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Summary 

The goal of this research is to devise a heuristic to solve 
the GOSST(Grade of Services Steiner Minimum Tree) 
problem that could apply to the design of communication 
networks. GOSST problem is to find a network topology 
satisfying the G-condition with minimum construction 
cost. The proposed heuristic might provide a way to 
design of more economical network offering differential 
grade of services. The heuristic employs Minimum 
Spanning Tree, Steiner Point and two connection strategies. 
The implemented methods will be analyzed their 
performance and characteristics for examining the 
heuristic. Because GOSST problem is known to be NP-
Complete, proposed heuristic to find a reasonable solution 
might have some limitation essentially. Most researches on 
GOSST have concentrated on geometric analyses and 
approximation algorithms. Since all published solutions 
for optimization problems require tremendous 
computation and memory space, it might be hard to apply 
those to practical problems. Therefore GOSST, one of the 
optimization problems, could not escape the foible. In this 
research, a feasible heuristic for GOSST problems is 
proposed, implemented and analyzed. For more exquisite 
designed heuristic, more studies and trials are necessary.  
 
Key words: 
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1. Introduction 

 
In the network design, there is a fundamental issue for 

the physical construction of a network structure, which is 
to save the construction costs with sufficient transmission 
capabilities; the interconnection of many communication 
sites with the best choice of the connecting lines and with 
the best allocation of the transmission capacities over 
these lines. Good solutions always yield paths with 

enough communication capacities between any two sites, 
spending less network construction costs. A solution for 
the GOSST (Grade of Services Steiner Minimum Tree) 
problem could make the good use of the applications like 
this. GOSST problem also has applications in 
transportation, for road constructions and in some more 
potential uses of CAD in terms of interconnecting the 
elements on a plane such that to provide enough flux 
between any two elements.  

                                                                                                                   
GOSST problem is a variation of the ESMT (Euclidean 

Steiner Minimum Tree) which is a problem to find a 
minimum cost network interconnecting a set of given 
points in the Euclidean planes. The works for ESMT 
problem could be found in [11,12,13,14,15,16,17]. The 
GOSST problem is known to be NP-Complete. Therefore, 
to solve even small-scale problems needs tremendous 
computations and memory spaces. The previous many 
researches on GOSST have interested in geometric 
analysis and improvements of approximation algorithms. 
But the heuristics for GOSST have not been published 
lively.  
 

For each edge in an edge set E, weight w between two 
nodes is specified by the cost for communicating with 
each other. There is a case to find acyclic subset that 
connects all of the vertices and whose total weight sum is 
minimized. Since the subset is acyclic and connects all 
vertices, it forms a tree. The tree grows until the tree spans 
all vertices and therefore, it is called as a spanning tree. 
The problem of determining such a tree is called as a 
minimum spanning tree problem. There are two dominant 
algorithms for solving minimum spanning tree problem; 
Kruskal’s algorithm and Prim’s algorithm. In this research, 
the Prim’s algorithm is adopted to build a Minimum 
Spanning Tree for the heuristic of GOSST problem.  
 

There is a problem to find the point P that minimizes 
the sum of the distance from P to each of three given 
points in the plane or to find the point P in a triangle so 
that the total distance from P to each of the triangle’s 
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vertices is minimized. This problem can be expended even 
further by allowing the addition of an arbitrarily number 
of points to find the shortest network connecting all points. 
Adding each point called Steiner Point and producing a 
tree to create the minimal network is the Minimum Steiner 
Tree problem. In this research, this Steiner point and 
Minimum Steiner Tree are employed to implement the 
heuristic for the GOSST problems. 
 

This research is to propose a heuristic for GOSST 
problems with analyzing the experiment results of some 
examples and with investigating some potentiality to apply 
the heuristic to some practical applications of real world. 

