
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

40

Manuscript received December 5, 2006.
Manuscript revised December 25, 2006.

Improving Systems Design Using a Clustering
Approach

István Gergely Czibula † and Gabriela Şerban††,

Babeş-Bolyai University, Faculty of Mathematics and Computer Science,
1, M. Kogălniceanu Street, RO-400084 Cluj-Napoca, Romania

Summary
Clustering is a division of data into groups of similar objects, a
data mining activity that aims to differentiate groups inside a
given set of objects, with respect to a set of relevant attributes of
the analyzed objects. Refactoring is the process of improving the
design of software systems. Its goal is to change a software
system in such a way that it does not alter the external behavior
of the code, but improves its internal structure ([9]). This paper
aims at presenting a new approach for improving systems design
using clustering. Clustering is used in order to recondition the
class structure of a software system. The proposed approach can
be useful for assisting software engineers in their daily works of
refactoring software systems.
We evaluate our approach using the open source case study
JHotDraw ([18]) based on two newly defined measures. A
comparison with previous approaches is also provided.
Key words:
Software Engineering, Refactoring, System Design, Clustering.

Introduction

The original design of a software system is rarely prepared
for every new requirement which appears over the
software system's life cycle. Due to tight schedules which
appear in real life software development process, different
people have to make quickly changes in the systems.
Without continuously restructuring the code, the system
becomes difficult to understand and change, and therefore
it is often costly to maintain.

In many software development methodologies (extreme
programming and other agile methodologies), refactoring
is a solution to keep the software structure clean and easy
to maintain. Nowadays, refactoring becomes an integral
part of the software development cycle: developers
alternate between adding new tests and functionality and
refactoring the code to improve its internal consistency
and clarity.

In [9], Fowler defines refactoring as “the process of
changing a software system in such a way that it does not

alter the external behavior of the code yet improves its
internal structure. It is a disciplined way to clean up code
that minimizes the chances of introducing bugs”.
Refactoring is viewed as a way to improve the design of
the code after it has been written. Software developers
have to identify parts of code having a negative impact on
the system's maintainability, and apply appropriate
refactorings in order to remove the so called “bad-smells”
([14]).

All existing Integrated Development Environments offers
support for automatic application of various refactorings.
In this paper we are focusing on developing a technique
that would help developers to identify the appropriate
refactorings.

Our approach takes an existent software and reassembles it
using clustering, in order to obtain a better design,
suggesting the needed refactorings. Applying the proposed
refactorings remains the decision of the software engineer.

Related Work

There are various approaches in the literature in the field
of refactoring. In [1], a search based approach for
refactoring software systems structure is proposed. The
authors use an evolutionary algorithm for identifying
refactorings that improve the system structure. An
approach for restructuring programs written in Java
starting from a catalog of bad smells is introduced in [5].
Based on some elementary metrics, the approach in [4]
aids the user in deciding what kind of refactoring should
be applied. The paper [7] describes a software
vizualization tool which offers support to the developers
in judging which refactoring to apply.

Clustering techniques have already been applied for
program restructuring. In [3] a clustering based approach
for program restructuring at the functional level is
presented. This approach focuses on automated support

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

41

for identifying ill-structured or low cohesive functions.
The paper [15] presents a quantitative approach based on
clustering techniques for software architecture
restructuring and reengineering as well for software
architecture recovery. It focuses on system decomposition
into subsystems.

However, to our knowledge, there is no approach in the
literature that uses clustering in order to improve the class
structure of a system. The existing clustering approaches
handle methods decomposition ([3]) or system
decomposition into subsystems ([15]).

The main contributions of this paper are:
− To propose a new k-means based clustering approach

for identifying refactorings in order to improve the
structure of software systems. The proposed approach
can be useful for assisting software engineers in their
daily work of restructuring software systems.

− To evaluate the obtained results on an open source
case study ([18]) based on two newly defined
measures.

The rest of the paper is structured as follows. Section 2
presents the main aspects related to the problem of
clustering. Our approach (CARD) for determining
refactorings using a clustering technique is proposed in
Section 3. Section 4 provides an experimental evaluation
of the proposed approach using the open source case study
JHotDraw ([18]). Some conclusions and further work are
outlined in Section 5.

