
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

292

Manuscript received November 10, 2006.
Manuscript revised November 25, 2006.

A New Roll-Forward Checkpointing / Recovery Mechanism
for Cluster Federation

B. Gupta, S. Rahimi, and R. Ahmad

Department of Computer Science

Southern Illinois University
Carbondale, IL 62901-4511, USA

Summary
In this paper, we have addressed the complex problem of
determining a recovery line for cluster federation and proposed
an efficient checkpointing / recovery mechanism for it. The main
objective of the proposed approach is to advance the recovery
line in a cluster federation such that we can put a limit on the
amount of rollback by the processes in all the clusters in case of
failure(s) in the cluster federation; thereby in the worst case only
limited domino effect is allowed in our work. In this approach,
processes in different clusters are able to perform their
responsibility independently and simultaneously. This inherent
parallelism of the algorithm contributes to its speed of execution.
We have shown that the proposed approach is superior to the
existing works, because neither it suffers from any message
storm, nor it takes any unnecessary checkpoints.

Keywords: Cluster Computing, Checkpoints, Recovery

1. Introduction
Cluster is a widely used term meaning independent
computers combined into a unified system through
software and networking. At the most fundamental level,
when two or more computers are used together to solve a
problem, it is considered a cluster. Clusters are typically
used for high availability, for greater reliability or for high
performance computing to provide greater computational
power than a single computer can provide. Cluster
computing environments have proved a cost-effective
solution to many distributed computing problems by
leveraging inexpensive hardware [1], [2], [9]. Processes in
a cluster are often linked by a SAN (System Area
Networks) while clusters are linked by LANs (Local Area
Network) or WANs (Wide Area Networks) [1], [2]. A
Cluster federation is a union of clusters, where each
cluster contains a certain number of processes.
 Checkpointing and rollback recovery [5] is one of the
widely used techniques that allow systems to progress in
spite of failure. The basic idea is to periodically record the
system state as a checkpoint during normal system
operation and, upon detection of faults, to restore one of
the checkpoints and restart the system from there [5], [6].
Considering the characteristics of cluster federation
architecture, different checkpointing mechanisms should
be used within and between clusters.

 A system is said to be consistent, if there is no message
which is recorded in the state of its receiver but not
recorded in the state of its sender [2], [5], [6]. Each cluster
determines a consistent local checkpoint set that consists
of one checkpoint from each process present in it. But this
consistent local checkpoint set may not be consistent with
the other clusters’ consistent local checkpoint sets,
because clusters interact through messages which result in
dependencies between the clusters. Therefore, a collection
of consistent local checkpoint sets does not necessarily
produce a consistent federation level checkpoint set (i.e. a
federation-wide recovery line) that consists of one
checkpoint from each process present in the cluster
federation. Consequently, rollback of one failed cluster
may force rollback of the other clusters in order to
maintain consistency of the cluster federation. In the worst
case, consistency requirement may force the system to
rollback to the initial state of the system, losing all the
work performed before a failure. This uncontrolled
propagation of rollback is termed as domino-effect [10].
There is, therefore, a need to have a second level of
cluster-wide checkpointing algorithm that prevents the
rollbacks in reaching a consistent federation level
checkpoint set (i.e., a federation level recovery line). It
means that, this algorithm has to ensure that the collection
of all consistent local checkpoints sets always produces a
consistent federation level checkpoint set.

Problem Formulation: A significant amount of research
exists in the literature for recovery in distributed systems
[3]-[8]. However, very few works [1], [2] have been
reported for handling the problem of recovery in cluster
federation computing so far. In this work, we address this
problem in cluster federations. Our objective is to advance
the recovery line in a cluster federation such that we can
put a limit on the amount of rollback by the processes in
all the clusters in case of failure(s) in the cluster
federation; thereby in the worst case only limited domino
effect is allowed in our work. The key concept used in this
work is that it is the sending process that makes sure that
none of its sent messages can remain an orphan. So any
process that receives some messages has no responsibility
to make the received messages non orphan. This is why
the decision taken by a process P about whether to take a

