
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

18

Diagram-Based Verification of Real-Time Systems using

Timed Predicate Diagrams

Cecilia E. Nugraheni

Computer Science Dept., Parahyangan Catholic University, Bandung, Indonesia.

Summary
Computers are frequently used in critical applications where
predictable response times are essential for correctness. Such
systems are called real-time systems and are a class of reactive
systems. Many verification methods for verifying reactive
systems were proposed, including diagram-based verification.
One of diagrams used for reactive systems verification is
predicate diagrams proposed by Cansell et.al. It has been shown
that this diagram can be used for the verification of discrete
reactive systems.
In this paper, a class of diagrams called timed predicate diagrams
is introduced. These diagrams are a variant of predicate diagrams,
which can be used to verify real-time systems. This method has
been applied on an example problem which is Fischer’s protocol.

Key words:
Reactive systems, real-time systems, verification, TLA, predicate
diagrams.

1. Introduction

Reactive systems are computer programs, implemented in
hardware or software or a combination thereof, which are
expected to maintain an ongoing interaction with their
environment. Reactive systems are commonly classified as
discrete, real-time and hybrid systems [1]. A discrete
system only represents the qualitative aspect of time, that is
the order of events. A realtime system captures the metric
aspects of time [2]. In hybrid systems we allow the
inclusion of variables that evolve continuously over time
between discrete events.

Verification of reactive systems consists of establishing
whether a reactive system satisfies its specification, that is,
whether all possible behaviors of the system are included in
the property specified, such as safety and liveness
properties. Verification techniques of reactive systems
traditionally are classified into two groups, which are
deductive method and algorithmic method. The
combination of both techniques, such as deductive model
checking, has also been suggested.

The using of diagrams in verifying reactive systems has
been proposed, because they can reflect the intuitive

understanding of the systems and its specification. Diagram
can also be seen as an abstraction of the system, where
properties of the diagram are guaranteed to hold for the
systems as well.

In this paper timed predicate diagrams is introduced. These
diagrams are a class of predicate diagrams [3], which are
intended as the basis for the verification of real-time
systems. This method integrates deductive verification and
algorithmic techniques. The correspondence between the
original specification and the diagram is established by
non-temporal proof obligations, whereas model checking
can be used to verify properties over finite-state
abstractions. Following [3], the Temporal Logic of Actions
(TLA) [4] from Lamport is used to formalize this approach.

This paper is structured as follows. Section 2 describes
briefly the specification used for real-time systems in TLA.
The definition of timed predicate diagrams will be given in
Section 3. Section 4 describes how to verify real-time
systems using timed predicate diagrams. An illustration of
this method, which is Fischer’s protocol, is given in Section
5. Section 6 concludes this paper.

2. Specification

The alphabet of TLA consists of the alphabet of
propositional logic and additional symbols , [,], and
‘ (primed). There are three kinds of formulas: state, action
and temporal formulas. A state formula is an expression
about the values of system’s variables at a particular time
(t), e.g. x=1. An action formula is identified by the
occurrence of primed. For example, x’=x+1 is an action
where x’ represents the value of x at t+1. Whereas a
temporal formula is identified by the occurrence of .
Formula x=1 asserts that the value of x is always (for
every t) equals to 1. A formula of the form [A]v is a short
form of Next ∨ v’ = v. Two other short forms that are
frequently used are A ≡ ¬ ¬A and 〈A〉v ≡ A ∧ v’ ≠ v.

The semantic of a TLA formula is relative to a behavior
which an infinite sequence of states σ = s0s1… . Given a

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

19

formula F, we write σ |= F if F holds on σ. We also use the
notation s|[F]| to represents the value of F at state s.

The specifications of real-time systems are described by
TLA formulas of the form:

 RTSpec ≡ Init ∧ [Next]v
 ∧ RTNow(v) ∧ RT1 ∧ … ∧ RTk

(1)

where
• Init is a state predicate that characterizes the system's

initial state,
• Next is an action formula representing the next-state

relation,
• v is the tuple of state discrete variables of interest,
• RTNow(v) is a formula asserting that initially now = 0

and the tuple of system's variables, v, does not change
when now advances and

• for every i ∈ 1..k, RTi is a formula of the form

RTBound(Ai,v,ti,di,ei) (2)

where
- Ai is a subaction of Next.
- ti is a variable called the timer for Ai, such that value

of t should be reset to 0 by an 〈Ai〉v step or a step that
disables 〈Ai〉v and a step that advances now should
increment t by now' - now iff 〈Ai〉v is enabled.

- di and ei are constants called the lower bound and
upper bound of Ai respectively, such that 〈Ai〉v can be
taken if it has been continuously enabled for at least
d seconds since the last 〈Ai〉v step - or since the
beginning of the behavior and 〈Ai〉v can be
continuously enabled for at most e seconds before an
〈Ai〉v step occurs.