2. Clustering

Unsupervised classification, or clustering, as it is more
often referred as, is a data mining activity that aims to
differentiate groups (classes or clusters) inside a given set
of objects ([8]), being considered the most important
unsupervised learning problem. The inferring process is
carried out with respect to a set of relevant characteristics
or attributes of the analyzed objects. The resulting subsets
or groups, distinct and non-empty, are to be built so that
the objects within each cluster are more closely related to
one another than objects assigned to different clusters.
Central to the clustering process is the notion of degree of
similarity (or dissimilarity) between the objects.

Let },...,,{ 21 nOOOO = be the set of objects to be
clustered. Using the vector-space model, each object is
measured with respect to a set of l initial attributes,

},...,,{ 21 lAAAA = , and is therefore described by a l-

dimensional vector ,},,...,,{ 21 ℜ∈= ikiliii OOOOO
.1,1 lkni ≤≤≤≤ Usually, the attributes associated to

objects are standardized in order to ensure an equal weight
to all of them ([8]).
The measure used for discriminating objects can be any
metric or semi-metric function ℜ→×OOd :
(Minkowski distance, Euclidian distance, Manhattan
distance, Hamming distance, etc). The distance between
two objects expresses the dissimilarity between them.
Consequently, the similarity between two objects iO and

jO is defined as

.
),(

1),(
ji

ji OOd
OOsim =

A large collection of clustering algorithms is available in
the literature. [8], [16] and [12] contain comprehensive
overviews of the existing techniques. Most clustering
algorithms are based on two popular techniques known as
partitional and hierarchical clustering.

In this paper we are focusing only on k-means clustering,
that is why, in the following, an overview of the
partitioning clustering methods is presented.

2.1 Partitioning Methods. The k-means Clustering
Algorithm

A well-known class of clustering methods is the one of the
partitioning methods, with representatives such as the k-
means algorithm or the k-medoids algorithm. Essentially,
given a set of n objects and a number nkk ≤, , such a
method divides the object set into k distinct and non-
empty clusters. The partitioning process is iterative and
heuristic; it stops when a “good” partitioning is achieved.
Finding a “good” partitioning coincides with optimizing a
criterion function defined either locally (on a subset of the
objects) or globally (defined over all of the objects, as in
k-means). These algorithms try to minimize certain criteria
(a squared error function); the squared error criterion tends
to work well with isolated and compact clusters ([12]).

Partitional clustering algorithms are generally iterative
algorithms that converge to local optima. The most widely
used partitional algorithm is the iterative k-means
approach. The objective function that the k-means
optimizes is the squared sum error (SSE). The SSE of a
partition },...,,{ 21 pKKKK = is defined as:

∑∑
= =

=
p

j

n

i
j

j
i

j

fOdKSSE
1 1

2),()(

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

42

where the cluster jK is a set of objects

},...,,{ 21
j

n
jj

j
OOO and jf is the centroid (mean) of jK :

.,..., 11
1

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
∑∑
==

j

n

k

j
kl

j

n

k

j
k

j n

O

n

O

f

jj

Hence, the k-means algorithm minimizes the intra-cluster
distance. The k-means algorithm partitions a collection of
n objects into k distinct and non-empty clusters, data being
grouped in an exclusive way (each object will belong to a
single cluster) ([16]). The algorithm starts with k initial
centroids, then iteratively recalculates the clusters (each
object is assigned to the closest cluster - centroid), and
their centroids until convergence is achieved.

The main disadvantages of k-means are:
− The performance of the algorithm depends on the

initial centroids. So, the algorithm gives no guarantee
for an optimal solution.

− The user needs to specify the number of clusters in
advance.

3. Clustering Approach for Refactorings
Determination (CARD)

In this section we propose a new k-means based clustering
approach (CARD) that aims at finding adequate
refactorings in order to improve the structure of software
systems.

CARD approach consists of three steps:
− Data collection. The existent software system is

analyzed in order to extract from it the relevant
entities: classes, methods, attributes and the existent
relationships between them.