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

293

checkpoint or not, does not affect any other process’
decision about the same. It results in all processes taking
their respective check pointing decisions independently
and simultaneously without the need for sharing of any
information.
 The system architecture considered in this paper is
similar to that considered in [2], where multiple
coordinated checkpointing subsystems are connected with
a single independent checkpointing subsystem. An
example of such architecture is shown in Fig. 1. In this
figure each coordinated subsystem represents a group of
smaller coordinated subsystems which have frequent
message exchanges among them and multiple independent
subsystems are combined into one larger independent
subsystem. Also note that according to this architecture
the coordinated subsystems CO1, CO2, CO3, and CO4
interact with each other very infrequently and only via the
larger independent subsystem. Thus, in the figure we have
only one independent subsystem and multiple coordinated
subsystems. From now on we will call the coordinated
checkpointing subsystem as coordinated cluster subsystem
and independent checkpointing subsystem as independent
cluster subsystem.

 This paper is organized as follows. In Section 2 we
have stated the necessary data structures used in our
algorithm. Section 3 describes the working principle of the
algorithm. In Section 4, we have stated some simple
observations necessary to design the algorithm. In Section
5, we have presented our roll-forward federation wide
checkpointing algorithm along with a comparison with
existing works. Finally, Section 6 concludes this paper.

2. Relevant Data Structures
Before we state the relevant data structures and their use
we need to define the following:
Regular checkpoint: Inside the coordinated cluster
subsystem, processes use the single phase non-blocking
checkpointing protocol reported in [3] to take checkpoints.
Inside an independent cluster subsystem, processes take

checkpoints independently according to their respective
time periods.
Forced checkpoint: Besides the regular checkpoints, a
cluster subsystem may also have to take forced
checkpoints. The conditions for taking a forced checkpoint
are explained in detail in Section 3.
 In our approach, communication between two clusters
means communication between two processes belonging
to the two clusters respectively. Failure of a cluster means
failure of its one or more processes.
 Let us consider a set of n coordinated cluster
subsystems, {CO1, CO2,…, COn} and an independent
cluster subsystem denoted by IN. Each cluster subsystem
consists of several processes. We use the following
notations to represent a cluster subsystem and its processes.
The jth process of ith coordinated cluster subsystem COi is
denoted as pj

i, and the kth process of the independent
cluster subsystem IN is denoted as pk. Each process pk in
independent cluster subsystem (IN) maintains a flag ck
(Boolean). The flag is initially set at zero. Flag ck is set at
1 when process pk sends its first intercluster or intracluster
application message after its latest checkpoint. Flag ck is
reset to 0 again after process pk takes a checkpoint. Note
that the flag ck of process pk is set to 1 only once
independent of how many messages process pk sends after
its latest checkpoint. In addition, process pk maintains an
integer variable Sk, which is initially set at 0 and is
incremented by 1 each time the roll-forward federation
wide checkpointing algorithm is invoked. When process
pk of the independent cluster subsystem takes its xth
checkpoint, then this checkpoint is represented as CNk(x).
 Similarly, each process pj

i in COi (for i =1 to n) also
maintains a boolean flag cj

i which is initially set at zero.
Flag cj

i is set at 1 only when process pj
i sends its first

intercluster or intracluster application message after its
latest checkpoint. It is reset to 0 again after process pj

i
takes a checkpoint. Note that the flag cj

i of process pj
i is

set to 1 only once independent of how many messages
process pj

i sends after its latest checkpoint. In addition,
process pj

i maintains an integer variable Sj
i, which is

initially set at 0 and is incremented by 1 each time the roll-
forward federation wide checkpointing algorithm is
invoked. When process pj

i of the coordinated cluster
subsystem takes its xth checkpoint then this checkpoint is
represented as CNj(x)

i
.

