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Summary 
Computers are frequently used in critical applications where 
predictable response times are essential for correctness. Such 
systems are called real-time systems and are a class of reactive 
systems. Many verification methods for verifying reactive 
systems were proposed, including diagram-based verification. 
One of diagrams used for reactive systems verification is 
predicate diagrams proposed by Cansell et.al. It has been shown 
that this diagram can be used for the verification of discrete 
reactive systems.  
In this paper, a class of diagrams called timed predicate diagrams 
is introduced. These diagrams are a variant of predicate diagrams, 
which can be used to verify real-time systems. This method has 
been applied on an example problem which is Fischer’s protocol. 
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1. Introduction 

Reactive systems are computer programs, implemented in 
hardware or software or a combination thereof, which are 
expected to maintain an ongoing interaction with their 
environment. Reactive systems are commonly classified as 
discrete, real-time and hybrid systems [1]. A discrete 
system only represents the qualitative aspect of time, that is 
the order of events. A realtime system captures the metric 
aspects of time [2]. In hybrid systems we allow the 
inclusion of variables that evolve continuously over time 
between discrete events.  
 
Verification of reactive systems consists of establishing 
whether a reactive system satisfies its specification, that is, 
whether all possible behaviors of the system are included in 
the property specified, such as safety and liveness 
properties. Verification techniques of reactive systems 
traditionally are classified into two groups, which are 
deductive method and algorithmic method. The 
combination of both techniques, such as deductive model 
checking, has also been suggested. 
 
The using of diagrams in verifying reactive systems has 
been proposed, because they can reflect the intuitive 

understanding of the systems and its specification. Diagram 
can also be seen as an abstraction of the system, where 
properties of the diagram are guaranteed to hold for the 
systems as well. 
 
In this paper timed predicate diagrams is introduced. These 
diagrams are a class of predicate diagrams [3], which are 
intended as the basis for the verification of real-time 
systems. This method integrates deductive verification and 
algorithmic techniques. The correspondence between the 
original specification and the diagram is established by 
non-temporal proof obligations, whereas model checking 
can be used to verify properties over finite-state 
abstractions. Following [3], the Temporal Logic of Actions 
(TLA) [4] from Lamport is used to formalize this approach. 
 
This paper is structured as follows. Section 2 describes 
briefly the specification used for real-time systems in TLA. 
The definition of timed predicate diagrams will be given in 
Section 3. Section 4 describes how to verify real-time 
systems using timed predicate diagrams. An illustration of 
this method, which is Fischer’s protocol, is given in Section 
5. Section 6 concludes this paper. 

2. Specification 

The alphabet of TLA consists of the alphabet of 
propositional logic and additional symbols , [, ], and 
‘ (primed). There are three kinds of formulas: state, action 
and temporal formulas. A state formula is an expression 
about the values of system’s variables at a particular time 
(t), e.g. x=1. An action formula is identified by the 
occurrence of primed. For example, x’=x+1 is an action 
where x’ represents the value of x at t+1. Whereas a 
temporal formula is identified by the occurrence of . 
Formula x=1 asserts that the value of x is always (for 
every t) equals to 1. A formula of the form [A]v is a short 
form of Next ∨ v’ = v. Two other short forms that are 
frequently used are A ≡ ¬ ¬A and 〈A〉v ≡ A ∧ v’ ≠ v. 
 
The semantic of a TLA formula is relative to a behavior 
which an infinite sequence of states σ = s0s1… . Given a 
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formula F, we write σ |= F if F holds on σ. We also use the 
notation s|[F]| to represents the value of F at state s. 
 