− Grouping.The set of entities extracted at the previous
step are re-grouped in clusters using a grouping
algorithm (kRED algorithm, in our approach). The
goal of this step is to obtain an improved structure of
the existing software system.

− Refactorings extraction. The newly obtained
software structure is compared with the original
software structure in order to provide a list of
refactorings which transform the original structure
into an improved one.

The above described steps offer a general view of our
approach. In the following we introduce a theoretical
model on which our clustering approach is based, and a
more detailed description of CARD.

3.1 Theoretical Model

In this subsection we present a theoretical model that will
be used in order to explain and evaluate our approach.

Let },...,,{ 21 nsssS = be a software system, where

nisi ≤≤1, , can be an application class, a method from a
class or an attribute from a class.
Let us consider that:

− SSClassCCCSClass l ⊂=)(},,...,,{)(21 , is the set

of applications classes in the initial structure of the
software system S.

− Each application class)1(liCi ≤≤ is a set of
methods and attributes, i.e.,

,1},,...,,,,...,,{ 2121 npaaammmC iiriiipiii ii
<≤=

nri <≤1 , where)1(iij pjm ≤≤ are methods and

)1(iij rja ≤≤ are attributes from iC .

− UU
l

i

p

j
ij

i

SSMethmSMeth
1 1

)(,)(
= =

⊂= , is the set of

methods from all the application classes of the
software system S.

− UU
l

i

r

j
ij

i

SSAttraSAttr
1 1

)(,)(
= =

⊂= , is the set of

attributes from all the application classes of the
software system S.

Based on the above notations, the software system S is
defined as in Equation (1):

U U).()()(SAttrSMethSClassS = (1)

As described above, at the Grouping step of our approach,
the software system S has to be re-grouped. In our view,
this re-grouping is represented as a partition of S.

Definition 1. Partition of a software system S.
The set },...,,{ 21 vKKKK = is called a partition of the
software system },...,,{ 21 nsssS = iff
− nv ≤≤1 ;
− viiKSK ii ≤≤∀∅≠⊆ 1,,, ;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

43

− jivjijiKKandKS ji

v

i
i ≠≤≤∀∅==

=

,,1,,
1

IU .

In our approach, we use a k-means based clustering
algorithm in order to obtain a partition of the software
system. In the following we will refer to iK as the i-th
cluster of K , to K as a set of clusters and to an element

is from S as an entity. A cluster iK from the partition K
represents an application class in the new structure of the
software system.

3.2 Our approach

Based on the theoretical model described in Subsection
3.1, let us consider a software system },...,,{ 21 nsssS = .
Our focus is to improve the design of the software system
S by determining a partition of S that corresponds to an
improved structure of the software system.

In the following we will describe the steps of CARD.

Data Collection
The existent software system is analyzed in order to
extract from it the relevant entities: classes, methods,
attributes and the existent relationships between them. The
relevant entities can be extracted from existent documents
of the software system, like: source code, UML diagrams,
or other documents that provide the needed information.
This step is particular to the analyzed software system. A
detailed explanation of this step for our case study is
provided in Section 4.

Grouping
At this step we propose to re-group entities from a
software system using a vector space model based
clustering algorithm, more specifically a variant of the k-
means clustering algorithm, named kRED (k-means for
REfactorings Determination).

It is well known that the violation of the principle “Put
together what belong together” is the main symptom for
ill-structured software systems. In order to capture this
aspect, we have to measure the degree to which some parts
of the system belong together.

In our approach the objects to be clustered are the entities
from the software system S, i.e., },...,,{ 21 nsssO = . As we
intend to group methods and attributes in classes, we will
consider the attribute set as the set of application classes
from the software system S, },...,,{ 21 lCCCA = , i.e., the

cardinality of the vector space model in our approach is
the number l of application classes from the software
system S. Our focus is to group similar entities from S in
order to obtain high cohesive groups (clusters).

In the literature there exist many cohesion measures, like
the ones defined in [19], [13], [10]. We will adapt the
generic cohesion measure introduced in [10] that is
connected with the theory of similarity and dissimilarity.
In our view, this cohesion measure is the most appropriate
to our goal.
We will consider, for a given entity from the software
system S, the dissimilarity degree between the entity and
the application classes C from S,)(, SClassCC ∈∀ .