3. Working Principle
In this paper, we consider the complex problem of
determining a federation wide recovery line (i.e. globally
consistent checkpoints for all process of all clusters). This
federation wide recovery line can be defined as a set of
checkpoints, one from each process, such that these
checkpoints are mutually consistent; that is, there is no
orphan message in the system with respect to this set of

Coordinated
checkpointing

subsystem (CO2)

Coordinated
checkpointing

subsystem (CO1)

Independent
checkpointing
subsystem (IN)

Coordinated
checkpointing

subsystem (CO3)

Coordinated
checkpointing

subsystem (CO4)

Fig.1 System architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

294

checkpoints. Our main objective is to make this recovery
algorithm roll-forward in nature [7], [8], that is, we will
allow only limited domino-effect. In our approach,
processes in a coordinated cluster subsystem takes their
respective local checkpoints periodically following the
checkpointing protocol reported in [3]; where as processes
in the independent cluster subsystem take their respective
local checkpoints independently (asynchronously) [10]
according to their respective time periods. However, as
mentioned earlier that the consistent local checkpoint set
of one cluster may not be consistent with the other
clusters’ consistent local checkpoint sets, because clusters
interact through messages which result in dependencies
between the clusters. Hence, to determine a federation
wide recovery line (i.e. the federation wide globally
consistent checkpoints) we design a roll-forward
federation wide checkpointing algorithm which is
executed periodically (say the time period is T) by a
process in the independent cluster subsystem. Now if a
failure occurs in any cluster (s), then after the system
recovers from the failure, all processes of all the clusters
can restart from their respective federation wide globally
consistent checkpoints as determined by the last execution
of the roll-forward algorithm. Therefore, in the worst case,
the effect of the domino phenomenon is limited by the
time period T. Hence we call it roll forward recovery.
Note that the recovery becomes as simple as in the
synchronous approach [10]. Also, it is understood that the
time period T used by the proposed algorithm is much
larger than the individual time periods used by any process
in the independent cluster system. It is also much larger
than the time periods used in the coordinated cluster
subsystems.

 We now briefly outline the situations about when a
process needs to take a checkpoint while the algorithm is
executed. Assume that process pk of cluster IN initiates
periodically the roll-forward federation wide
checkpointing algorithm. It first checks its local flag ck. If
it is set to 1, then it takes a forced checkpoint and
increments its integer variable Sk by 1; otherwise, it only
increments Sk by 1. It then sends a control message Mc
piggybacked with its updated Sk value to all processes in
its subsystem as well as to all coordinated subsystems. A
process pq (or pj

i) in IN (or COi) on receiving this control
message Mc checks its local flag cq (or cj

i). If it is set to 1
then it takes a forced checkpoint and updates its integer
variable Sq (Sj

i); if it is set to 0 then it skips taking a forced
checkpoint, but it updates its local integer variable Sq (Sj

i)
with Sk which is piggybacked with the control message Mc
sent by the process pk. If process pq (pj

i) skips taking
forced checkpoint then its latest checkpoint will be its
federation wide globally consistent checkpoint; otherwise

the forced checkpoint it takes becomes a federation wide
globally consistent checkpoint.
 Any process pk (pj

i) after implementing its decision
whether to take a forced checkpoint or not, must
piggyback its Sk (Sj

i) value with its first application which
is sent to any other process before the next invocation of
the algorithm. However, the process pk (pj

i) does not need
to piggyback Sk (Sj

i) value if it sends any other message to
the same process in the system before the next invocation
of the proposed algorithm [3]. The advantage of sending
this piggybacked application message is that, if a process
pq (or pr

i) of cluster IN (or COi) receives this application
message before the control message Mc, it compares its Sq
(Sr

i) value with the piggybacked value of the received
application message. If Sk (Sj

i) value is greater than Sq (Sr
i)

then process pq (pr
i) comes to know that the algorithm has

already been initiated, but it has not yet received the
control message from the initiator process pk. Therefore
instead of waiting for control message Mc to arrive, the
process pq (pr

i) of cluster IN (COi) checks its flag cq (cr
i). If

it is set to 1, it takes a forced checkpoint, updates its Sq
(Sr

i) value with the piggybacked Sk (Sj
i) value, and then

processes the received application message. On the other
hand, if flag cq (cr

i) value is 0, it just updates its Sq (Sr
i)

value and then processes the application message.