  

2. Problem Definition 

The GOSST problem [1] can be defined as follows: Let 
P={p1, p2, …, pn} be a set of  n terminal points in the 
Euclidean plane, where each point pi has a service request 
of grade as grade(pi) ∈ {1, 2, …, r}. Let 0 < c(1) < c(2) < 
… < c(r) be r real numbers, where c(i) is the cost for 
providing service i. Each edge in the network might be 
assigned a specific grade of service, which is a number in 
{1, 2, …, r}. Let grade(e) denote the service grade of edge 
e. The GOSST problem asks for a minimum cost network 
interconnecting terminal points in set P and some Steiner 
Points. The Steiner points have 0 service request of grade. 
Between each pair of terminal points pi and pj in a network, 
there is a path whose minimum grade of service is at least 
as large as min(grade(pi), grade(pj)) and the construction 
cost of the network is minimum. The construction cost of 
an edge with service of grade g in the network is the 
product of the Euclidean length of the edge by c(g). The 
GOSST problem is a generalization of the ESMT problem 
where all terminal points have the same service request of 
grade. 
 

For the GOSST problem, the concurrent combination of 
the two factors determines target network: the allocation 
of the service of grade for every edge, and the choice of 
the Steiner points. But the service of grade could not 
determined before the choice of the Steiner points, while 
the reverse could not, either. Most studies have done for 
the simplified special cases of the GOSST problem: the 
cases are that the grade of services request is either 2 or 3, 
or limited by some conditions. [2, 3, 4] The general case 
approximation algorithm by Michandani shows the 
performance ratio is γρ+1, where ρ is the best 
performance ratio of a Steiner tree heuristic and γ is the 
number of different grades of services request. [18] 

 

3. Background 

Fig 1 provides an example network with 6 terminal 
nodes and 8 edges, where each node has its location on the 
Euclidian plane and the capacity. The capacity might be 
considered as processing ability or computing power. This 
capacity of a node could be regarded as the cost for certain 
service grade of the node and the capacity of an edge as 
the cost for a service grade of the edge in GOSST problem. 
Table 1 represents the information of 6 terminal nodes and 
table 2 does that of edges of example network. 

Fig 2 offers the lengths and the capacities of edges of 
example network. The length of an edge comes from the 
calculated distance of two nodes and the capacity of an 
edge derives from the minimum capacity of the edge 
constituent two nodes. The information of edges forming 
the network is in Table 2, where the cost field is the 
construction cost of an edge, which results from the 
production of edge length by its capacity. 

 

 
Fig 1 An example network 

 
Fig 2 Capacities and lengths of the edges in example. The lengths of the 
edges are written in a pair of parenthesis. 
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Node Name Location (x, y) Capacity
0 (0, 0) 2 
1 (1, 1) 7 
2 (2, 1) 7 
3 (3, 0) 2 
4 (2,-1) 3 
5 (-5, -1) 6 

Table 1 Locations and capacities of terminal nodes in example network 

 

Edge 
Name 

Constituent 
Nodes & 

Their 
Capacity 

Length 
(A) 

Capacity 
(B) 

Cost= 
A×B 

a 0(2),  1(7) 1.4 2 2.8 
b 1(7),  2(7) 1 7 7 
c 2(7),  3(2) 1.4 2 2.8 
d 2(7),  4(3) 2 3 6 
e 3(2),  4(3) 1.4 2 2.8 
f 4(3),  5(6) 7 3 21 
g 5(6),  0(2) 5.1 2 10.2 
h 1(7),  4(3) 2.2 3 6.6 

Table 2 Lengths, capacities and costs of given edges 

3.1 Minimum Spanning Tree Problem 

 
For interconnecting of a set of n nodes, a selection of n-

1 edges can be used; the one using the least amount of 
edges is usually craved for. With V, a set of nodes and E, a 
set of possible interconnections between pairs of nodes, a 
connected, undirected graph G can be described as G=(V, 
E). For each edge (u, v) ∈ E, weight w(u, v) is defined by 
the cost for connecting u and v. MST(Minimum Spanning 
Tree) problem is to find acyclic subset T ⊆ E that 
connects all of the vertices with minimum total weights. 
As T is an acyclic tree and connects all vertices, it is called 
a spanning tree. A minimum spanning tree problem is to 
look for the tree like T. 