The specifications of real-time systems are described by 
TLA formulas of the form: 

        RTSpec ≡ Init ∧  [Next]v  
                      ∧ RTNow(v) ∧ RT1 ∧ … ∧ RTk 

(1)

where 
• Init is a state predicate that characterizes the system's 

initial state, 
• Next is an action formula representing the next-state 

relation, 
• v is the tuple of state discrete variables of interest,  
• RTNow(v) is a formula asserting that initially now = 0 

and the tuple of system's variables, v, does not change 
when now advances and 

• for every i ∈ 1..k, RTi is a formula of the form 

RTBound(Ai,v,ti,di,ei)              (2)    

where  
- Ai is a subaction of Next. 
- ti is a variable called the timer for Ai, such that value 

of t should be reset to 0 by an 〈Ai〉v step or a step that 
disables 〈Ai〉v and a step that advances now should 
increment t by now' - now iff 〈Ai〉v is enabled. 

- di and ei are constants called the lower bound and 
upper bound of Ai respectively, such that 〈Ai〉v can be 
taken if it has been continuously enabled for at least 
d seconds since the last 〈Ai〉v step - or since the 
beginning of the behavior and 〈Ai〉v can be 
continuously enabled for at most e seconds before an 
〈Ai〉v  step occurs. 

 
In Figure 1, a small example of a real-time system is given 
(ℵ denotes the natural numbers). This system consists of 
two process, Up and Down and a shared variable x.  
 

    Init  ≡ x ∈ ℵ 
    Up  ≡ x’ = x +1 
 Down  ≡ x > 0 ∧ x’ = 0 
  Loop ≡ Init ∧ [Up ∨ Down]x ∧ RTNow(x)  
           ∧ RTBound(Down, x , t, 0, 3) 

Figure 1. Module Loop. 
 

Initially x is set to some natural number. Process Up keeps 
incrementing x; whereas process Down is responsible to 
set x to 0 whenever x is greater than 0. We put a time 
constraint on the process Down, such that x must be reset 
to 0 in not more than 3 seconds after x becomes greater 
than 0.  

3. Timed Predicate Diagrams 

Before we give the definition of timed predicate diagram, 
we look briefly the definition of predicate diagrams [3]. It 
is assumed that the underlying assertion language, by 
assumption, contains a finite set O of binary relation 
symbolsp  that are interpreted by well-founded orderings. 
Forp∈O, its reflexive closure is denoted byp . We write 

O= to denote the set of relation symbolsp andp forp in 
O.  
 
A predicate diagram is a finite graph whose nodes are 
labeled with sets of (possibly negated) predicates, and 
whose edges are labeled with actions as well as optional 
annotations that assert certain expression to decrease with 
respect to an ordering in O=. A node of a predicate diagram 
represents the set of system states that satisfy the formulas 
contained in the node. An edge (n,m) is labeled with action 
A if A can cause a transition from a state represented by n 
to a state represented by m. An action A may have an 
associated fairness condition. 
Definition 1. Assume given two finite sets P and A of 
state predicates and action names. A predicate diagram 
G=(N,I,δ,o,ζ) over P and A consists of 
• a finite set of N ⊆ 2P* of nodes (where P* denotes the 

set containing all predicates in P and their negation), 
• a finite set I ⊆ N of initial nodes,  
• a family δ = (δA)A∈A of relations δA ⊆ N × N; we also 

denote by δ the union of the relation δA for A∈A,  
• an edge labeling o that associates a finite set {(t1, 1p ), 

…, ( tk, kp )}, of terms ti paired with a relation 

ip ∈O= with every edge (n,m) ∈δ, and 
• a mapping ζ:A→{NF, WF, SF} that associates a 

fairness condition with every action in A; the possible 
values represent no fairness, weak fairness, and strong 
fairness. 

 
Timed predicate diagrams, or TPDs for short, are a variant 
of predicate diagrams. The idea of these diagrams is to use 
the components of predicate diagrams related to the 
discrete properties and to replace the components related 
to the fairness conditions with some components related to 
real-time conditions. 
 
For the components related to real-time property, we adopt 
the structure of timed-automata [5]. A TPD is equipped 
with a finite set of real-valued variables that measure time. 
These variables are called timers. Every timer is associated 
with some predicates, which we call time-constraints. 
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Definition 2. A time-constraint is a state predicate of the 
form c ≠ z or c1-c2 ≠ z where c, c1 and c2 are timers, ≠ ∈ 
{≤,<,=,>,≥} and z is a real constant, including ∞. 
 