In Figure 1, a small example of a real-time system is given
(ℵ denotes the natural numbers). This system consists of
two process, Up and Down and a shared variable x.

 Init ≡ x ∈ ℵ
 Up ≡ x’ = x +1
 Down ≡ x > 0 ∧ x’ = 0
 Loop ≡ Init ∧ [Up ∨ Down]x ∧ RTNow(x)
 ∧ RTBound(Down, x , t, 0, 3)

Figure 1. Module Loop.

Initially x is set to some natural number. Process Up keeps
incrementing x; whereas process Down is responsible to
set x to 0 whenever x is greater than 0. We put a time
constraint on the process Down, such that x must be reset
to 0 in not more than 3 seconds after x becomes greater
than 0.

3. Timed Predicate Diagrams

Before we give the definition of timed predicate diagram,
we look briefly the definition of predicate diagrams [3]. It
is assumed that the underlying assertion language, by
assumption, contains a finite set O of binary relation
symbolsp that are interpreted by well-founded orderings.
Forp∈O, its reflexive closure is denoted byp . We write

O= to denote the set of relation symbolsp andp forp in
O.

A predicate diagram is a finite graph whose nodes are
labeled with sets of (possibly negated) predicates, and
whose edges are labeled with actions as well as optional
annotations that assert certain expression to decrease with
respect to an ordering in O=. A node of a predicate diagram
represents the set of system states that satisfy the formulas
contained in the node. An edge (n,m) is labeled with action
A if A can cause a transition from a state represented by n
to a state represented by m. An action A may have an
associated fairness condition.
Definition 1. Assume given two finite sets P and A of
state predicates and action names. A predicate diagram
G=(N,I,δ,o,ζ) over P and A consists of
• a finite set of N ⊆ 2P* of nodes (where P* denotes the

set containing all predicates in P and their negation),
• a finite set I ⊆ N of initial nodes,
• a family δ = (δA)A∈A of relations δA ⊆ N × N; we also

denote by δ the union of the relation δA for A∈A,
• an edge labeling o that associates a finite set {(t1, 1p),

…, (tk, kp)}, of terms ti paired with a relation

ip ∈O= with every edge (n,m) ∈δ, and
• a mapping ζ:A→{NF, WF, SF} that associates a

fairness condition with every action in A; the possible
values represent no fairness, weak fairness, and strong
fairness.

Timed predicate diagrams, or TPDs for short, are a variant
of predicate diagrams. The idea of these diagrams is to use
the components of predicate diagrams related to the
discrete properties and to replace the components related
to the fairness conditions with some components related to
real-time conditions.

For the components related to real-time property, we adopt
the structure of timed-automata [5]. A TPD is equipped
with a finite set of real-valued variables that measure time.
These variables are called timers. Every timer is associated
with some predicates, which we call time-constraints.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

20

Definition 2. A time-constraint is a state predicate of the
form c ≠ z or c1-c2 ≠ z where c, c1 and c2 are timers, ≠ ∈
{≤,<,=,>,≥} and z is a real constant, including ∞.

For a set of timers C, we denote by ΦC and ψ(ΦC), the set
of time-constraints over timers c ∈ C and the set
containing all c ∈ C that appears in ΦC, respectively.

Definition 3. Given a set of state predicates P, a set of
actions A, a set of timers C and a set of time-constraints
over the timers in C, ΦC, TPD T over P, A, C and ΦC is
given by a tuple (N,I,δ, o, r, g, R) where
• N, I, δ and o as defined in Definition 1.
• A mapping r : N → 2ΦC that associates a set of

time-constraints in ΨC with every node in N.
• A mapping g : N × N → 2ΦC that associates a set of

time-constraints in ΨC with every edge in δ.
• A mapping R : N × N → 2C that associates a set of

timers in C with every edge in δ.

We say that the action A ∈ A can be taken at node n ∈ N
iff (n,m) ∈ δA holds for some m ∈ N, and denote by En(A)
⊆ N the set of nodes where A can be taken. We say that the
action A ∈ A can be taken along (n,m) iff (n,m) ∈ δA.

A timer c ∈ C is called an active timer on a node n ∈ N if
there exists some node m ∈ N such that g(n,m) contains
some time-constraint over c. We denote by act(n) the set of
active timers on n.

Like PDs, TPDs can be viewed as a labeled directed graph,
where the nodes of may be labeled with one more set of
predicates which we call time-invariant. This invariant and
the state predicates over system's discrete variables must
be satisfied on every node.