There are two prominent algorithms for a minimum 
spanning tree; Kruskal’s algorithm and Prim’s algorithm. 
In Kruskal’s algorithm, the set A is a forest and an edge 
added to A should be always a minimum weight edge. The 
tree connects to a vertex not belong to the tree at that time 
and only one edge is added at a time in each iteration for 
growing the minimum spanning tree. A set of edges A is a 
subset of final minimum spanning tree during the 
iterations. 

Prim’s algorithm operates much like Dijksra’s algorithm 
for finding shortest paths in a graph. In the algorithm, the 
edges in the set A always form a single tree. The tree starts 
from an arbitrary root vertex r called first vertex and 
grows until the tree spans all the vertices in V. At each 
step, a least weighted edge is added to the tree A for 
connecting A to an isolated vertex. This is greedy strategy, 
since added edge is the one that contributes the minimum 
amount possible to the tree weight at one time. The key 

point of Prim’s algorithm is to make it easy to select an 
edge added to the tree. 

Table 3 shows the Prim’s minimum spanning tree 
algorithm. The connected graph G, first vertex r and 
weights w are input parameters of the algorithm. During 
execution, all vertices not connecting to the tree reside in a 
min-priority queue Q. For each vertex v, key[v] is the 
minimum weight of any edge connecting v to a vertex in 
the tree, and key[v]=∞ represents there is no such edges. 
π[v] is the parent of v in the tree. When algorithm 
terminates, the min-priority queue Q becomes empty and 
minimum spanning tree A is constructed finally. 

 
 

MST-PRIM(G,w,r) 
1. FOR each u ∈ V[G] 
2.   DO key[u] ← ∞ 
3.      π[u] ← NIL 
4. key[r] ← 0 
5. Q ← V[G] 
6. WHILE Q ≠ φ  
7.   DO u ← EXTRACT-MIN(Q) 
8.      FOR each v ∈ Adj[u] 
9.         DO if v ∈ Q and w(u,v) < key[v] 
10.             then π[v] ← u 
11.                 key[v] ← w(u,v) 
12. END WHILE 

Table 3 Prim's Algorithm for MST 

The performance of Prim’s algorithm depends on how 
the min-priority queue Q is implemented. If Q employs 
binary min-heap, the total time of the algorithm is 
O(ElogV). With Fibonacci heap for Q, the running time of 
the algorithm can be improved to O(E+VlogV) if |V| is 
much smaller than |E|.[10] 

In this research, cost preferring MST is used, which 
employs cost as weight, where cost is the production edge 
length by its capacity. Fig 3 shows the Cost Preferring 
MST by the following steps with given network. 

 
 

3.2 Steiner Minimum Tree 
 

Minimizing a network’s length has been one of the 
important optimization problems. One of the problems is 
to find the point P that minimizes the sum of the distance 
from P to each of three given points in the plane or to find 
the point P in a triangle so that the total distance from P to 
the triangle’s vertices is minimized. 

The general solution is that either P is inside of the 
triangle formed by the points and the angles formed by the 
lines connecting P to each of the points are all 120°, or P 
is one of the three vertices and the angle formed by 
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connecting P to the other vertices of the triangle is greater 
than or equal to 120°. A mathematician Jakob Steiner 
made researched in this problem and expanded it to 
include an arbitrarily large set of points in the plane. As 
this involved only one point, forming a star-like shape, it 
is called Steiner star, when P was joined to each other of 
the points.  

 
 

  

 
Fig 3 Calculated each edge weight (cost =Capacity × Distance) of 
example network (Up) and final Cost Preferring Minimum Spanning Tree 
whose first vertex is point 0  (Bottom). 