So, each entity)1(nisi ≤≤ from the software system S is
characterized by a l-dimensional vector:),...,,(21 ilii sss ,
where)1,(, ljjsij ≤≤∀ is computed as given in Equation

(2):

⎪
⎩

⎪
⎨

⎧

∞

∅≠−
=

otherwise

Cpspif
Cpsp
Cpsp

s ji
ji

ji

ij
)()(

|)()(|
|)()(|

I
U

I

(2)

where, for a given entity Se∈ ,)(ep defines a set of
relevant properties of e, expressed as:

− If)(SAttre∈ (e is an attribute) then)(ep consists

of: the attribute itself, the application class where the
attribute is defined, and all methods from

)(SMeth that access the attribute.
− If)(SMethe∈ (e is a method) then)(ep consists

of: the method itself, the application class where the
method is defined, and all attributes from)(SAttr
accessed by the method.

− If)(SClasse∈ (e is an application class) then)(ep
consists of: the application class itself, and all
attributes and methods defined in the class.

We will consider that the distance between two entities is
and js from the software system S is expressed using the

Euclidian distance between their associated vectors, as:

∑
=

−=
l

k
jkikjiE ssssd

1

2)(),(.

We have chosen Euclidian distance in our approach,
because of the following reasons:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

44

− Intuitively, as the elements from the vector

characterizing an entity represent the dissimilarity
degree to the application classes, the Euclidian
distance assigns low distances to entities that have to
belong to the same application class.

− It is the most widely used distance measure in
clustering ([12]).

− We have obtained better results using Euclidian
distance than using other metrics.

The main idea of the kRED algorithm that we apply in
order to group entities from a software system is the
following:

(i) The initial number of clusters is the number l of

application classes from the software system S.
(ii) The initial centroids are chosen as the application

classes from S.
(iii) As in the classical k-means approach, the clusters

(centroids) are recalculated, i.e., each object is
assigned to the closest cluster (centroid).

(iv) Step (iii) is repeatedly performed until two
consecutive iterations remain unchanged, or the
number of steps performed exceeds the maximum
number of iterations allowed.

We mention that kRED algorithm provides a partition of a
software system S, partition that represents a new structure
of the software system. Regarding to kRED algorithm, we
have to notice the following:

− The reason for choosing at steps (i) and (ii) the

number of classes and as centroids the classes is that
we intend to group entities (methods, attributes)
around classes.

− If, at a given moment, a cluster becomes empty, this
means that the number of clusters will be decreased.

− Because the initial centroids are the application
classes from the software system, the dependence of
the algorithm on the initial centroids is eliminated.

− Because the initial number l of centroids (clusters) is
known (the number of application classes), a k-means
based clustering approach is suitable.

3.3 Refactorings Extraction

In this section we briefly discuss about the refactorings
that CARD approach is able to identify.

Let us consider that S is the analyzed software system, as
defined in Subsection 3.1, and that },...,,{ 21 lKKKK = is
the partition provided by kRED, i.e., the new structure of S.
The main refactorings identified by kRED algorithm are:

1. Move Method ([9]) refactoring.

It moves a method ijm of a class iC to another class

uC that uses the method most; the method ijm of

class iC should be turned into a simple delegation, or
it should be removed completely. The bad smell
motivating this refactoring is that a method uses or is
used by more features of another class than the class
in which it is defined ([7]).

This refactoring is identified by kRED algorithm by
moving the method ijm in the cluster tK

corresponding to the application class uC , i.e.,

tijtu KmKCtsltt ∈∈≤≤∃ ,..,1, and vij Km ∉ ,

where vi KC ∈ .

2. Move Attribute ([9]) refactoring.
It moves an attribute ija of a class iC to another

class uC that uses the attribute most. The bad smell
motivating this refactoring is that an attribute is used
by another class more than the class in which it is
defined ([7]).

This refactoring is identified by kRED algorithm by
moving the attribute ija in the cluster tK

corresponding to the application class uC , i.e.,

tijtu KaKCtsltt ∈∈≤≤∃ ,..,1, and vij Ka ∉ ,

where vi KC ∈ .