The edges of TPDs may be labeled with actions and
time-constraints, which we call guards, and a set of timers,
which we call reset timers. Guards will be used to model
the timing conditions that constrain the execution of
transitions. Every reset timer will be reset to 0 whenever
this transition is taken. Besides the transitions that are
explicitly represented by the edges and the stuttering
transitions, τ, we introduce a special transition called tick
for representing the elapsing time. Similar to τ, transition
tick remains in the source node. For every node n and
every active timer on it, we require that the value of every
active timer increases whenever tick is taken.

Figure 2 shows a TPD over P={x=0, x≥0}, A={Up,
Down}, C = {t}, and ΦC ={t≥0, t ≤ 3}. Every node consists
of two parts: the first part, above the dashed line, contains
the predicates over the system's discrete variables, the
second part, below the dashed line, contains all

time-constraints in time-invariant that hold on that node.
For every edge (n,m) we write t:=0 for every timer t in
R(n,m).

Figure 2. An example of TPD.

TPDs can be viewed as an extension of predicate diagrams.
In the other direction, we may say that predicate diagrams
are restricted TPDs. Particularly, when we eliminate all the
components of TPDs that are related to real-time property,
then we have predicate diagrams without fairness
conditions. We call such a predicate diagram the untimed
version of a TPD.

Definition 4. Let T=(N,I,δ,o,r,g,R) be a TPD over P, A, C
and ΦC. The predicate diagram G=(N,I,δ,o,∅) over P and
A is called the untimed version of T.

We now define runs and traces through a TPD as the set of
behaviors that correspond to runs satisfying the node and
edge labels.

Definition 5 Let T=(N,I,δ,o,r,g,R) over P, A, C and ΦC as
defined. A run of T is ω-sequence ϕ =(s0,n0,A0,Δ0)
(s1,n1,A1,Δ1) … of quadruples where si is a state, ni ∈ N is
a node, Ai ∈ A ∪ {τ, tick} is an action and Δi is a real
number such that all of the following conditions hold:
• n0 ∈ I is an initial node.
• s0|[c]| = 0 holds for every c ∈ C.
• For every i ∈ ℵ hold the following conditions:

- si |[ni ∧ r(ni)]|.
- Either Ai ∈ {τ,tick} and ni=ni+1 or Ai ∈ A and

(ni,ni+1) ∈ δAi.
- If Ai∈A and (t,p)∈o(ni,ni+1), then si+1|[t]|p si|[t]|.
- If Ai∈{τ,tick} then si+1|[t]|p si|[t]| holds whenever

(t,p)∈o(ni,m) for some m∈N.
- If Ai = τ then Δi=0 and si+1|[c]| = si|[c]| holds for

every c in C.
- If Ai=tick then Δi>0 and si+1 |[c]| = si|[c]|+Δi holds

for every active timer c on ni and si+1|[c]| = si|[c]|
holds for remaining timers.

- If Ai∈A then Δi=0, si|[g(ni,ni+1)]| and si+1|[c]| = 0
holds for every c in R(ni,ni+1) and si+1|[c]| = si|[c]|
holds for remaining timers .

We write runs(T) to denote the set of runs of T. The set
tr(T) of traces through T consists of all behaviors σ =

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

21

s0s1… such that there exists a run ϕ = (s0,n0,A0,Δ0)
(s1,n1,A1,Δ1) … of T based on the states in σ.

4. Verification

Assume given a real-time specification RTSpec and a
property F. We recall that in TLA formalism, the proof that
RTSpec satisfies F can be considered as proving the
validity of RTSpec ⇒ F. Following the approach of the
verification of discrete systems using predicate diagrams,
we split the proof into two steps: finding a TPD T such
that every model of RTSpec is a trace through T and then
proving that every trace through T is a model of F. The
first step is done by considering node and edge labels of
predicates on the concrete state space of RTSpec and
reducing the trace inclusions to a set of first-order
verification conditions that concern individual states and
transitions. Thus, the first step is done deductively. On the
other hand, the second step is done by regarding the node
labels related to discrete properties, and probably the
auxiliary invariants, as Boolean variables and then
encoding the diagrams as a finite labeled transition system.
The temporal properties of the system is then can be
established by model checking.

4.1 Relating specifications and TPDs
To compare a specification and a TPD, we first have to
assign meaning to the action names that appear in the
diagram. We assume given a function α that assigns an
action formula A every action name. Because no confusion
is possible, we will leave this assignment implicit, and
again write A instead of α(A) when referring to the
formula assigned to the name A.

Recalling the general format of real-time specification in
Equation 1, we put the time constraints explicitly on
timed-bounded actions. In the context of TPDs, the
situation is different, since we put time constraints on
timers and not on actions. To overcome this, we define
bounded-actions of TPDs. Basically bounded-actions are
the same as timed bounded actions, which are actions on
which we put time-constraints.