For a set of timers C, we denote by ΦC and ψ(ΦC), the set 
of time-constraints over timers c ∈ C and the set 
containing all c ∈ C that appears in ΦC, respectively. 
 
Definition 3. Given a set of state predicates P, a set of 
actions A, a set of timers C and a set of time-constraints 
over the timers in C, ΦC, TPD T over P, A, C and ΦC is 
given by a tuple (N,I,δ, o, r, g, R) where  
• N, I, δ and o as defined in Definition 1. 
• A mapping r : N → 2ΦC that associates a set of 

time-constraints in ΨC with every node in N. 
• A mapping g : N × N → 2ΦC that associates a set of 

time-constraints in ΨC with every edge in δ. 
• A mapping R : N × N → 2C that associates a set of 

timers in C with every edge in δ. 
 
We say that the action A ∈ A can be taken at node n ∈ N 
iff (n,m) ∈ δA holds for some m ∈ N, and denote by En(A) 
⊆ N the set of nodes where A can be taken. We say that the 
action A ∈ A can be taken along (n,m) iff (n,m) ∈ δA. 
 
A timer c ∈ C is called an active timer on a node n ∈ N if 
there exists some node m ∈ N such that g(n,m) contains 
some time-constraint over c. We denote by act(n) the set of 
active timers on n. 
 
Like PDs, TPDs can be viewed as a labeled directed graph, 
where the nodes of may be labeled with one more set of 
predicates which we call time-invariant. This invariant and 
the state predicates over system's discrete variables must 
be satisfied on every node. 
 
The edges of TPDs may be labeled with actions and 
time-constraints, which we call guards, and a set of timers, 
which we call reset timers. Guards will be used to model 
the timing conditions that constrain the execution of 
transitions. Every reset timer will be reset to 0 whenever 
this transition is taken. Besides the transitions that are 
explicitly represented by the edges and the stuttering 
transitions, τ, we introduce a special transition called tick 
for representing the elapsing time. Similar to τ, transition 
tick remains in the source node. For every node n and 
every active timer on it, we require that the value of every 
active timer increases whenever tick is taken. 
 
Figure 2 shows a TPD over P={x=0, x≥0}, A={Up, 
Down}, C = {t}, and ΦC ={t≥0, t ≤ 3}. Every node consists 
of two parts: the first part, above the dashed line, contains 
the predicates over the system's discrete variables, the 
second part, below the dashed line, contains all 

time-constraints in time-invariant that hold on that node. 
For every edge (n,m) we write t:=0 for every timer t in 
R(n,m). 

 
Figure 2. An example of TPD. 

 
TPDs can be viewed as an extension of predicate diagrams. 
In the other direction, we may say that predicate diagrams 
are restricted TPDs. Particularly, when we eliminate all the 
components of TPDs that are related to real-time property, 
then we have predicate diagrams without fairness 
conditions. We call such a predicate diagram the untimed 
version of a TPD. 
 
Definition 4. Let T=(N,I,δ,o,r,g,R) be a TPD over P, A, C 
and ΦC. The predicate diagram G=(N,I,δ,o,∅) over P and 
A is called the untimed version of T. 
 
We now define runs and traces through a TPD as the set of 
behaviors that correspond to runs satisfying the node and 
edge labels. 
 