 
This problem was expended even further by allowing 

the addition of an arbitrarily number of points to find the 
shortest network connecting all points. Courant and 
Robbins added the points called Steiner Point to create the 
minimal network and produced a tree as the final result 
instead of Steiner star. 

Much is known about the mathematical structure of 
SMT (Steiner Minimum Tree). Some basic properties of 
the SMT are; 

 
 All of the original n points will be connected 1, 2, 
or 3 other points 

 All Steiner Points will be connected to 3 other 
points 

 Any two edges meet at an angle of at least 120° 
 At most n-2 Steiner Points need to be added to the 
network 

 The length of an SMT will never be any shorter 
than √3/2 times the length of a Minimal Spanning 
tree 

 
This problem is NP-Hard or NP-Complete when 

discrete points are used. Therefore, the problem cannot be 
solved in polynomial time. 

 
Fig 4 shows a method to determine a candidate Steiner 

point P. To find point P for point A, B and C, an 
equilateral triangle AQB is built, using edge AB, the 
longest edge of the triangle formed by the three original 
points A, B and C so that point C lies outside of the newly 
formed equilateral triangle AQB. A circle about the 
equilateral triangle AQB is circumscribed, and a line from 
point C to the vertex Q on the equilateral triangle is made. 
The point on which the line and the circle meet is P, which 
is a candidate Steiner point.  

 
 

 
Fig 4 A method to find the candidate Steiner Point P with terminal node A, 
B and C 

 
But this method doesn’t always yield the real Steiner 

point. Fig 5 gives an example that point P achieved by this 
way could not be real Steiner point; the spanning tree 
length (7.99) is shorter than the Steiner length (9.51), 
where Spanning length is defined as the minimum value 
among the 3 summations; length (AB)+length (BC), 
length (BC)+length (CA), length (AB)+length (CA). The 
Steiner length is the summation; length (AP)+length 
(BP)+length (CP). This is the case that determined point P 
lies outside of the original triangle ABC. 

Fig 6 shows an example such as Steiner length (11.25) 
is equal to the Spanning length (11.25) and this is the case 
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that the acquired point P is on one of the edges forming 
the original triangle ABC. Fig 7 presents an example 
Steiner length (12.21) is shorter than Spanning length 
(13.66) and this is the case that the yielded point P is 
inside of the original triangle ABC. The point P could be 
called as a real Steiner Point. 

  
In this research, the method for gaining point P is 

applied practically to proposed heuristic for GOSST as 
follows; if Steiner length is shorter than Spanning length, 
the calculated point P is selected as a Steiner point, else 
the middle point of Spanning tree is considered as Steiner 
point. Here, the middle point of Spanning tree is such as 
point X if Spanning tree is formed by edge WX and edge 
YX. By this method, the extended Steiner length might be 
less or equal to the Spanning length.    
 
 

 
Fig 5 Steiner length (=9.51) is longer than Spanning length (=7.99). The 
point P lies outside of the original triangle ABC 

 
 

 
Fig 6 Steiner length (=11.55) is equal to Spanning length (=11.55). The 
point P lies on one of three edges of the triangle ABC 

 

 
Fig 7 Steiner length (=12.21) is shorter than Spanning length (=13.66). 
The point P lies inside of the triangle ABC 

 
 

3.3 Grade Of Services Steiner minimum Tree 
The GOSST (Grade Of Services Steiner minimum Tree) 

problem asks for a network interconnecting the point set P 
and some Steiner points such as; 

  
 Between each pair of terminal point pi and pj, 

there is a path whose minimum grade of 
service is at least as large as min(grade(pi), 
grade(pj)), which is called as G-condition in 
this research   

 The construction cost of the network is 
minimum among all interconnecting 
networks satisfying the G-condition, where 
the cost of an edge with service of grade u is 
the product of the Euclidean edge length by 
the expenditure for service grade u. 