An illustration: Fig. 2 shows a sample execution of our
algorithm with different situations. Without any loss of
generality let us assume that process p2 of cluster IN is the
initiator of the algorithm to determine a consistent global
checkpoint of the cluster federation. Process p2 first
checks its flag c2 and finds that it is set to 1 because it has
sent two application messages m2 and m4 since its last
checkpoint CN2(2). So process p2 takes a forced checkpoint
CN2(3), updates its integer variable S2 to 1 and resets its
flag c2 to 0. It now sends the control message Mc
piggybacked with S2 value to processes in its cluster and
to other clusters. Process p2

1 of cluster CO1 on receiving
the control message Mc takes the forced checkpoint
CN2(3)

1 because flag c2
1 is set to 1and updates its integer

variable S2
1 to 1.

 Now consider the next situation. Processes p1
2 and p2

2
of cluster CO2 on receiving this control message finds that
their respective flags c1

2, c2
2 are set to 0. So, they skip

taking forced checkpoints, but update their S1
2

 and S2
2

values to 1. So federation wide globally consistent
checkpoints for processes p1

2 and p2
2 are CN1(2)

2, CN2(2)
2.

 Now assume that process p2 of cluster IN sends an
application message m7 piggybacked with S2=1 to process
p3

1 after its checkpoint CN2(3). Process P3
1 of cluster CO1

receives this application message before the control
message Mc. Process p3

1 learns from the piggybacked
application message <m7, S2=1> that the algorithm to
determine the federation wide recovery line has already

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

295

been invoked, because its own S3
1 value is 0. So instead of

waiting to receive the control message Mc, process p3
1

checks its flag c3
1, which is set to 1. So it takes a forced

checkpoint CN3(3)
1, increments its S3

1 value to 1, and then
processes the application message m7. Process p3

1 receives
the control message Mc after it has already implemented
its decision whether to take a forced checkpoint or not. So
it just neglects this message.
 Now assume the following situation. Process p2

2 of
cluster CO2 sends a piggybacked application message <m8,
S2

2=1> to process p1 of cluster IN after its latest
checkpoint CN2(2)

2, which is received by process p1 before
receiving the control message Mc. Process p1 learns from
the piggybacked application message <m8, S2

2=1> that the
algorithm to determine the federation wide recovery line
has already been invoked, because its own S1 value is 0.
So process p1 checks its flag c1, which is set to 1 and takes
the forced checkpoint CN1(3), increments its S1 value to 1
and then processes the application message m8.
 Next consider that process p2

1 of cluster CO1 sends a
piggybacked application message <m9, S2

1=1> to process
p1

1 which belongs to its own cluster after its latest
checkpoint CN2(3)

1. Process p1
1 has not yet received the

control message Mc. As S2
1 > S1

1 process p1
1 knows that

the algorithm to determine the federation wide recovery
line has already been invoked. So instead of waiting for
this control message, process p1

1 checks its flag c1
1, which

is set to 1 and takes a forced checkpoint CN1(3)
1,

increments its S1
1 value to 1 and then processes the

application message m9. Therefore, federation wide
globally consistent checkpoints for the given example are
CN1(3)

1, CN2(3)
1, CN3(3)

1, CN1(3), CN2(3), CN1(2)
2 and CN2(2)

2.
 Now, suppose if process p1 of cluster IN fails, it rolls
back to its federation wide globally consistent checkpoint
CN1(3) and initiates the recovery algorithm by broadcasting
a control message to all processes in its cluster and to
other clusters telling them to rollback to their respective
latest federation wide globally consistent checkpoints.
Processes on receiving this control message rollback to
their respective latest federation wide globally consistent
checkpoints and restart their computations.

4. Relevant Observations
Below, we state some simple but important observations
used in the proposed algorithm.

Theorem 1: If at any given time t, if ck (cj

i) = 0 for process
pk (pj

i) with CNk(x+1) (CNj(x+1)
i) being its latest checkpoint,

none of the messages sent by pk (pj
i) remains an orphan at

time t.
Proof: Flag ck (cj

i) can have the value 1 between two
successive checkpoints, say CNk(x) (CNj(x)

i) and CNk(x+1)
(CNj(x+1)