Definition 5 Let T=(N,I,δ,o,r,g,R) over P, A, C and ΦC as 
defined. A run of T is ω-sequence ϕ =(s0,n0,A0,Δ0) 
(s1,n1,A1,Δ1) … of quadruples where si is a state, ni ∈ N is 
a node, Ai ∈ A ∪ {τ, tick} is an action and Δi is a real 
number such that all of the following conditions hold: 
• n0 ∈ I is an initial node. 
• s0|[c]| = 0 holds for every c ∈ C. 
• For every i ∈ ℵ hold the following conditions: 

- si |[ni ∧ r(ni)]|. 
- Either Ai ∈ {τ,tick} and ni=ni+1 or Ai ∈ A and 

(ni,ni+1) ∈ δAi. 
- If Ai∈A and (t,p )∈o(ni,ni+1), then si+1|[t]|p si|[t]|. 
- If Ai∈{τ,tick} then si+1|[t]|p si|[t]| holds whenever 

(t,p )∈o(ni,m) for some m∈N. 
- If Ai = τ then Δi=0 and si+1|[c]| = si|[c]| holds for 

every c in C.  
- If Ai=tick then Δi>0 and si+1 |[c]| = si|[c]|+Δi holds 

for every active timer c on ni and si+1|[c]| = si|[c]| 
holds for remaining timers. 

- If Ai∈A then Δi=0, si|[g(ni,ni+1)]| and si+1|[c]| = 0 
holds for every c in R(ni,ni+1) and si+1|[c]| = si|[c]| 
holds for remaining timers . 

 
We write runs(T) to denote the set of runs of T. The set 
tr(T) of traces through T consists of all behaviors σ = 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 
 

 

21

 

s0s1… such that there exists a run ϕ = (s0,n0,A0,Δ0) 
(s1,n1,A1,Δ1) … of T based on the states in σ. 

4. Verification 

Assume given a real-time specification RTSpec and a 
property F. We recall that in TLA formalism, the proof that 
RTSpec satisfies F can be considered as proving the 
validity of RTSpec ⇒ F. Following the approach of the 
verification of discrete systems using predicate diagrams, 
we split the proof into two steps: finding a TPD T such 
that every model of RTSpec is a trace through T and then 
proving that every trace through T is a model of F. The 
first step is done by considering node and edge labels of 
predicates on the concrete state space of RTSpec and 
reducing the trace inclusions to a set of first-order 
verification conditions that concern individual states and 
transitions. Thus, the first step is done deductively. On the 
other hand, the second step is done by regarding the node 
labels related to discrete properties, and probably the 
auxiliary invariants, as Boolean variables and then 
encoding the diagrams as a finite labeled transition system. 
The temporal properties of the system is then can be 
established by model checking. 

4.1 Relating specifications and TPDs 
To compare a specification and a TPD, we first have to 
assign meaning to the action names that appear in the 
diagram. We assume given a function α that assigns an 
action formula A every action name. Because no confusion 
is possible, we will leave this assignment implicit, and 
again write A instead of α(A) when referring to the 
formula assigned to the name A. 
 
Recalling the general format of real-time specification in 
Equation 1, we put the time constraints explicitly on 
timed-bounded actions. In the context of TPDs, the 
situation is different, since we put time constraints on 
timers and not on actions. To overcome this, we define 
bounded-actions of TPDs. Basically bounded-actions are 
the same as timed bounded actions, which are actions on 
which we put time-constraints. 
 
Definition 6. Let G = (T,I,δ,o,r,g,R) be a TPD over P, A, 
C and ΦC. An action A∈A is called a bounded-action if 
there exists some timer c∈C and two integer numbers d 
and e such that the following conditions hold: 
• for every n ∈ N, a predicate of the form c ≤ e is in r(n) 

whenever n ∈ En(A), 
• for every n,m ∈ N, a predicate of the form c ≥ d is in 

g(n,m) whenever (n,m) ∈ δA and 
• for every n,m∈N, c is in R(n,m) whenever (n,m) ∈δA 

or m∈En(A). 

 
For a bounded action A, we call c, d and e its 
corresponding timer, lower-bound and upper-bound, and 
denote by clk(A), L(A) and U(A), respectively.  
Lemma 1. For some-bounded action A and for every node 
n ∈ N, clk(A) is an active timer on n if n ∈ En(A). 
 
A TPD T conforms to a specification RTSpec, written 
conf(RTSpec, T), if every behavior that satisfies RTSpec is 
a trace through T. The following theorem essentially 
introduces a set of first-order ("local") verification 
conditions that are sufficient to establish conformance of a 
diagram to a real-time system specification in standard 
form. 
 