Definition 6. Let G = (T,I,δ,o,r,g,R) be a TPD over P, A,
C and ΦC. An action A∈A is called a bounded-action if
there exists some timer c∈C and two integer numbers d
and e such that the following conditions hold:
• for every n ∈ N, a predicate of the form c ≤ e is in r(n)

whenever n ∈ En(A),
• for every n,m ∈ N, a predicate of the form c ≥ d is in

g(n,m) whenever (n,m) ∈ δA and
• for every n,m∈N, c is in R(n,m) whenever (n,m) ∈δA

or m∈En(A).

For a bounded action A, we call c, d and e its
corresponding timer, lower-bound and upper-bound, and
denote by clk(A), L(A) and U(A), respectively.
Lemma 1. For some-bounded action A and for every node
n ∈ N, clk(A) is an active timer on n if n ∈ En(A).

A TPD T conforms to a specification RTSpec, written
conf(RTSpec, T), if every behavior that satisfies RTSpec is
a trace through T. The following theorem essentially
introduces a set of first-order ("local") verification
conditions that are sufficient to establish conformance of a
diagram to a real-time system specification in standard
form.

Theorem 1. Let RTSpec ≡ Init ∧ [Next]v ∧ RTNow(v) ∧
RT be a real time system specification and T =
(N,I,δ,o,r,g,R) be a TPD over P,A,C and ΦC as defined.
We say that T conforms to RTSpec if the following
conditions hold:
1. |= Init ⇒ ∨

∈In
n.

2. |= n ∧ [Next]v ⇒ n' ∨ ∨
∈ AmnmA δ),(:),(

〈A〉v ∧ m’.

3. For n,m ∈ ℵ and all (t,p) ∈o(n,m):
a. |= n ∧ m' ∧ .'

),(:
ttA

v
mnA A

p→∨
∈δ

b. |= n ∧ [Next]v ∧ n' ⇒ t'p t.
4. For every bounded-action A:

a. |= RTSpec ⇒ RTBound(A,v,clk(A),L(A),U (A)),
b. |=n ⇒ ENABLED〈A〉v holds for every node

n∈En(A),
c. |=n ⇒ ¬ENABLED 〈A〉v holds for every node n∉

En(A),
d. clk(A)∉act(n) holds for every n∈N such that

n∉En(A),
e. clk(A) ∉ ψ(g(n,m)) holds for every n,m∈N such

that (n,m)∉ δA and
f. clk(A) ∉ R(n,m) holds for every n,m∈N such that

(n,m)∉δA and m∈ En(A).
5. |= ∧

∈Cc
TInit(c) ⇒ r(n) holds for every n∈I.

6. For every bounded action A∈A and for every n,m∈N:
a. if (n,m)∈δA or m∉En(A) then
 |= r(n) ∧ clk(A) ≥ L(A) ∧ clk(A)' = 0 ∧

 ∧

∈)()(: 11 mactAclkA
clk(A1)’≤U(A1) ⇒ r(m)’.

b. otherwise,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

22

 |= r(n)∧ ∧
∈)()(: 11 nactAclkA

(clk(A1)’≥ clk(A1)

 ∧ clk(A1)’≤ U(A1) ⇒ r(n)’).

The first three conditions in Theorem 1 are inherited from
the conformance theorem of predicate diagrams. Those
conditions are related to the discrete properties of the
system. Conditions 4a-4f are related to the
bounded-actions in the diagram and the two last conditions
are related to the time-invariants in the diagrams.
Condition 5 ensures that the time-invariant of every initial
node is implied by the initial condition of every timer.
Condition 6 guarantees that the time-invariants always
agree with the changes of the concrete values of the timers
whenever a transition is taken. In particular, the condition
6a requires that for every time-bounded action A, its
corresponding timer should be reset to 0 whenever A is
taken or it is not enabled at the next state and the value of
every active timer on the next state is less than or equal to
its corresponding upper-bound; and for the other cases
condition 6b requires that the value of each action timer on
the next state should be greater than or equal to its current
value and less than or equal to its upper bound.

Theorem 1 can be used to show that the TPD of Figure 2
conforms to the specification Loop in Figure 1. For
example, we have:
• Init ⇒ x = 0 ∨ x > 0.
• x = 0 ∧ [Next]v ⇒ x'=0 ∨ 〈Up〉v ∧ x' > 0.
• x > 0 ∧ [Next]v ⇒ x'>0 ∨ 〈Down〉v ∧ x' = 0.
• Loop ⇒ RTBound(Down,x,t,0,3).
• t ≤ 3 ∧ t ≥ 0 ∧ t' = 0 ∧ true⇒ t' ≤ ∞.
• t ≤ 3 ∧ t ≥ t’ ∧ t' ≤ 3 ⇒ t' ≤ 3.