i), of a process pk (pj
i) if and only if process pk (pj

i)
has sent at least one message mn between these two

checkpoints. It can also be 1 if pk (pj
i) has sent at least a

message after taking its latest checkpoint. It is reset to 0 at
each checkpoint. On the other hand, it will have the value
0 either between two successive checkpoints, say CNk(x)
(CNj(x)

i) and CNk(x+1) (CNj(x+1)
i), if process pk (pj

i) has not
sent any message between these checkpoints, or pk (pj

i)
has not sent any message after its latest checkpoint.
Therefore, ck (cj

i) = 0 at time t means either of the
following two: (1) ck (cj

i) = 0 at CNk(x+1) (CNj(x+1)
i) and this

checkpoint has been taken at time t. It means that any
message mn sent by pk (pj

i) (if any) to any other process
between CNk(x) (CNj(x)

i) and CNk(x+1) (CNj(x+1)
i) must have

been recorded by the sending process pk (pj
i) at the

checkpoint CNk(x+1) (CNj(x+1)
i). So message mn can not be

an orphan; (2) ck (cj
i) = 0 at time t and pk (pj

i) has taken its
latest checkpoint CNk(x+1) (CNj(x+1)

i) before time t. It means
that process pk (pj

i) has not sent any message after its latest
checkpoint till time t. Hence at time t, there does not exit
any orphan message sent by pk (pj

i) after its latest
checkpoint. ■

Theorem 2: If flag ck (cj

i) = 1, where CNk(x) (CNj(x)
i) is the

latest checkpoint of process pk (pj
i), some message(s) sent

by pk (pj
i) to other processes may become an orphan.

Proof: The flag ck (cj
i) is reset to 0 at every checkpoint. It

can have the value 1 only between two successive
checkpoints of any process pk (pj

i) if and only if process pk
(pj

i) sends at least one message mn between the
checkpoints. Therefore, ck (cj

i) = 1 means that pk (pj
i) is yet

to take its next checkpoint following CNk(x) (CNj(x)
i).

Therefore, the sending event of the message(s) sent by pk
(pj

i) after its latest checkpoint CNk(x) (CNj(x)
i) is not yet

recorded. Now if some other process receives one or more
of these messages sent by pk (pj

i) and then takes its latest
checkpoint before process pk (pj

i) takes its next checkpoint
CNk(x+1) (CNj(x+1)

i), then this received message(s) will
become orphan. Hence the proof follows. ■

Theorem 3: If Sk (= x) > Sj

i (= x-1), the piggybacked
application message < mn, Sk > sent by process pk and
received by a process pj

i can never be an orphan.
Proof: When Sk (= x) > Sj

i (= x-1), process pj
i knows that

the xth execution of the roll-forward federation wide
checkpointing algorithm has already begun and so very
soon it will also receive the message Mc from the initiator
process associated with this execution. So instead of
waiting for Mc to arrive, it decides if it needs to take a
checkpoint and implements its decision, and then
processes the message mn. This means that the receiving
event of the message mn is not recorded at the receiver.
Therefore, message mn can never be an orphan. ■

Theorem 4: If Sk = Sj

i = x, process pj
i can immediately

process the received piggybacked application message <

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

296

mn, Sk > and this application message sent by process pk
can never be an orphan.

Proof: If Sk = Sj
i = x, like process pk, process pj

i has
already received the control message Mc associated with
the latest execution (xth) of the roll-forward federation
wide checkpointing algorithm and has taken its
checkpointing decision and has already implemented that
decision. Therefore, process pj

i now processes the message
mn. It ensures that message mn can never be an orphan,
because both the sending and the receiving events of
message mn have not been recoded yet by the sender pk
and the receiver pj

i respectively. ■

5. Algorithm Recovery
We now state the algorithm. It is a single phase algorithm
because the initiator process interacts with the other
processes only once via the control message Mc. Also a
process after its participation in the algorithm does not
wait for the algorithm to terminate before resuming its
normal operation. That is, it is a non-blocking algorithm.
The responsibilities of the initiator process and any other
process are stated separately.