3. Inline class ([9]) refactoring.
It moves all members of a class iC into another class

uC and deletes the old class. The bad smell
motivating this refactoring is that a class is not doing
very much ([7]).

This refactoring is identified by kRED algorithm by
decreasing the number of elements in the partition K .
Consequently, the number of application classes in the
new structure of S becomes l-1, and classes iC and

uC with their corresponding entities (methods and
attributes) will be merged in the same cluster tK , i.e.,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

45

.,,,..,11, tututiti KCKCKCKCtsltt ⊂∈⊂∈−≤≤∃
From the clustering point of view, this case appears
when, at a given iteration, a cluster becomes empty.

We have currently implemented the above enumerated
refactorings, but kRED algorithm can also identify other
refactorings, like: Pull Up Attribute, Pull Down Attribute,
Pull Up Method, Pull Down Method, Collapse Class
Hierarchy. Future improvements will deal with these
situations, also.

4. Experimental Evaluation

In order to validate our clustering approach, we will
consider two evaluations, which are described in
Subsections 4.1 and 4.2. In the following, we will briefly
describe the Data Collection step from our approach.

Each of the systems evaluated in Subsections 4.1 and 4.2
are written in Java. In order to extract from the systems the
data needed in the Grouping step of our approach
(Subsection 3.2) we use ASM 3.0 ([2]). ASM is a Java
bytecode manipulation framework. We use this framework
in order to extract the structure of the systems (attributes,
methods, classes and relationships between all these
entities).

4.1 Code Refactoring Example

We aim at illustrating how the Move Method refactoring is
obtained after applying kRED algorithm.

Let us consider the Java code example shown in Figure 1.
The example is similar to the one presented in [7]. We
have chosen this example in order to compare our
approach with the one in [7], as this example is the only
result provided by the authors.

public class Class_A {
 public static int attributeA1;
 public static int attributeA2;

 public static void methodA1(){
 attributeA1 = 0;
 methodA2();
 }

 public static void methodA2(){
 attributeA2 = 0;
 attributeA1 = 0;
 }

 public static void methodA3(){

 attributeA2 = 0;
 attributeA1 = 0;
 methodA1();
 methodA2();
 }
}
public class Class_B {
 private static int attributeB1;
 private static int attributeB2;

 public static void methodB1(){
 Class_A.attributeA1=0;
 Class_A.attributeA2=0;
 Class_A.methodA1();
 }

 public static void methodB2(){
 attributeB1=0;
 attributeB2=0;
 }

 public static void methodB3(){
 attributeB1=0;
 methodB1();
 methodB2();
 }
}

Fig. 1 Code example.
Analyzing the code presented in Figure 1, it is obvious
that the method methodB1() has to belong to class_A,
because it uses features of class_A only. Thus, the
refactoring Move Method should be applied to this method.

We have applied kRED algorithm, introduced in Section 3,
and the Move Method refactoring for methodB1() was
determined.
The two obtained clusters are:

− Cluster 1: {Class_A, methodA1(), methodA2(),

methodA3(), methodB1(), attributeA1,
attributeA2}.

− Cluster 2: {Class_B, methodB2(), methodB3(),
attributeB1, attributeB2}}.

The first cluster corresponds to application class Class_A
and the second cluster corresponds to application class
Class_B in the new structure of the system. Consequently,
CARD proposes the refactoring Move Method
methodB1() from Class_B to Class_A.
We mention that the refactoring proposed by our approach
coincides with the one given in [7].

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

46

4.2 JHotDraw Case Study

Our second evaluation is the open source software
JHotDraw, version 5.1 ([18]). It is a Java GUI framework
for technical and structured graphics, developed by Erich
Gamma and Thomas Eggenschwiler, as a design exercise
for using design patterns. Table 1 gives an overview of the
system's size.