Theorem 1. Let RTSpec ≡ Init ∧ [Next]v ∧ RTNow(v) ∧ 
RT be a real time system specification and T = 
(N,I,δ,o,r,g,R) be a TPD over P,A,C and ΦC as defined. 
We say that T conforms to RTSpec if the following 
conditions hold: 
1. |= Init ⇒ ∨

∈In
n. 

2. |= n ∧ [Next]v ⇒ n' ∨ ∨
∈ AmnmA δ),(:),(

〈A〉v ∧ m’. 

3. For n,m ∈ ℵ and all (t,p ) ∈o(n,m): 
a. |= n ∧ m' ∧ .'

),(:
ttA

v
mnA A

p→∨
∈δ

 

b. |= n ∧ [Next]v ∧ n' ⇒ t'p t. 
4. For every bounded-action A: 

a. |= RTSpec ⇒ RTBound(A,v,clk(A),L(A),U (A)), 
b. |=n ⇒ ENABLED〈A〉v holds for every node 

n∈En(A), 
c. |=n ⇒ ¬ENABLED 〈A〉v holds for every node n∉ 

En(A), 
d. clk(A)∉act(n) holds for every n∈N such that 

n∉En(A), 
e. clk(A) ∉ ψ(g(n,m)) holds for every n,m∈N such 

that (n,m)∉ δA and 
f. clk(A) ∉ R(n,m) holds for every n,m∈N such that 

(n,m)∉δA and m∈ En(A). 
5. |= ∧

∈Cc
TInit(c) ⇒ r(n) holds for every n∈I. 

6. For every bounded action A∈A and for every n,m∈N: 
a. if (n,m)∈δA or m∉En(A) then 
 |= r(n) ∧ clk(A) ≥ L(A) ∧ clk(A)' = 0 ∧ 
 
 ∧

∈ )()(: 11 mactAclkA
clk(A1)’≤U(A1) ⇒ r(m)’. 

 
b. otherwise, 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 
 

 

22 

 

  |= r(n)∧ ∧
∈ )()(: 11 nactAclkA

(clk(A1)’≥ clk(A1) 

          ∧ clk(A1)’≤ U(A1) ⇒ r(n)’). 
 
The first three conditions in Theorem 1 are inherited from 
the conformance theorem of predicate diagrams. Those 
conditions are related to the discrete properties of the 
system. Conditions 4a-4f are related to the 
bounded-actions in the diagram and the two last conditions 
are related to the time-invariants in the diagrams. 
Condition 5 ensures that the time-invariant of every initial 
node is implied by the initial condition of every timer. 
Condition 6 guarantees that the time-invariants always 
agree with the changes of the concrete values of the timers 
whenever a transition is taken. In particular, the condition 
6a requires that for every time-bounded action A, its 
corresponding timer should be reset to 0 whenever A is 
taken or it is not enabled at the next state and the value of 
every active timer on the next state is less than or equal to 
its corresponding upper-bound; and for the other cases 
condition 6b requires that the value of each action timer on 
the next state should be greater than or equal to its current 
value and less than or equal to its upper bound. 
 
Theorem 1 can be used to show that the TPD of Figure 2 
conforms to the specification Loop in Figure 1. For 
example, we have: 
• Init ⇒ x = 0 ∨ x > 0. 
• x = 0 ∧ [Next]v ⇒ x'=0 ∨ 〈Up〉v ∧ x' > 0. 
• x > 0 ∧ [Next]v ⇒ x'>0 ∨ 〈Down〉v ∧ x' = 0. 
• Loop ⇒ RTBound(Down,x,t,0,3). 
• t ≤ 3 ∧ t ≥ 0 ∧ t' = 0 ∧ true⇒ t' ≤ ∞. 
• t ≤ 3 ∧ t ≥ t’ ∧ t' ≤ 3 ⇒ t' ≤ 3. 
 

