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Summary 
We developed a methodological approach to genetic class 
discovery using gene expression microarray data, which is 
based   a on statistically-oriented class-prediction method 
called Statistically Weighted Voting (SWV) analysis 
integrating with clinical risk factor and survival analyses, 
and statistics of Gene Ontology annotation terms which we 
use to validate candidate biomarker selection. Our 
approach provides a "voting" class prediction function 
constructed using the most informative and robust discrete 
segments (sub-regions) of all covariate ranges and their 
gradated pairs, which thus allows to model the interactions 
of variables (genes). We show here that the SWV-based 
methodology can be adapted for microarray data and 
profitably used to biomarker selection and discovered two 
genetic classes associated with essentially improvement of 
classical histological grade II of human breast cancer. Our 
findings show that small and reliable genetic grade 
signatures could  improve an individual prognosis for 
patients with histologic grated II and, thus after further 
biomedical validation,  be used in therapeutic planning for 
breast cancer patients. 
Key words: 
Voting Algorithms, Biomarker Selection, Prediction, 
Microarray, Histologic Grades, Cancer Classification. 

Introduction 

Gene expression microarrays are assays for 
quantitative studying of transcript abundance profile 
of large proportion of genes in a multi-cell sample.  
To date, global gene expression patterns have been 
used to classify human cancers into genetic classes 
related to different clinical outcomes [1, 2, 3, 4]. In 
these studies, different unsupervised methods such as 
hierarchical cluster analysis have been used [2, 3].  
However, such methods, based on heuristic models, 
are quite sensitive to the number of samples, 
population bias in a sample set, missing values, 
model of distance measure, and different sources of 
technical noise. It is therefore no surprise that the 
microarray predictions of biologically and clinically 

significant tumor classes, as discovered by the 
different research groups using unsupervised 
methods, often exhibit poor reproducibility. 
Therefore, there is a serious concern regarding the 
ability of unsupervised methods to predict 
meaningful biologically and clinically significant 
tumor classes; these classifications, generated by 
cluster analysis, still remain extremely unstable 
[1,4,5]. There exist many class prediction approaches 
that, when applied to a given expression dataset, 
could result in a range of classification accuracies 
and gene numbers that comprise the classifier (a 
subset of high-informative and robust predictors 
selected by a supervised method). Supervised 
learning algorithms could provide more accurate 
statistically-oriented results than unsupervised 
methods, but, usually, they are used to identify novel 
markers in class prediction, not in class discovery 
tasks. A number of authors have underlined critical 

issues in gene selection bias, error estimation, 
fragility of gene signatures, and overoptimistic 
performance estimation due to model overfit [6,7]. 
Thus, there does not exist one “correct” method. This 
has motivated us to develop a more suitable and 
better validated methodological approach for 
inference of unknown classes from microarray data.  
     Our approach to genetic class discovery, which is 
based on supervised learning, uses a statistically-
oriented class-prediction method called Statistically 
Weighted Syndromes (SWS) [8, 9]. Briefly, SWS 
provides a "voting" class prediction function 
constructed using the most informative and robust 
discrete segments (sub-regions) of all covariate 
ranges, which are thus discretized. The variants of 
the SWS have been successful in accurate predicting 
therapeutic outcome in bladder cancer patients using 
limited clinical data [8,10]. In clinical trials, it is 
important to minimize the cost of the trial and the 
total number of patients. In the case of small numbers 
of patients, SWS methodology has demonstrated 
higher robustness and predictive power than logistic 
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regression-based analyses and classification and 
regression tree (CART) methods [10,11].  
      Breast cancer is most common malignancy 
among women. Histological grading of breast cancer  
provides clinically important prognostic information 
and defines morphological subtypes informative of 
patient risk. Approximately 50% of all breast cancers 
are classified as grade II [1,3], which is less 
informative for clinical decisions due to biological 
heterogeneity and intermediate risk of cancer 
recurrence. To discover the molecular basis of 
histologic grade II, we analyzed genome-wide 
expression profiles of 315 primary invasive breast 
tumors. In this work, using advised and 
computationally intensive version of SWS 
methodology, though not previously applied to large-
dimension (microarray) data, combining with 
survival analysis, multivariate correlation analysis 
and gene ontology analysis we identified several 
small subsets of highly significant grade-associated 
markers, which could accurately classify tumors of 
grade I (G1) and grade III (G3) histology, and 
dichotomize G2 tumors into two highly discriminant 
classes (termed G2a and G2b genetic grades) with 
patient survival outcomes highly similar to those with 
G1 and G3 histology, respectively. 

