code, 
decides whether to take a checkpoint based on the value of 
its flag ck. If it has to take a checkpoint, it resets ck to 0. 
Therefore, in other words, each process pk of cluster IN 
makes sure using the logic of  Theorem 1 that none of the 
messages, if any, it has sent since its last checkpoint can 
be an orphan. On the other hand, if pk does not take a 
checkpoint, it means that it has not sent any message since 
its previous checkpoint. In the second and third ‘else if’ 
blocks each process pk of cluster IN follows the logic of 
Theorems 3 and 4, which ever is appropriate for a 
particular situation so that any application message 
received by pk before it receives the control message Mc 
can not be an orphan. Besides none of its sent messages, if 
any, since its last checkpoint can be an orphan as well 
(following the logic of Theorems 1 and 2). 
      Each process pj

i of cluster COi in the first ‘if else’ 
block of its pseudo code, decides whether to take a 
checkpoint based on the value of its flag cj

i. If it has to 
take a checkpoint, it resets cj

i to 0. Therefore, in other 
words, each process pj

i of cluster COi makes sure using the 
logic of  Theorem 1 that none of the messages, if any, it 
has sent since its last checkpoint can be an orphan. On the 
other hand, if pj

i does not take a forced checkpoint, it 
means that it has not sent any message since its previous 
checkpoint. In the first and second ‘else if’ blocks each 
process pj

i of cluster COi follows the logic of Theorems 3 
and 4, which ever is appropriate for a particular situation 
so that any application message received by pj

i before it 
receives the control message Mc can not be an orphan. 
      Since Theorems 1, 2, 3, and 4 guarantee that no sent or 
received messages by any process pk (pj

i) of any cluster 
since its previous checkpoint can be an orphan and since it 
is true for all participating clusters, therefore, the 
algorithm guarantees that the latest checkpoints taken 
during the current execution of the algorithm and the 
previous checkpoints (if any) of those processes which did 
not need to take forced checkpoints during the current 

execution of the algorithm are globally consistent 
checkpoints. ■  
 
5.1 Advantages of the proposed algorithm 
     The algorithm offers the following important 
advantages. In our work only those processes that have 
sent some message(s) after their last checkpoints, take 
checkpoints during checkpointing; thereby reducing the 
number of forced checkpoints to be taken. It also helps 
processes of different clusters to take their respective 
checkpointing decisions independently and simultaneously 
without the need for sharing of any information. This 
inherent parallelism contributes to the speed of execution 
of the algorithm. Also, the proposed algorithm is a single 
phase algorithm with only one control message (Mc) and 
very simple data structures are maintained by the 
processes. Another advantage of the proposed algorithm is 
that it is non-blocking which means that application 
processes are not suspended during checkpointing. This 
single phase non-blocking nature of the algorithm 
definitely contributes to its speed of execution. Finally, the 
recovery is as simple as in the synchronous approach. 
 
5.2 Comparisons 
Comparison with [1]: In [1], a cluster takes two types of 
checkpoints; processes inside a cluster take checkpoints 
synchronously and a cluster takes a communication 
induced checkpoint whenever it receives an intercluster 
application message. Each cluster maintains a sequence 
number (SN). SN is incremented each time a cluster level 
checkpoint is committed. Each cluster maintains a DDV 
(Direct dependency vector) with a size equal to the 
number of clusters in the cluster federation. Whenever a 
cluster (i.e. a process in it) fails, after recovery it 
broadcasts an alert message with the SN of the failed 
cluster. This alert message triggers the next iteration of the 
algorithm. All other clusters, on receiving this alert 
message decide if they need to roll back by checking the 
corresponding entries in the DDV vectors. Each time there 
is a rollback, a new iteration starts. The rolled back 
clusters further broadcast the alert messages with their SN. 
This algorithm has the following advantage; simultaneous 
execution of the algorithm by all participating clusters 
contributes to its speed of execution. Our proposed 
algorithm also offers similar advantage. 
     However, the main drawback of the algorithm is that if 
we consider a particular message pattern where all the 
clusters have to roll back except the failed cluster, then all 
the clusters have to send alert messages to every other 
cluster. This results in a message storm. But in our 
approach when a process of a cluster fails it broadcasts 
just one control message.  
     In the algorithm [1], whenever a coordinated cluster 
subsystem of size n has to take a consistent local 
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checkpoint set, it requires 3*(n-1) control messages as it 
follows a three phase synchronous approach [10]. 
However in our approach, number of control messages 
required to take a consistent local checkpoint set is only 
(n-1) as our approach follows the single-phase non 
blocking checkpointing protocol [3].       
Comparison with [2]: In [2], the authors have addressed 
the need of integrating independent and coordinated 
checkpointing schemes for applications running in a 
hybrid distributed environment containing multiple 
heterogeneous subsystems. This algorithm mainly works 
on two rules. Rule 1 states that, independent checkpoint 
subsystem takes a new coordinated checkpoint set if it 
sends an intercluster application message. Rule 2 states 
that, a process Pi of independent checkpointing subsystem 
takes a new independent checkpoint before processing an 
already received intercluster application message, if Pi has 
sent any intracluster application message after taking its 
last checkpoint. So, if the independent checkpointing 
subsystem has sent k number of intercluster application 
messages in a time period T, then it has to take k number 
of coordinated checkpoint sets besides the regular local 
checkpoints taken asynchronously by its processes. In our 
approach, if we consider the same situation, a process in 
the independent cluster subsystem (not all processes in the 
subsystem) has to take only one forced checkpoint, if at all 
needed, besides the regular local checkpoints taken 
asynchronously by processes of the independent system. 
So we reduce drastically the number of checkpoints to be 
taken by the independent cluster subsystem.  
 
6. Conclusions 
In this paper, we have presented a simple non-blocking 
roll-forward checkpointing / recovery mechanism for 
cluster federation. The effect of domino phenomenon is 
limited by the time interval between successive 
invocations of the algorithm and recovery is as simple as 
that in the synchronous approach. The noteworthy point of 
the presented approach is that a process receiving a 
message does not need to worry whether the received 
message may become an orphan or not. It is the 
responsibility of the sender of the message to make it non-
orphan. Thus, processes in different clusters are able to 
perform their responsibility independently and 
simultaneously by just testing their local flags. This 
inherent parallelism of the algorithm contributes to its 
speed of execution. Our approach also reduces the number 
of forced checkpoints to be taken by forcing only those 
processes which have sent some message(s) after their last 
checkpoints.  We have shown that the proposed approach 
is superior to the existing works, because neither it suffers 
from any message storm, nor it takes any unnecessary 
checkpoints. 
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