 
The minimum construction cost network is determined 

by the combination of two factors in the GOSST problem; 
the allocation of service grade for each edge and the 
determining Steiner points. But, both factors cannot be 
determined one before another.  

 
In Fig 8, there are three terminal nodes A, B and C 

having different processing capacities (or service grades) 
respectively. Though node A’s processing capacity is 2, 
the edge capacity from node A to node B could not be 
more than 1 as node B’s processing capacity is 1. The 
capacity of path from B to C or from A to C via B could 
not be more than 1, either. If the edge capacity is regarded 
as bandwidth, the bandwidth waste of this network is 
inevitable.  

To avoid this dissipation or to satisfy G-condition 
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described above, this research proposes that new created 
Steiner Point connects to terminal node A, B and C as Fig 
9. In this technique, the possible capacity of path from A 
to C increases to 2, though the sum of edge length might 
be increased. The determination of the Steiner point 
position is a key to reduce the sum of edge length. In this 
research, the Steiner point positions are also considered. 
To minimize the network construction cost and to satisfy 
the G-condition for all paths of pairs of terminal node 
concurrently is a goal of GOSST problem.     

 
 

 
 

Fig 8 Three terminal nodes A, B, and C having their own different 
processing capacities want to communicate with other nodes. 

 

 
 

Fig 9 One Steiner point is created and connects to terminal nodes A, B 
and C to satisfy the G-condition. 

 

4. Proposed Heuristic 
In this research, a heuristic for the GOSST problem is 

devised. The original problem does not provide edge 
information; that is to find a GOSST with only given set 
of terminal nodes having own capacity. But in this 
research, to generalize the original GOSST problem, an 
edge set is also provided as input.   

Proposed heuristic could be classified according to 
applied connecting strategies. Two connecting strategies 
are global connecting and local connecting.  

 

4.1 Global Connecting Method 
 Fig 10 shows the global connecting strategy. 
 A Steiner point is created, if a path from start node to 

end node violates G-condition. And it connects to start 
node, end node and g-node, where g-node is a selected 
node on the path from start and end node. To guarantee 
loop-free, no necessary existing edges are removed.   
 

4.2 Local Connecting Method 
In fig 11, the local connecting strategy could be found. 
A G-condition violation sub path between fparent node 

and bparent node on the path between start and end is 
investigated. If a violation is found, a Steiner point is 
created and connects to fparent, bparent and g-node, 
where g-node is a selected node being on the section 
between fchild and bchild node. For loop-free, 
unnecessary edges are swept away. 
 

 

 
Fig 10 Global Connecting Strategy 

 

.  
Fig 11 Local Connecting Strategy 

 

4.3 Cost Preferring Global GOSST 
 

Fig 12 presents the result of Cost Preferring Global 
GOSST method with terminal nodes and edges of 
example network shown Fig 1. The processes are as 
follows; 
 

Step 1 Make a Cost Preferring Minimum 
Spanning Tree for given terminal nodes and 
edges with productions of their length by 
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capacities as shown Fig 3. 
Step 2 Check the G-condition for each path of all 

pairs of given terminal nodes.  
Step 3 If a G-condition is violated on a path from 

start and end,  
Step  3-1 Create a candidate Steiner point P.  
Step  3-2 Connect P to start and end node. 
Step 3-3 Determine the point P’s capacity as 

minimum of the capacities of start and 
end node. 

Step 4 Check whether the created point P has the 
qualification for real Steiner Point. 
Step 4-1 If it has the qualification, connect the 

Steiner point P to g-node, which is 
located in front of end node on the path 
from start to end node and remove 
unnecessary edges. 

Step 4-2 If not, throw the point P and new 
Steiner points are created on the 
intermediate nodes lying on the path 
between start node and end node. The 
capacities of the Steiner points are 
determined as minimum of the capacities 
of start and end node. Remove the 
connections between the intermediate 
nodes and rebuild the connections 
between created Steiner points and make 
new connections between each 
intermediate node and Steiner Point 
locating on it.  