4.2 Model checking TPDs 
For the proof that all traces through a TPD satisfy some 
property F, the TPD is viewed as a finite transition system 
that is amenable to model checking. 
 
Two approaches for model checking TPDs are proposed. 
First, if the quantitative aspect of times doesn't come into 
account, it is enough to model check their untimed 
versions which are predicate diagrams.  
 
However, whenever we have to consider the quantitative 
aspect of times for proving the properties we want to 
verify, we will use some existing real-time system 
model-checker for verifying TPDs. For example, we can 
use Kronos, which is a software tool built with the aim of 
assisting designers of real-time systems to verify whether 
their designs meet the specified requirements [6]. To do 
that, we first translate our diagrams into the input of 

Kronos, which are timed automata with some additional 
information.  
 
Definition 7. A timed automaton Γ is given by a tuple (Q, 
Q0, X, I, P, Λ) where 
• Q is a set of locations, 
• Q0 ⊆ Q is a set of initial locations, 
• X is a finite set of clocks, 
• I : Q → Θ(X) is a mapping from locations to clock 

constraints, called the location invariant,  
• P is a function associates with each location a set of 

atomic propositions. 
• Λ ⊆ Q × Σ × Θ(X) × 2X × Q is a set of transition, and 
 
The 5-tuple (q, a, θ, λ, q’) corresponds to a transition from 
location q to location q’ labeled with a, a constraint θ and a 
set of atomic propositions P(q) that specify when 
transition is enabled and a set of clocks λ ⊆ X that are 
reset when the transition is executed.  
 
Given a TPD T over P, A, C, and ΦC, the translation from 
T to some timed-automata can be done by using this 
following construction. 
 
Construction 1. Let T=(N,I,δ,o,r,g,R) be a TPD over P, A, 
C, and ΦC. Let An be a set containing action names and κ: 
{1..|N|} → ℵ be an injective function which associates 
every node in N with some natural number. One can 
construct the corresponding timed automaton tuple (Q, Q0, 
X, I, P, Λ) as follows: 
• Q = {q1,…,q|N|}. 
• Q0 = {qi : κ(i) ∈ I}. 
• X = C. 
• For every i∈1..|N|, P(qi)=κ(i) ∧ r(κ(i))∧I(qi) = r(κ (i)). 
• For every (n,m) ∈ δ and for every A ∈ A, there exists 

some tuple (qi,A,λ,θ,qj) in Λ such that κ(i) = n, κ(j) = 
m, λ = r(n,m) and θ = g(n,m). 

• For every n∈N, there exists some tuple of the form 
(qi,a,λ,θ,qi) in Λ such that κ(i) = n, a={tick,τ}, λ= 
R(n,n) and θ=g(n,n). 

 
Theorem 2. Let T=(N,I,δ,o,r,g,R) be a TPD over P, A, C, 
and ΦC as defined and let Γ=(Q,Q0,X,I,P,Λ) be the 
resulted automaton from Construction 1 over T. For every 
run through T, ρ=(s0,n0,A0,Δ0) (s1,n1,A1,Δ1)…, there exists 
a run of Γ: θ = (q0,ν0) ⎯⎯ →⎯ ),( 00 ϕw (q1,ν1) ⎯⎯ →⎯ ),( 11 ϕw  … 
such that κ(i) = ni and si|[C]|=νi (X) holds for every i ∈ ℵ. 

5. An example: Fischer’s protocol 

As illustration we take the Fischer's mutual exclusion 
protocol which is a well-known and well-studied by 
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researchers in the context of real-time verification. We 
take the simplified version which only two processes in the 
protocol. 
 