4.2 Model checking TPDs
For the proof that all traces through a TPD satisfy some
property F, the TPD is viewed as a finite transition system
that is amenable to model checking.

Two approaches for model checking TPDs are proposed.
First, if the quantitative aspect of times doesn't come into
account, it is enough to model check their untimed
versions which are predicate diagrams.

However, whenever we have to consider the quantitative
aspect of times for proving the properties we want to
verify, we will use some existing real-time system
model-checker for verifying TPDs. For example, we can
use Kronos, which is a software tool built with the aim of
assisting designers of real-time systems to verify whether
their designs meet the specified requirements [6]. To do
that, we first translate our diagrams into the input of

Kronos, which are timed automata with some additional
information.

Definition 7. A timed automaton Γ is given by a tuple (Q,
Q0, X, I, P, Λ) where
• Q is a set of locations,
• Q0 ⊆ Q is a set of initial locations,
• X is a finite set of clocks,
• I : Q → Θ(X) is a mapping from locations to clock

constraints, called the location invariant,
• P is a function associates with each location a set of

atomic propositions.
• Λ ⊆ Q × Σ × Θ(X) × 2X × Q is a set of transition, and

The 5-tuple (q, a, θ, λ, q’) corresponds to a transition from
location q to location q’ labeled with a, a constraint θ and a
set of atomic propositions P(q) that specify when
transition is enabled and a set of clocks λ ⊆ X that are
reset when the transition is executed.

Given a TPD T over P, A, C, and ΦC, the translation from
T to some timed-automata can be done by using this
following construction.

Construction 1. Let T=(N,I,δ,o,r,g,R) be a TPD over P, A,
C, and ΦC. Let An be a set containing action names and κ:
{1..|N|} → ℵ be an injective function which associates
every node in N with some natural number. One can
construct the corresponding timed automaton tuple (Q, Q0,
X, I, P, Λ) as follows:
• Q = {q1,…,q|N|}.
• Q0 = {qi : κ(i) ∈ I}.
• X = C.
• For every i∈1..|N|, P(qi)=κ(i) ∧ r(κ(i))∧I(qi) = r(κ (i)).
• For every (n,m) ∈ δ and for every A ∈ A, there exists

some tuple (qi,A,λ,θ,qj) in Λ such that κ(i) = n, κ(j) =
m, λ = r(n,m) and θ = g(n,m).

• For every n∈N, there exists some tuple of the form
(qi,a,λ,θ,qi) in Λ such that κ(i) = n, a={tick,τ}, λ=
R(n,n) and θ=g(n,n).

Theorem 2. Let T=(N,I,δ,o,r,g,R) be a TPD over P, A, C,
and ΦC as defined and let Γ=(Q,Q0,X,I,P,Λ) be the
resulted automaton from Construction 1 over T. For every
run through T, ρ=(s0,n0,A0,Δ0) (s1,n1,A1,Δ1)…, there exists
a run of Γ: θ = (q0,ν0) ⎯⎯ →⎯),(00 ϕw (q1,ν1) ⎯⎯ →⎯),(11 ϕw …
such that κ(i) = ni and si|[C]|=νi (X) holds for every i ∈ ℵ.

5. An example: Fischer’s protocol

As illustration we take the Fischer's mutual exclusion
protocol which is a well-known and well-studied by

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

23

researchers in the context of real-time verification. We
take the simplified version which only two processes in the
protocol.

 Init ≡ x = 0 ∧ pc1 = 0 ∧ pc2 = 0
 Try1 ≡ x = 0 ∧ pc1 = 0 ∧ pc1’ = 1 ∧ x’ = x ∧ pc2’ =
pc2
 Set1 ≡ pc1 ∧ x’=1 ∧ pc1’ = 2 ∧ pc2’ = pc2
 Enter1 ≡ pc2 ∧ x’ = x ∧ pc2’=pc2 ∧
 ((x=1 ∧ pc1’=3) ∨ (x≠1 ∧ pc1’=0))
 Exit1 ≡ pc1 = 3 ∧ pc1’=0 ∧ x’=0 ∧ pc2’ = pc2
 Try2 ≡ x = 0 ∧ pc2 = 0 ∧ pc2’ = 2 ∧ pc1’ = pc1
 Set2 ≡ pc2 =1 ∧ x’ = 2 ∧ pc2’ = 2 ∧ pc1’ = pc1
 Enter2 ≡ pc2 = 2 ∧ x’=x ∧ pc1’= pc1 ∧
 ((x = 2 ∧ pc2’=3) ∨ (x≠2 ∧ pc2’=0))
 Exit2 ≡ pc2 = 3 ∧ pc2’ = 0 ∧ x’ = 0 ∧ pc1’ = pc1
 Next ≡ Try1 ∨ Set1 ∨ Enter1 ∨ Exit1 ∨
 Try2 ∨ Set2 ∨ Enter2 ∨ Exit2
 v ≡ 〈x, pc1, pc2〉
Fischer ≡ Init ∧ [Next]v ∧ RTNow(v) ∧
 RTBound(Set1, v, s1, 0, D) ∧
 RTBound(Enter1, v, t1, E, ∞) ∧
 RTBound(Set1, v, s2, 0, D) ∧
 RTBound(Enter2, v, t2, E, ∞)