Table 1: JHotDraw Statistic
Classes 173
Methods 1375

Attributes 475

The reason for choosing JHotDraw as a case study is that
it is well-known as a good example for the use of design
patterns and as a good design. Our focus is to test the
accuracy of CARD approach introduced in Section 3 on
JHotDraw, i.e., how accurate are the results obtained after
applying kRED algorithm in comparison to the current
design of JHotDraw. As JHotDraw has a good class
structure, the Grouping step of CARD should generate a
nearly identical class structure. In order to capture the
similarity of the two class structures (the one obtained by
kRED algorithm and the original one) we propose two
measures. Both measures evaluate how similar is a
partition of the software system S determined after
applying kRED algorithm with a good partition of the
software system (as the actual partition of JHotDraw is
considered to be).

In the following, let us consider the theoretical model
presented in Subsection 3.1 and a refactoring technique T
(a technique that determines a refactoring of the software
system S to be analyzed). We assume that the software
system S has a good design (as JHotDraw has) and

},...,,{ 21 lKKKK = is a partition reported after applying
kRED algorithm. We mention that l represents the number
of application classes from the software system S.

Definition 2. ACCuracy of a refactoring technique -
ACC..

Let T be a refactoring technique. The accuracy of T with
respect to a partition K and the software system S,
denoted by),,(TKSACC , is defined as:

∑
=

⋅=
l

i
i TKCacc

l
TKSACC

1

),,(1),,(.

||

||
||

),,(
i

iC

C

Mj ji

ji

i M

KC
KC

TKCacc
∑
∈

=
U

I

(where
iCM is the set of

clusters from K that contain elements from the application
class iC , },1|{ ∅≠≤≤= jiC KCljjM

i
I), is the

accuracy of T with respect to the application class iC .

In our view, ACC defines the degree to which the partition
K is similar to S. For a given application class

)(SClassCi ∈ ,),,(TKCacc i defines the degree to
which application class iC , all its methods and all its
attributes were discovered by T in a single cluster.

Based on Definition 2, it can be proved that

].1,0[),,(∈TKSACC
1),,(=TKSACC iff 1),,(=TKCacc i ,)(SClassCi ∈∀ ,

i.e., each application class was discovered in a single
cluster. In all other situations, 1),,(<TKSACC .

Larger values for ACC indicate better partitions with
respect to S, meaning that ACC has to be maximized.

Definition 3. PRECision of a refactoring technique -
PREC..

Let T be a refactoring technique. The precision of T with
respect to a partition K and the software system S,
denoted by),,(TKSPREC , is defined as:

∑
∈

⋅=
)(

),,(
|)(|

1),,(
SMethm

TKmprec
SMeth

TKSPREC .

⎩
⎨
⎧

=
otherwise

Sinasclasssametheinplacedwasmif
TKmprec

0
1

),,(

,is the precision of T with respect to the method m.

In our view,),,(TKSPREC defines the percentage of
methods from S that were correctly discovered by T (we
say that a method is correctly discovered if it is placed in
its original application class).

Based on Definition 3, it can be proved that

].1,0[),,(∈TKSPREC
1),,(=TKSPREC iff 1),,(=TKmprec ,)(SMethm∈∀ ,

i.e., each method was discovered in its original application
class. In all other situations, 1),,(<TKSPREC .

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

47

Larger values for PREC indicate better partitions with
respect to S, meaning that PREC has to be maximized.

After applying CARD for JHotDraw case study, we obtain
the following values for the measures ACC and PREC:

− ACC=0.9829.
− PREC=0.9956.

Regarding to PREC, there were only 6 methods that were
misplaced in the partition obtained after applying kRED
algorithm. The names of the methods that were proposed
to be moved is shown in the first column of Table 2. The
suggested target class is shown in the second column.

Table 2: The misplaced methods
Method Target Class

PertFigure.writeTasks StorableOutput
PertFigure.readTasks StorableInput
PolygonFigure.distanceFromLine Geom
StandardDrawingView.drawing-
 Invalidated

DrawingChangeEven
t

ColorEntry.fName ColorMap
ColorEntry.fColor ColorMap

From our perspective, all the proposed refactorings can be
justified.
Consider, for example, the PertFigure.writeTasks
method presented below ([18]).

 public void writeTasks(StorableOutput dw, Vector v) {
 dw.writeInt(v.size());
 Enumeration i = v.elements();
 while (i.hasMoreElements())
 dw.writeStorable((Storable) i.nextElement());
 }

As we can observe from the source code above, the
method writeTasks writes a list of Storable elements,
without directly using attributes or methods from
PertFigure class. The responsability of StorableOutput
class is to manage the storage of different storable objects.
So, in our opinion, the best place for writeTasks method
would be the class StorableOutput.