    Init  ≡ x = 0 ∧ pc1 = 0 ∧ pc2 = 0 
   Try1  ≡ x = 0 ∧ pc1 = 0 ∧ pc1’ = 1 ∧ x’ = x ∧ pc2’ = 
pc2 
   Set1  ≡ pc1 ∧ x’=1 ∧ pc1’ = 2 ∧ pc2’ = pc2 
 Enter1  ≡ pc2 ∧ x’ = x ∧ pc2’=pc2 ∧  
   ((x=1 ∧ pc1’=3) ∨ (x≠1 ∧ pc1’=0))  
   Exit1  ≡ pc1 = 3 ∧ pc1’=0 ∧ x’=0 ∧ pc2’ = pc2 
   Try2  ≡ x = 0 ∧ pc2 = 0 ∧ pc2’ = 2 ∧ pc1’ = pc1 
   Set2  ≡ pc2 =1 ∧ x’ = 2 ∧ pc2’ = 2 ∧ pc1’ = pc1 
 Enter2  ≡ pc2 = 2 ∧ x’=x ∧ pc1’= pc1 ∧  
   ((x = 2 ∧ pc2’=3) ∨ (x≠2 ∧ pc2’=0))   
   Exit2  ≡ pc2 = 3 ∧ pc2’ = 0 ∧ x’ = 0 ∧ pc1’ = pc1 
   Next  ≡ Try1 ∨ Set1 ∨ Enter1 ∨ Exit1 ∨  
   Try2 ∨ Set2 ∨ Enter2 ∨ Exit2 
      v  ≡ 〈x, pc1, pc2〉 
Fischer  ≡ Init ∧  [Next]v ∧ RTNow(v) ∧  
  RTBound(Set1, v, s1, 0, D) ∧  
  RTBound(Enter1, v, t1, E, ∞) ∧  
  RTBound(Set1, v, s2, 0, D) ∧  
  RTBound(Enter2, v, t2, E, ∞) 
  

Figure 3. Fischer’s protocol. 
 

 
The system is composed by a set of 2 timed processes, P1 
and P2 plus a shared variable x. Each process Pi behaves as 
follows: after remaining idle for some time, it checks 
whether the common resource is free (test x = 0) and if so, 
before D time units sets x to i. Then it waits at least for E 
time units and, making sure that x is still equal to i, enters 
the critical section. If x is not equal to i (meaning that 
some other process has requested access) then process i 
has to retry later. The module contains the specification of 
the protocol and some properties to be verified is given in 
Figure 3. 
 
For every process Pi we associate a variable pci which 
represents its control state. The value of pci is equal to one 
of the integer 0,1,2 or 3. The initial predicate Init asserts 
that pci is equal to 0 for each process i, so the processes 
start with control at statement 0. 
 
We need to verify that, with suitable conditions on D and 
E there will never be more than one process in its critical 
section. This property can be expressed as a formula: 

Fischer ⇒ ¬(pc1 = 3 ∧ pc2 = 3).        (3) 

 
 
 

 
Figure 4. Predicate diagram for Fischer’s protocol. 
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Figure 4 depicts the untimed version of TPD for Fischer's 
protocol. We will generate a suitable TPD of this predicate 
diagram. Since in the specification Set1, Enter1, Set2 and 
Enter2 appear as time-bounded actions, we intuitively treat 
those actions as bounded-actions in the TPD. For each 
bounded-action we set the corresponding clock, lower 
bound and upper bound as follows: 
• clk(Set1) = s1, L(Set1) = 0, U(Set1) = D, 
• clk(Enter1) = t1, L(Enter1) = E, U(Enter1) = ∞, 
• clk(Set2) = s2, L(Set2) = 0, U(Set2) = D, and 
• clk(Enter2) = t2, L(Enter2) = E, U(Enter2) = ∞ 
 
Starting with the initial node we traverse the diagram in 
order to determine whether those time-invariants still hold 
on each node or not. We do this by considering the 

bounded-actions that can be taken on every node. For 
example, if Set1 is enabled then s1=0 is changed to s1≥0. 
The predicates s1=t2 and s2=t1 might be changed 
accordingly. The result is shown in Figure 6 (the 
numbering on some nodes will be used later). The resulted 
diagram, again, represents an approximation of the Fischer 
specification. However, we still cannot prove the mutual 
exclusion property. 
 