Figure 3. Fischer’s protocol.

The system is composed by a set of 2 timed processes, P1
and P2 plus a shared variable x. Each process Pi behaves as
follows: after remaining idle for some time, it checks
whether the common resource is free (test x = 0) and if so,
before D time units sets x to i. Then it waits at least for E
time units and, making sure that x is still equal to i, enters
the critical section. If x is not equal to i (meaning that
some other process has requested access) then process i
has to retry later. The module contains the specification of
the protocol and some properties to be verified is given in
Figure 3.

For every process Pi we associate a variable pci which
represents its control state. The value of pci is equal to one
of the integer 0,1,2 or 3. The initial predicate Init asserts
that pci is equal to 0 for each process i, so the processes
start with control at statement 0.

We need to verify that, with suitable conditions on D and
E there will never be more than one process in its critical
section. This property can be expressed as a formula:

Fischer ⇒ ¬(pc1 = 3 ∧ pc2 = 3). (3)

Figure 4. Predicate diagram for Fischer’s protocol.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

24

Figure 4 depicts the untimed version of TPD for Fischer's
protocol. We will generate a suitable TPD of this predicate
diagram. Since in the specification Set1, Enter1, Set2 and
Enter2 appear as time-bounded actions, we intuitively treat
those actions as bounded-actions in the TPD. For each
bounded-action we set the corresponding clock, lower
bound and upper bound as follows:
• clk(Set1) = s1, L(Set1) = 0, U(Set1) = D,
• clk(Enter1) = t1, L(Enter1) = E, U(Enter1) = ∞,
• clk(Set2) = s2, L(Set2) = 0, U(Set2) = D, and
• clk(Enter2) = t2, L(Enter2) = E, U(Enter2) = ∞

Starting with the initial node we traverse the diagram in
order to determine whether those time-invariants still hold
on each node or not. We do this by considering the

bounded-actions that can be taken on every node. For
example, if Set1 is enabled then s1=0 is changed to s1≥0.
The predicates s1=t2 and s2=t1 might be changed
accordingly. The result is shown in Figure 6 (the
numbering on some nodes will be used later). The resulted
diagram, again, represents an approximation of the Fischer
specification. However, we still cannot prove the mutual
exclusion property.

We can strengthen the second diagram, by using
assumptions on D and E. We consider two cases: D < E
and D ≥ E. Based on these assumptions, we refine our
diagram in Figure 6 by eliminating transitions that do not
satisfy those conditions. The elimination process can be
done using Simplify algorithm in Figure 7.

1

2

Figure 5. First TPD for Fischer’s protocol.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