The need for refactoring Move Method
PertFigure.readTasks to StorableInput class can be
similarly justified.
Another proposed refactoring is Move Method
PolygonFigure.distanceFromLine to Geom class.

public static double distanceFromLine(int xa, int ya, int xb,
 int yb, int xc, int yc) {
 int xdiff = xb - xa;
 int ydiff = yb - ya;
 long l2 = xdiff * xdiff + ydiff * ydiff;
 if (l2 == 0)
 return Geom.length(xa, ya, xc, yc);
 double rnum = (ya - yc) * (ya - yb) - (xa - xc) * (xb - xa);
 double r = rnum / l2;
 if (r < 0.0 || r > 1.0)
 return Double.MAX_VALUE;
 double xi = xa + r * xdiff;
 double yi = ya + r * ydiff;
 double xd = xc - xi;
 double yd = yc - yi;
 return Math.sqrt(xd * xd + yd * yd);
}

This method computes the distance from a given point to a
line. It does not directly use attributes and methods from
PolygonFigure class. The class Geom consists of a set of
utility methods, so, in our opinion, the move of method
PolygonFigure.distanceFromLine to Geom class is
justifiable.

4.3 Comparisons with other approaches

The only approach on the topic studied in this paper, that
partially gives the results obtained on a relevant case study
(like JHotDraw) is [1]. The authors use an evolutionary
algorithm in order to obtain a list of refactorings using
case study JHotDraw.

The advantages of CARD in comparison with the approach
presented in [1] are illustrated bellow:
− We have applied our precision measure PREC

(Definition 3) on the results obtained by the technique
from [1] and we obtained a precision of 0.9949, that is
less that the precision (0.9956) obtained by our
technique.

− The accuracy obtained by the refactoring technique
from [1] cannot be determined, because the authors
provide only the list of methods proposed to be
refactored, and in order to compute ACC measure we
need the complete resulting structure of the software
system (including the attributes, also).

− Our technique is deterministic, in comparison with the
approach from [1]. The evolutionary algorithm from
[1] is executed 10 times, in order to judge how stable
are the results, while kRED algorithm from our
approach is executed just once.

− The overall running time for the technique from [1] is
about 300 minutes (30 minutes for one run), while

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

48

kRED algorithm in our approach provide the results in
about 5 minutes. We mention that the execution was
made on similar computers.

− Because the results are provided in a reasonable time,
our approach can be used for assisting developers in
their daily work for improving software systems.

A comparison between our approach and the one
presented in [7] is given in Subsection 4.1. A more
detailed comparison cannot be provided, because the paper
[7] presents only a short example, and no other results.

We cannot make a complete comparison with other
refactoring approaches, because, for most of them, the
obtained results for relevant case studies are not available.
Most approaches (like [3], [15]) give only short examples
indicating the obtained refactorings. Other techniques
address particular refactorings: the one in [3] focuses on
automated support only for identifying ill-structured or
low cohesive functions and the technique in [15] focuses
on system decomposition into subsystems.

5. Conclusions and Further Work

We have presented in this paper a novel approach, CARD,
for improving systems design using clustering. More
precisely, we have introduced kRED algorithm, a k-means
based clustering algorithm in order to obtain an improved
structure of a software system.

CARD proposes a list of refactorings that can be useful for
assisting software engineers in their daily works of
refactoring software systems.

We have defined a theoretical model on which we base
our approach. We have demonstrated the potential of
CARD by applying it to the open source case study
JHotDraw and we have also presented the advantages of
our approach in comparison with existing approaches.

Further work can be done in the following directions:

− To apply CARD for other case studies, like JEdit ([6]).
− To use other approaches for clustering, such as

hierarchical clustering ([12]), search based clustering
([11]), or genetic clustering ([17]).

− To improve the vector space model used for
clustering.