Step 5 Rebuild new Cost Preferring Minimum 
Spanning Tree with changed network 
components. 

Step 6 Repeat from step 2 to 5 until there is no any 
G-condition violation on each path of all pairs 
of terminal nodes 

 

4.4 Cost Preferring Local GOSST 
 

Fig 13 discloses the result of Cost Preferring Local 
GOSST method with given terminal nodes and edges 
shown Fig 1. The processes are as follows; 
 

Step 1 Make a Cost Preferring Minimum 
Spanning Tree for given terminal nodes and 
edges with the production of their lengths by 
capacities as shown Fig 3. 

Step 2 Check the G-condition for each path of all 
pairs of given terminal nodes.  

Step 3 If G-condition is violated on a path from 
start to end,  
Step 3-1 Investigate the sub-path from fparent 

to fchild which violates forward G-

condition first on the path from start to 
end and the sub-path from bparent to 
bchild which violates backward G-
condition first on the path from end to 
start at first.  

Step 3-2 Find g-node locating on the path 
from fchild to bchild and having the 
shortest distance from fparent and 
bparent. 

Step 3-3 Create a candidate Steiner point P 
and assign its capacity as minimum of 
the capacities of start and end node. 

Step 4 Check whether the created point P has the 
qualification for real Steiner Point. 
Step 4-1 If it has the qualification, connect the 

created Steiner point P to the following 
nodes; fparent, bparent and g-node 
respectively. And remove unnecessary 
connections. 

Step  4-2 If not, cast away the point P and 
new Steiner points are created on the 
intermediate nodes lying on the path 
between fparent and bparent. The 
capacities of the Steiner points are 
determined as minimum of the capacities 
of start and end node. Remove the 
connections between the intermediate 
nodes and rebuild the connections 
between created Steiner points and make 
new connections between each 
intermediate node and Steiner Point 
locating on it 

Step 5 Rebuild new Cost Preferring Minimum 
Spanning Tree with changed network 
components. 

Step 6 Repeat step 2-5 until there is no G-condition 
violation for every pair of nodes on the all 
path. 

 
 

 
Fig 12 The result of Cost Preferring Global GOSST with 6 terminal nodes, 
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4 max connections per node and 7 capacity kinds. 

 

 
Fig 13 The result of Cost Preferring Local GOSST with 6 terminal nodes, 
4 max connections per node and 7 capacity kinds 

 

5. Experiments and Analysis 

 
The input file contains the given network information; 

the number of terminal node, max connections per node, 
the number of capacity kinds, node and edge information. 
The node information consists of its name, 2-dimensional 
x, y position and its capacity. The module for producing a 
MST based on Prim’s algorithm was described in Table 3.  

New Steiner points might be created whenever the G-
condition is not satisfied. Removing process of an 
unnecessary established connections for loop-free and 
reconstructing new MST module are carried out after 
Steiner Point and new connections are rebuilt. 

 
Fig 14 represents the input terminal nodes and edges. 

Each node is described by rectangle and its capacity is by 
the rectangle size. The basic factors of these experiments 
are as follows; node number is 100, max connections per 
node is 3, capacity kinds is 4, and applied methods are 
Cost Preferring Global GOSST and Cost Preferring Local 
GOSST. The experiments are conducted on Intel Pentium4 
(M) 1.83 GH, 1 G RAM Laptop and implemented with 
Microsoft Visual C++. 

In fig 15, there are the results of Minimum Spanning 
Tree and GOSST employing by two connecting methods 
respectively. 