Process pk in cluster IN:

if pk is the initiator
 if ck = 1 /* it has sent at least one message after its latest
 checkpoint */
 takes a forced checkpoint;
 ck = 0;
 Sk = Sk +1;
 sends <Mc, Sk> to all processes in cluster IN as well as to all
 other cluster subsystems;
 continues its normal operation;
 else
 Sk = Sk +1;
 sends <Mc, Sk> to all processes in cluster IN as well as to all
 other cluster subsystems; continues its normal operation;
else if pk receives < Mc, Sq > /* pq in cluster IN is the initiator*/

 if ck = 1
 takes a forced checkpoint;

 ck = 0;
 Sk = Sk +1;
 continues its normal operation;
 else
 Sk = Sk +1;
 continues its normal operation;
else if pk receives < mn, Sq > && pk has not yet received < Mc, Sq >
 if Sk < Sq
 if ck = 1
 takes a forced checkpoint without waiting for <Mc, Sq>;
 ck = 0;
 Sk = Sk +1;
 processes the received message mn and ignores Mc when
 received later;
 else
 Sk = Sk +1;
 processes the received message mn and ignores Mc when
 received later;
 else
 processes the received message mn and ignores Mc when
 received later;
else if pk receives < mn, Sj

i > && pk has not yet received <Mc, Sq>
 if Sk < Sj

i
 if ck = 1

 takes a forced checkpoint with out waiting for <Mc, Sq>;
 ck = 0;
 Sk = Sk +1;
 processes the received message mn and ignores Mc when
 received later;
 else
 Sk = Sk +1;
 processes the received message mn and ignores Mc when
 received later;
 else
 processes the received message mn and ignores Mc when
 received later;
else
 continues its normal operation;

Process pj

i in cluster COi (for i = 1 to n):

if pj

i receives < Mc, Sk >
 if cj

i = 1
 takes a forced checkpoint;
 cj

i = 0;
 Sj

i = Sj
i +1;

 continues its normal operation;
 else
 Sj

i = Sj
i +1;

 continues its normal operation;
else if pj

i receives < mn, Sk > && pj
i
 has not yet received <Mc, Sk>

 if Sj
i
 < Sk

 if cj
i = 1

 takes a forced checkpoint with out waiting for <Mc, Sk>;
 cj

i = 0;
 Sj

i = Sj
i +1;

 processes the received message mn and ignores Mc when
 received later;
 else
 Sj

i = Sj
i +1;

 processes the received message mn and ignores Mc when
 received later;
 else
 processes the received message mn and ignores Mc when
 received later;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

297

else if pj
i receives < mn, Sr

i > && pj
i
 has not yet received <Mc, Sk>

 if Sj
i
 < Sr

i
 if cj

i = 1
 takes a forced checkpoint with out waiting for <Mc, Sk>;
 cj

i = 0;
 Sj

i = Sj
i +1;

 processes the received message mn and ignores Mc when
 received later;
 else
 Sj

i = Sj
i +1;

 processes the received message mn and ignores Mc when
 received later;
 else
 processes the received message mn and ignores Mc when
 received later;
else
 continues its normal operation;

Proof of Correctness: Each process pk of cluster IN in the
first ‘if else’ and ‘else if’ blocks of its pseudo code,
decides whether to take a checkpoint based on the value of
its flag ck. If it has to take a checkpoint, it resets ck to 0.
Therefore, in other words, each process pk of cluster IN
makes sure using the logic of Theorem 1 that none of the
messages, if any, it has sent since its last checkpoint can
be an orphan. On the other hand, if pk does not take a
checkpoint, it means that it has not sent any message since
its previous checkpoint. In the second and third ‘else if’
blocks each process pk of cluster IN follows the logic of
Theorems 3 and 4, which ever is appropriate for a
particular situation so that any application message
received by pk before it receives the control message Mc
can not be an orphan. Besides none of its sent messages, if
any, since its last checkpoint can be an orphan as well
(following the logic of Theorems 1 and 2).
 Each process pj

i of cluster COi in the first ‘if else’
block of its pseudo code, decides whether to take a
checkpoint based on the value of its flag cj

i. If it has to
take a checkpoint, it resets cj

i to 0. Therefore, in other
words, each process pj

i of cluster COi makes sure using the
logic of Theorem 1 that none of the messages, if any, it
has sent since its last checkpoint can be an orphan. On the
other hand, if pj