25

x = 0
pc1 = 0
pc2 = 0

s1=0 s2=0
t1=0 t2=0
s1=t2 s2=t1

x = 0
pc1 = 1
pc2 = 0

s1 0 s2=0
t1 0 t2=0
s1 t2 s2 t1

s1 D

x = 1
pc1 = 2
pc2 = 0

s1=0 s2=0
t1 0 t2=0
s1=t2 s2 t1

t1

x = 1
pc1 = 3
pc2 = 0

s1=0 s2=0
t1=0 t2=0
s1=t2 s2=t1

x = 2
pc1 = 0
pc2 = 3

s1=0 s2=0
t1=0 t2=0
s1=t2 s2=t1

x =2
pc1 = 0
pc2 = 2

s1=0 s2=0
t1=0 t2 0
s1 t2 s2 t1

t2

x = 0
pc1 = 0
pc2 = 1

s1 0 s2 0
t1 0 t2=0

s1=t2 s2 t1
s2 D

x = 0
pc1 = 1
pc2 = 1

s1 0 s2 0
t1=0 t2 0
s1 t2 s2 t1s1 D s2 D

x = 2
pc1 = 1
pc2 = 2

s1 0 s2=0
t1=0 t2 0
s1 t2 s2 t1s1 D t2

x = 1
pc1 = 2
pc2 = 2

s1=0 s2=0
t1 0 t2 0
s1 t2 s2 t1t1 t2

x = 1
pc1 = 3
pc2 = 2

s1=0 s2=0
t1=0 t2 0
s1 t2 s2 t1t2

x = 2
pc1 = 2
pc2 = 3

s1=0 s2 0
t1 0 t2 0

s1=t2 s2 t1t1

x = 2
pc1 = 2
pc2 = 2

s1=0 s2 0
t1 0 t2 0
s1 t2 s2 t1t1 t2

x = 1
pc1 = 2
pc2 = 1

s1=0 s2 0
t1 0 t2 0

s1=t2 s2 t1s2 D t1

x = 2
pc1 = 1
pc2 = 3

s1 0 s2=0
t1=0 t2 0
s1 t2 s2 t1

s1 D

x = 1
pc1 = 3
pc2 = 1

s1=0 s2 0
t1=0 t2 0
s1=t2 s2 t1

s2 D

x = 2
pc1 = 3
pc2 = 2

s1=0 s2=0
t1=0 t2 0
s1 t2s2 t1t2

x = 0
pc1 = 0
pc2 = 2

s1=0 s2=0
t1=0 t2 0
s1 t2 s2 t1t2

x = 0
pc1 = 1
pc2 = 2

s1 0 s2=0
t1=0 t2 0
s1 t2 s2 t1s1 D t2

x = 0
pc1 = 2
pc2 = 1

s1=0 s2 0
t1 0 t2 0

s1=t2 s2 t1s2 D t1

x = 0
pc1 = 2
pc2 = 0

s1=0 s2=0
t1 0 t2 0

s1=t2 s2 t1t1

x = 1
pc1 = 2
pc2 = 3

s1=0 s2=0
t1 0 t2 0

s1=t2 s2 t1t1

x = 1
pc1 = 3
pc2 = 3

s1=0 s2=0
t1=0 t2 0
s1=t2 s2 t1

x = 0
pc1 = 0
pc2 = 3

s1=0 s2=0
t1=0 t2 0
s1=t2 s2 t1

x = 0
pc1 = 1
pc2 = 3

s1 0 s2=0
t1=0 t2 0
s1 t2 s2 t1

s1 D

x = 0
pc1 = 3
pc2 = 1

s1=0 s2=0
t1=0 t2 0
s1=t2 s2 t1

s2 D

x = 0
pc1 = 3
pc2 = 0

s1=0 s2=0
t1=0 t2 0
s1=t2 s2 t1

x = 2
pc1 = 3
pc2 = 3

s1=0 s2=0
t1=0 t2 0
s1=t2 s2 t1

Exit1 Exit2

Try1

Try1

Try1

Try 1Try2

Set1 s1:=0 s1

Exit2
Exit2

Exit1

Exit1

Exit1

Ex
it 2

Enter
t1 E
t1

Enter2
t2 E
t2:=

Exit1

Exit1

Exit1 Exit2

Ex
it2 Exit1

Set2
s2:=0
s2

Exit2

Try2

Try2

Exit1

Try2

Set2 s2:=0

s2

Set1
s1:=0
s1

Set2
s2:=0
s2

Set1
s1:=0
s1

Set1
s1 0
s1:=

Set2
s2 0
s2=

Se
t 1

s 1:=
0

s 1

Enter
t1 E
t1

Enter1
t1 E t1

Enter2
t2 E
t2:=

Enter2
t2 E t2:=

Enter2
t2 E t2:=

Enter1
t1 E t1

Enter2
t2 E t2:=

Enter2
t2 E t2:=

Enter1
t1 E t1

Enter2 t2
E

t2 :=
En

te
r 1

 t 1
E

t 1

Enter1
t1 E t1

Set1 s1:=0 s1 Set2 s2:=0 s2

Enter2
t2 E t2:= Enter1

t1
E t1

Set2 s2 :=0 s2

1 3

2 4

Figure 6. Second TPD for Fischer’s protocol.

Algorithm Simplify
 if n ∉ visited then
 visited = visited ∪ {n}
 for every (n,m) ∈ δ
 if either condition 6a or 6b in Theorem is
 satisfied then
 δ1 ≡ δ1 ∪ {(n,m)}
 Simplify (T,m, δ1,visited)
 endif
 endfor
 endif

Figure 7 Simplify algorithm.

For every initial node n, we run the algorithm with TPD T,
some node n and some set of edge Δ1 as inputs. Starting
with initial nodes, for every edge leading from this node,

the algorithm checks whether it satisfies the required
condition or not. If so, then the edge is stored and the
algorithm continues to check the next edges. For example,
consider node 1 and node 2 in Figure 6. The corresponding
edge does not satisfy either condition 6a, since it is never
the case that s1 ≥ t2 ∧ s1 ≤ D ∧ t2 ≥ E is true while D < E, or
condition 6b, since in this case node 1 and node 2 are
different nodes. The situation is the similar with node 3
and node 4. Running this algorithm over our second
diagram and assumption D<E, we have the third diagram
shown in Figure 8.