− To use other search based approaches in order to
determine refactorings that improve the design of a
software system.

− To develop a tool (as a plugin for Eclipse) that is
based on CARD, the approach presented in this paper.

− To apply our approach in order to transform non
object-oriented software into object-oriented systems.

References
[1] Seng, O., Stammel, J., Burkhart, D.: Search-Based

Determination of Refactorings for Improving the Class
Structure of Object-Oriented Systems. Proceedings of
GECCO'06 (2006) 1909-1916

[2] http://asm.objectweb.org/ (2006)
[3] Xu, X., Lung, C.H., Zaman, M., Srinivasan, A.: Program

Restructuring Through Clustering Technique. In: 4th IEEE
International Workshop on Source Code Analysis and
Manipulation (SCAM 2004), USA (2004) 75-84

[4] Tahvildari, L., Kontogiannis, K.: A mteric based approach
to enhance design quality through meta-pattern
transformations. Proceedings of the seventh European
Conference on Software Maintenance and Reengineering
(2003)

[5] Dudzikan, T., Wlodka, J.: Tool-supported dicovery and
refactoring of structural weakness. Masters' Thesis, TU
Berlin (2002)

[6] jEdit Programmer's Text Editor: http://www.jedit.org
(2002)

[7] Simon, F., Steinbrückner, F., Lewerentz, C.: Metrics based
refactoring. In: Proc. European Conf. Software Maintenance
and Reengineering. IEEE Computer Society Press (2001)
30–38

[8] Han, J., Kamber, M.: Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers (2001)

[9] Fowler, M.: Improving the design of existing code.
Addison-Wesley, New-York (1999)

[10] Simon, F., Loffler, S., Lewerentz, C.: Distance based
cohesion measuring. In Proceedings of the 2nd European
Software Measurement Conference (FESMA) 99,
Technologisch Instituut Amsterdam (1999)

[11] Doval, D., Mancoridis, S., Mitchell, B.S.: Automatic
clustering of software systems using a genetic algorithm.
IEEE Proceedings of the 1999 Int. Conf. on Software Tools
and Engineering Practice STEP'99 (1999)

[12] Jain, A., Murty, M.N., Flynn, P.: Data clustering: A review.
ACM Computing Surveys 31 (1999) 264-323

[13] Bieman, J.M., Kang, B.-K.: Measuring Design-Level
Cohesion. In: IEEE Transactions on Software Engineering
24 No. 2 (1998)

[14] McCormick, H., Malveau, R.: Antipatterns: Refactoring
Software, Architectures, and Projects in Crises. John Wiley
and Sons (1998)

[15] Lung, C.H.: Software Architecture Recovery and
Restructuring through Clustering Techniques. ISAW3,
Orlando, SUA (1998) 101-104

[16] Jain, A., Dubes, R.: Algorithms for Clustering Data.
Prentice Hall, Englewood Cliffs, New Jersey (1998)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

49

[17] Cole, R.M.: Clustering with genetic algorithms. Master's
thesis, University of Western Australia (1998)

[18] JHotDraw Project: http://sourceforge.net/projects/jhotdraw
(1997)

[19] Chidamber, S., Kemerer, C.: A metrics suite for object
oriented design. In: IEEE Transactions on Software
Engineering 20, No. 6 (1994) 476-493

István Gergely Czibula has
graduated from Babeş-Bolyai
University of Cluj-Napoca, Faculty
of Mathematics and Computer
Science in 2002. He is a PhD
student at the Department of
Computer Science, Faculty of
Mathematics and Computer Science
from the Babeş-Bolyai University of
Cluj-Napoca, Romania. His main

research interest is software engineering.

Gabriela Şerban has graduated
from Babeş-Bolyai University of
Cluj-Napoca, Faculty of
Mathematics and Computer
Science in 1992. She has received
the PhD degree in Computer
Science in 2003, with the “cum
laude” distinction. She is an
associate professor at the
Department of Computer Science,
Faculty of Mathematics and

Computer Science from the Babeş-Bolyai University of Cluj-
Napoca, Romania. Her research interests include artificial
intelligence, machine learning, multiagent systems, programming
paradigms.