i does not take a forced checkpoint, it
means that it has not sent any message since its previous
checkpoint. In the first and second ‘else if’ blocks each
process pj

i of cluster COi follows the logic of Theorems 3
and 4, which ever is appropriate for a particular situation
so that any application message received by pj

i before it
receives the control message Mc can not be an orphan.
 Since Theorems 1, 2, 3, and 4 guarantee that no sent or
received messages by any process pk (pj

i) of any cluster
since its previous checkpoint can be an orphan and since it
is true for all participating clusters, therefore, the
algorithm guarantees that the latest checkpoints taken
during the current execution of the algorithm and the
previous checkpoints (if any) of those processes which did
not need to take forced checkpoints during the current

execution of the algorithm are globally consistent
checkpoints. ■

5.1 Advantages of the proposed algorithm
 The algorithm offers the following important
advantages. In our work only those processes that have
sent some message(s) after their last checkpoints, take
checkpoints during checkpointing; thereby reducing the
number of forced checkpoints to be taken. It also helps
processes of different clusters to take their respective
checkpointing decisions independently and simultaneously
without the need for sharing of any information. This
inherent parallelism contributes to the speed of execution
of the algorithm. Also, the proposed algorithm is a single
phase algorithm with only one control message (Mc) and
very simple data structures are maintained by the
processes. Another advantage of the proposed algorithm is
that it is non-blocking which means that application
processes are not suspended during checkpointing. This
single phase non-blocking nature of the algorithm
definitely contributes to its speed of execution. Finally, the
recovery is as simple as in the synchronous approach.

5.2 Comparisons
Comparison with [1]: In [1], a cluster takes two types of
checkpoints; processes inside a cluster take checkpoints
synchronously and a cluster takes a communication
induced checkpoint whenever it receives an intercluster
application message. Each cluster maintains a sequence
number (SN). SN is incremented each time a cluster level
checkpoint is committed. Each cluster maintains a DDV
(Direct dependency vector) with a size equal to the
number of clusters in the cluster federation. Whenever a
cluster (i.e. a process in it) fails, after recovery it
broadcasts an alert message with the SN of the failed
cluster. This alert message triggers the next iteration of the
algorithm. All other clusters, on receiving this alert
message decide if they need to roll back by checking the
corresponding entries in the DDV vectors. Each time there
is a rollback, a new iteration starts. The rolled back
clusters further broadcast the alert messages with their SN.
This algorithm has the following advantage; simultaneous
execution of the algorithm by all participating clusters
contributes to its speed of execution. Our proposed
algorithm also offers similar advantage.
 However, the main drawback of the algorithm is that if
we consider a particular message pattern where all the
clusters have to roll back except the failed cluster, then all
the clusters have to send alert messages to every other
cluster. This results in a message storm. But in our
approach when a process of a cluster fails it broadcasts
just one control message.
 In the algorithm [1], whenever a coordinated cluster
subsystem of size n has to take a consistent local

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006

298

checkpoint set, it requires 3*(n-1) control messages as it
follows a three phase synchronous approach [10].
However in our approach, number of control messages
required to take a consistent local checkpoint set is only
(n-1) as our approach follows the single-phase non
blocking checkpointing protocol [3].
Comparison with [2]: In [2], the authors have addressed
the need of integrating independent and coordinated
checkpointing schemes for applications running in a
hybrid distributed environment containing multiple
heterogeneous subsystems. This algorithm mainly works
on two rules. Rule 1 states that, independent checkpoint
subsystem takes a new coordinated checkpoint set if it
sends an intercluster application message. Rule 2 states
that, a process Pi of independent checkpointing subsystem
takes a new independent checkpoint before processing an
already received intercluster application message, if Pi has
sent any intracluster application message after taking its
last checkpoint. So, if the independent checkpointing
subsystem has sent k number of intercluster application
messages in a time period T, then it has to take k number
of coordinated checkpoint sets besides the regular local
checkpoints taken asynchronously by its processes. In our
approach, if we consider the same situation, a process in
the independent cluster subsystem (not all processes in the
subsystem) has to take only one forced checkpoint, if at all
needed, besides the regular local checkpoints taken
asynchronously by processes of the independent system.
So we reduce drastically the number of checkpoints to be
taken by the independent cluster subsystem.