For the assumption D ≥ E, the resulted diagram has the
same structure with the one in Figure 6. As conclusion, the
protocol satisfies mutual exclusion property if D < E.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

26

Since we don't consider the quantitative aspect of time, we
may work with the untimed version of TPD shown in
Figure 8 and then model-check the resulted diagram as
explained in Section 4.

6. Conclusion and related work

A class of diagrams for the verification of real-time systems
is presented in this paper. The a class of diagrams, called
Timed predicate diagrams (TPDs), is a variant of predicate
diagrams proposed by Cansell et.al [3]. A TPD can be
viewed as a predicate diagram equipped with some
component in order to constraint the time. Like predicate
diagrams, the verification of TPDs is a combination of
deduction and algorithmic techniques.

This method is applied on the verification of mutual-
exclustion property of Fischer’s protocol. It has been shown
that the construction of TPD for this protocol can be done
by starting from the untimed version (without considering
the time aspect) and then refining the diagram step by step
until we get the of an appropriate one. The structure of
TPDs, that allows us to work with the untimed version of
TPD, made the verification easier. It is proven that the
protocol satisfies the expected mutual property.

More about the TPDs can also be found in [7].

Many models for reasoning real-time systems have been
proposed. The approach to real-time presented in Manna
et.al. [8] and [1] is based on the computational model of
Timed Transition Systems (TTS) in which time itself is not
explicitly represented but it is reflected in a time stamp
affixed to each state in a computation of a TTS. In [9],
Kesten et.al. introduced a computation model for real-time
systems called Clocked Transition Systems (CTS), which is
a development of TTS. This model represents time by a set
of system variables called clocks (timers) which increase
uniformly whenever time progresses, but can be set to
arbitrary values by system (program) transitions.

The use of diagrams in verification of real-time systems can
be found, for example in [9]. In their approach, they use a
special rule for proving a class of property, such as
invariant and response properties. Every rule is associated
with verification diagrams for real-time systems.

The generation of the TPDs for the Fischer’s protocol is
done manually. Boujjanni et.al [10] have successfully
generated the invariants for the Fischer’s protocol
automatically using TReX, a tool for reachability analysis
of complex systems.

2

Figure 8. Third TPD for Fischer’s protocol.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

27

References

[1] Z. Manna and A. Pnueli, “Models for reactiviy”. Acta
Informatica, 30:609-678, 1993.
[2] Henny B. Sipma, “Diagram-based verification of discrete,
reactive and hybrid systems”, PhD Thesis, Dept. of Computer
Science, Standford University, 1999.
[3] D. Cansell, D. Méry and S. Merz, , “Predicate diagrams for
the verification of reactive systems”, Intl. Conf. on Integrated
Formal Methods (IFM 2000), vol 1945 of Lecture Notes in
Computer Science, Springer-Verlag, 2000.
[4] L. Lamport, “The Temporal Logic of Actions”, ACM
Transactions on Programming Languages and Systems,
16(3):872-923, May, 1994.
[5] R. Alur, “Timed automata”, NATO ASI Summer School on
Verification of Digital and Hybrid Systems, 1998.
[6] S. Yovine, “KRONOS: A verification tool for real-time”,
International Journal of Software Tools for Technology Transfer,
vol. 1, NBer. 1+2, p. 123-133, Springer-Verlag, 1997.
[7] C.E. Nugraheni, “Predicate diagrams as basis for the
verification of reactive systems”, PhD Thesis, Institut für
Informatik, University of Munich, Germany, 2004.
[8] T. Henzinger, Z. Manna, and A. Pnueli. ”Temporal proof
methodologies for Timed Transition Systems”. Information and
Computation, 112(2):273-337. 1994.
[9] Y. Kesten, Z. Manna, and A. Pnueli. ”Verification of Clocked
and Hybrid Systems”. In G. Rozenberg and F.W. Vaandrager,
editors. Lectures on Embedded Systems, vol. 1494 of Lecture
Notes in Computer Science, pages 4-73. Springer-Verlag, 1998.
[10] TReX examples: Fischer’s protocol in
http://ww_verimag.imag.fr/~annichin/trex/demos/fischer.html.

Cecilia E. Nugraheni received the B.S.
and M.S. degrees in Informatics
Engineering from Bandung Institute of
Technology in 1993 and 1997,
respectively. In 2004 she got her PhD
degree from Institut für Informatik,
University of Munich, Germany. She is
now an academic staff at Computer
Science Dept., Parahyangan Catholic

University, Bandung, Indonesia.