  
 

  

  

 
Fig 14 The locations and capacities of 100 terminal nodes are indicated 
by the position and the size of rectangles  (Top) and input connections are 
by edges (Bottom) 
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Fig 15 Minimum Spanning Tree (Top) and Grade of Services Steiner 
minimum Trees built by Cost Preferring Global method (Middle) and by 
Cost Preferring Local method (Bottom) with 100 terminal nodes, 3 max 
connections per node and 3 capacity kinds 

5.1 Experiments of Terminal Node Number 
Changing 
 

Fig 16 reveals the comparing the network construction 
costs of proposed two methods and MST by works of 
changing the number of terminal nodes. In proportion to 
the number of terminal nodes, the costs also increase, but 
the proposed two methods always require fewer costs than 
MST.  Though at some case, global connection method 
needs more cost than local connection, it shows more cost 
saving ratio than local connection in overall considering.  

According to fig 17 results, the Steiner point number 
and execution time increase in proportion to the number of 
terminal nodes. Local connection method requires more 
Steiner points and execution time for building GOSST. 

In fig 18, global connection method shows shortest 
network length among two connecting methods and MST, 
and local connection method dose shorter network than 
MST. In network capacity, the method employing local 
connection strategy keeps more than global connection.  
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Fig 16 GOSST and MST construction costs and the cost ratios to MST 
with 100 terminal nodes, 3 max connections per node and 3 capacity 
kinds 
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Fig 17 Execution times and created Steiner point number of two 
connecting methods with 100 terminal nodes, 3 max connections per 
node and 3 capacity kinds 
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Fig 18 Network lengths and capacities of two GOSST methods and MST 
with 100 terminal nodes, 3 max connections per node and 3 capacity 
kinds 
 
 

5.2 Experiments of the Connection Number per 
Node Changing 
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Fig 19 provides the comparing the network construction 
costs of two proposed methods and MST by works of 
changing the number of connections per node. Increasing 
the number of connection per node makes the construction 
costs of two proposed methods and MST decrease, but 
when the number is smaller, the global connection method 
shows more cost saving.  

According to the result of fig 20, the Steiner point 
number and execution time aren’t specially associated 
with the number of connections per node. But in execution 
time, local connection displays more fluctuation than 
global connecting. At every connection number per node, 
global connection method requires less Steiner points and 
execution time for building GOSST. 

In fig 21, in proportion to the number of connections 
per node, the network lengths of two connecting method 
and MST become diminish. But the network by local 
connection method has longest length among two 
connecting methods and MST and at some case global 
connection shows longer length than MST. In network 
capacity experiment, in many times the method employing 
local connection strategy retains more capacities than 
global connection.  
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Fig 19 GOSST and MST construction costs and the cost ratios to MST 
with 100 terminal nodes, 3 max connections per node and 3 capacity 
kinds 
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capacity kinds 
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Fig 21 Network lengths and capacities of two connecting 
methods and MST with 100 terminal nodes, 3 max 
connections per node and 3 capacity kinds 
 
 

5.3 Experiments of Capacity Kind Number 
Changing 
 

In fig 22, the comparison of the network construction 
costs of two proposed methods and MST is found. 
Increasing the number of capacity kinds also make the 
costs of them increase, but the proposed two methods 
always require less cost than MST.  At all capacity kinds, 
global connection method needs fewer costs and shows 
more cost saving ratio than local connecting.  

According to the result of fig 23, the Steiner point 
number and execution time of two connecting methods 
increase in proportion to the number of capacity kinds but 
the number is 5. Local connection method requires more 
created Steiner points and execution time for building 
GOSST and shows sharper variations than global 
connection. 