We can strengthen the second diagram, by using 
assumptions on D and E. We consider two cases: D < E 
and D ≥ E. Based on these assumptions, we refine our 
diagram in Figure 6 by eliminating transitions that do not 
satisfy those conditions. The elimination process can be 
done using Simplify algorithm in Figure 7.  

 
 

1

2

  
 

Figure 5. First TPD for Fischer’s protocol. 
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Figure 6. Second TPD for Fischer’s protocol. 
 

 
Algorithm Simplify 
 if n ∉ visited then 
  visited = visited ∪ {n} 
  for every (n,m) ∈ δ 
   if either condition 6a or 6b in Theorem is  
      satisfied then 
    δ1 ≡ δ1 ∪ {(n,m)} 
    Simplify (T,m, δ1,visited) 
   endif 
  endfor 
 endif 

Figure 7 Simplify algorithm. 
 
For every initial node n, we run the algorithm with TPD T, 
some node n and some set of edge Δ1 as inputs. Starting 
with initial nodes, for every edge leading from this node, 

the algorithm checks whether it satisfies the required 
condition or not. If so, then the edge is stored and the 
algorithm continues to check the next edges. For example, 
consider node 1 and node 2 in Figure 6. The corresponding 
edge does not satisfy either condition 6a, since it is never 
the case that s1 ≥ t2 ∧ s1 ≤ D ∧ t2 ≥ E is true while D < E, or 
condition 6b, since in this case node 1 and node 2 are 
different nodes. The situation is the similar with node 3 
and node 4. Running this algorithm over our second 
diagram and assumption D<E, we have the third diagram 
shown in Figure 8. 
 
For the assumption D ≥ E, the resulted diagram has the 
same structure with the one in Figure 6. As conclusion, the 
protocol satisfies mutual exclusion property if D < E. 
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Since we don't consider the quantitative aspect of time, we 
may work with the untimed version of TPD shown in 
Figure 8 and then model-check the resulted diagram as 
explained in Section 4. 

6. Conclusion and related work 

A class of diagrams for the verification of real-time systems 
is presented in this paper. The a class of diagrams, called 
Timed predicate diagrams (TPDs), is a variant of predicate 
diagrams proposed by Cansell et.al [3]. A TPD can be 
viewed as a predicate diagram equipped with some 
component in order to constraint the time. Like predicate 
diagrams, the verification of TPDs is a combination of 
deduction and algorithmic techniques. 
  
This method is applied on the verification of mutual- 
exclustion property of Fischer’s protocol. It has been shown 
that the construction of TPD for this protocol can be done 
by starting from the untimed version (without considering 
the time aspect) and then refining the diagram step by step 
until we get the of an appropriate one. The structure of 
TPDs,   that allows us to work with the untimed version of 
TPD,   made the verification easier. It is proven that the 
protocol satisfies the expected mutual property. 
 
 

More about the TPDs can also be found in [7].  
 
Many models for reasoning real-time systems have been 
proposed. The approach to real-time presented in Manna 
et.al. [8] and [1] is based on the computational model of 
Timed Transition Systems (TTS) in which time itself is not 
explicitly represented but it is reflected in a time stamp 
affixed to each state in a computation of a TTS. In [9], 
Kesten et.al. introduced a computation model for real-time 
systems called Clocked Transition Systems (CTS), which is 
a development of TTS. This model represents time by a set 
of system variables called clocks (timers) which increase 
uniformly whenever time progresses, but can be set to 
arbitrary values by system (program) transitions. 
 
The use of diagrams in verification of real-time systems can 
be found, for example in [9]. In their approach, they use a 
special rule for proving a class of property, such as 
invariant and response properties. Every rule is associated 
with verification diagrams for real-time systems.  
 
The generation of the TPDs for the Fischer’s protocol is 
done manually. Boujjanni et.al [10] have successfully 
generated the invariants for the Fischer’s protocol 
automatically using TReX, a tool for reachability analysis 
of complex systems. 
 

2

Figure 8. Third TPD for Fischer’s protocol. 
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