6. Conclusions
In this paper, we have presented a simple non-blocking
roll-forward checkpointing / recovery mechanism for
cluster federation. The effect of domino phenomenon is
limited by the time interval between successive
invocations of the algorithm and recovery is as simple as
that in the synchronous approach. The noteworthy point of
the presented approach is that a process receiving a
message does not need to worry whether the received
message may become an orphan or not. It is the
responsibility of the sender of the message to make it non-
orphan. Thus, processes in different clusters are able to
perform their responsibility independently and
simultaneously by just testing their local flags. This
inherent parallelism of the algorithm contributes to its
speed of execution. Our approach also reduces the number
of forced checkpoints to be taken by forcing only those
processes which have sent some message(s) after their last
checkpoints. We have shown that the proposed approach
is superior to the existing works, because neither it suffers
from any message storm, nor it takes any unnecessary
checkpoints.

References
[1] S. Monnet, C. Morin, R. Badrinath, “Hybrid Checkpointing
for Parallel Applications in cluster Federations”, In 4th
IEEE/ACM International Symposium on Cluster Computing and
the Grid, Chicago, IL, USA, pp 773-782, April 2004.
[2] J. Cao, Y. Chen, K. Zhang and Y. He, “Checkpointing in
Hybrid Distributed Systems”, Proc. of the 7th International
Symposium on Parallel Architectures, Algorithms and Networks
(ISPAN’04), pp 136-141, Hong Kong, China, May 2004.
[3] B. Gupta, S.Rahimi, R. A. Rias, and G. Bangalore, “A Low-
Overhead Non-Blocking Checkpointing Algorithm for Mobile
Computing Environment”, Springer Verlag Lecture Notes in
Computer Science, vol 3947, pp 597-608, 2006.
[4] B. Gupta, A. Thakre and D. Chhillar, “A Fast and Efficient
Recovery Scheme for Distributed Programs”, Proc. ISCA 20th
Intl. Conf. Computers and their applications, New Orleans, pp.
459-464, March 2005.
[5] R. Koo and S. Toueg, “Checkpointing and Rollback-
Recovery for Distributed Systems”, IEEE trans. Software
Engineering, vol. SE-13, no. 1, pp.23-31, Jan 1987.
[6] Y. Wang, “Consistent Global Checkpoints that contain a
Given Set of Local Checkpoints”, IEEE trans. Computers, vol.
46, no. 4, pp. 456-468, April 1997.
[7] B. Gupta, S.K. Banerjee and B. Liu, “Design of new roll-
forward recovery approach for distributed systems”, IEE Proc.
Computers and Digital Techniques, vol. 149, issue 3, pp. 105-
112, May 2002.
[8] D.K. Pradhan And N.H. Vaidya, “Roll-Forward Check
pointing Scheme: A Novel Fault-Tolerent Architecture”, IEEE
Transactions on Computers, vol. 43, no.10, pp. 1163-1174, 1994.
[9] Xin Qi , G. Parmer , R. West, “An efficient end-host
architecture for cluster communication”, Proc. 2004 IEEE Intl.
Conf. on Cluster Computing, San Diego, California, pp.83-92,
September 20-23, 2004
[10] Mukesh Singhal, Niranjan G. Shivaratri, Advanced
Concepts in Operating Systems, McGraw-Hill, Inc., 1994.

Bidyut Gupta received his PhD in
Computer Science and his MTech degree
in Electronics Engineering from the
University of Calcutta, India. Currently, he
is a professor of computer science and the
graduate director for Computer Science
department at the Southern Illinois
University Carbondale.

Shahram Rahimi received his PhD in
Scientific Computing from the University of
Southern Mississippi in 2002, and his BS
degree from National University of Iran
(Tehran) in 1992. Currently, he is an
assistant professor at Southern Illinois
University and the Editor-in-Chief of the
International Journal of Computational
Intelligence Theory and Practice.