 
In fig 24, the special relationship between the network 

length and the number of capacity kinds could not be 
exhibited, but global connection method maintains 
shortest network length, and local connection method dose 
shorter length than MST when the number of capacity 
kinds is more than 3. In network capacity, two connecting 
methods are in direct proportion to the number of capacity 
kinds. Especially the method employing local connection 
strategy possesses more network capacity and its slop 
shows steeper than global connection.  
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Fig 22 GOSST and MST construction costs and the cost ratios to MST of 
100 terminal nodes, 3 max connections per node and 3 capacity kinds 
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connecting methods with 100 terminal nodes, 3 max connections per 
node and 3 capacity kinds 
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Fig 24 Network Lengths and capacities of two methods and MST with 
100 terminal nodes, 3 max connections per node and 3 capacity kinds 
 
 

6. Conclusions 
 
The GOSST could apply to some useful fields in real 

world. In network design, the interconnection of many 
communication sites with the best choice of the 
connecting line and with the best allocation of the 

transmission capacities over those is one of many useful 
applications. Good solutions for the problem might 
provide paths to targets with sufficient communication 
capacities through the less network construction costs. 
This is a goal of GOSST.  

The GOSST problem is known to NP-Complete, so its 
solution could not be acquired in poly-nominal times. 
Many previous researches on GOSST have focused on the 
geometric analysis and approximation algorithm 
improvements. Though such approximation algorithms are 
elevated little by little, but enormous amount of 
computation or memory spaces should be sacrificed. The 
most approximation algorithms for GOSST might be 
nearly useless in practical applications. The proposed 
heuristic of this research is expected to provide quite 
effective solution and to answer the GOSST problems 
with fairly large number of points quickly.  

The basic processes of heuristic are as follows; 
Minimum Spanning tree (MST) can be achieved through 
relatively easy ways such as Prim’s algorithm. MST could 
guarantee the minimum edge length sum for forming a 
network, but yield MST could not be said always to 
gratify the G-condition. Therefore the satisfaction of G 
condition of each path of all pairs of nodes on MST is 
examined and if a violation occurs somewhere on a path at 
one time, a candidate Steiner point is created at once and 
its qualification for real Steiner point is investigated. If it 
has, the point connects to related points and needless 
existing connections are removed. If it has not, the point is 
thrown away, and new Steiner points are created on the 
interim node of the path or sub-path. Appropriate 
connecting and removing are conducted Next new MST is 
rebuilt with the changed network components. These 
processes are iterative until G-condition is satisfied for 
every path of all pairs of given terminal nodes. 

In this research, two connecting varieties of a heuristic 
are proposed for approaching the GOSST goal. Among 
them, Cost Preferring Global GOSST method shows more 
positive results in network construction cost, which is the 
most important factor of GOSST problem. In addition, the 
Cost Preferring Global GOSST method makes good 
results in the required Steiner point number, execution 
time, cost saving ratio and the length of built network. The 
Local Connecting strategy shows fair characteristic in 
network capacity.  

The experiments for the heuristic said many important 
characteristics. In proportion to the number of terminal 
node, the network construction cost, required Steiner point 
number, network length and network capacity increase.  
The increasing the number of connections per node results 
in the reduction of network length and construction cost. 
Many capacity kinds make the GOSST augment in 
construction cost, required Steiner point , execution time 
and network capacity. 
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While two connecting method of the heuristic for 
GOSST problem are proposed, there are still remaining 
some works. First of all, the improving the heuristic is 
more necessary. Less network construction cost, less 
execution times and required Steiner Points, shorter 
network length, and more network capacity are the goals 
of elaborate heuristic. More studies on the location of g-
node are needed. g-node is a node to which created Steiner 
point connects. In this research, the g-node is the previous 
node of end node on the path from start and end node in 
Global connection strategy or nearest node from parent or 
child nodes on the sub-path between parent and child, 
which is a partial path from start to end in Local 
connection strategy.  

Second the more useful applications with GOSST 
should be also searched or devised. Various types of 
network construction application and qualification of 
services could be applied by this heuristic. The 
applications of constructing networks for maximum 
networks capacity and/or for minimum networks length, 
with given terminal nodes and their capacities could be 
considered as well.   

Third more analysis and evaluation of proposed 
heuristic might be necessary. Works like those would be 
helpful to make the heuristic more efficiency and 
exquisiteness.  
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