2. Methods, Algorithms and Equations 

2.1. Breast cancer data and microarrays 

To study the relationship between gene expression 
and histologic grade, we analyzed the expression 
patterns of approximately 23,000 gene transcripts 
(representing by 44,928 probesets (p.s.) on 
Affymetrix U133A and U133B arrays) in 315 
primary breast tumors (NCBI Gene Expression 
Omnibus (GEO) data sets GSE4922 and GSE1456). 
The tumor samples were derived from three 
independent population-based cohorts: Uppsala (249 
samples), Singapore (40 samples) and Stockholm (58 
samples) (Figure 1) enabling the robust identification 
and cross-cohort validation of highly significant and 
predictive grade-associated genes. Details on patients, 
clinical information, tumor samples, microarrays  see 
in [ 12 ].   
 
2.2. A basis of SWV algorithm 
 
In simplified terms, the statistically weighted voting  
(SWV) analysis of microarrys class prediction 
process can be described as follows. A training set 
consisting of samples of known classes (e.g., 

histologic grade I (G1) and histologic grade III (G3) 
tumors) is used to select the variables (i.e., gene 
expression measurements; probesets or predictors), 
that allow the most accurate discrimination (or 
prediction) of the samples in the training set. Once 
the SWV is trained on the optimal set of variables, 
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Figure 1. Schema of discovery and validation of 

genetically different subgroups within breast 
cancer patients with histologic grade II.  

 
it is then applied to an independent exam set (i.e., a 
new set of samples not used in training) to validate 
its prediction accuracy. More details are given below. 
     Briefly, for constructing the class prediction 
function, the SWV uses the training set 0S%  
(comprised of G1 and G3 tumor samples) to evaluate 
statistically the weight of the graduated “informative” 
variables (predictors), and all possible pairs of these 
predictors. The predictors are automatically selected 
by SWV from n (n=44,500) probe sets (i.e., gene 
expression measurements) on U133A and U133B 
Affymetrix Genechips. The description of each 
patient includes n   (potential) prognostic variables 

1, , nX XK  (signals from probe sets of the U133A 
and U133B microarrays) and information about class 
to which a patient belongs. In particular, the 
predictors might be able to discriminate G1 and G3 
tumors with minimum “a posteriori probability”. 
Reliability of the SWV class prediction function is 
based on the standard “leave-one-out procedure” and 
on an additional exam of the class prediction ability 
on one or more independent sample populations (i.e., 
patient cohorts). In this application the G2 tumor 
samples from the Uppsala, Singapore and Stockholm 
cohorts have been used as exam datasets to test the 
SWV class prediction function.  
     Let us consider the available n-dimension domain 
of the variables 1, , nX XK  as prognostic variable 
space. The SWV algorithm is based on calculating 
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the posteriori probabilities of the tumors belonging to 
one of two classes using a weighted voting scheme 
involving the sets of so called “syndromes”. A 
syndrome is the sub-region of prognostic variable 
space. Within the syndrome, one class of samples 
(for instance, G3 tumors) must be significantly 
highly represented than another class (for instance, 
G1), and in other sub-region(s) the inverse 
relationship should be observed. In the present 
version of the SWV method, one-dimensional and 
two-dimensional sub-regions (syndromes) are used. 
      Let ib' and ib"  denote the boundaries of the sub-
region for the variable 

iX  (the i-th probe set); 

i i ib X b′ ′′≥ > . One-dimensional syndrome for the 

variable iX  is defined as the set of points in variable 

space for which inequalities i i ib X b′ ′′≥ >  are 
satisfied. Two-dimensional syndrome for variables 

iX ′
 and 

iX ′′
 is defined as a set of points in variable 

space for which inequalities i i ib X b′ ′ ′′ ′′≥ > and 

i i ib X b′′ ′′ ′′′ ′′≥ >  are satisfied. The syndromes are 

constructed at the initial stage of training using the 
optimal partitioning (OP) algorithm described below. 
     SWV training algorithm is based on several steps:  
1) optimal recoding (partitioning) of the given 
variables (signal intensity values) to obtain discrete-
valued variables with two or more gradations;  
2) selection of the most informative and robust 
discrete-valued variables and their paired 
combinations (termed syndromes) that together best 
characterize the classes of interest;  
3) tallying the statistically weighted votes of these 
syndromes to allow us to compute the value of the 
outcome prediction function.      
     In this study we present an advanced procedure of 
SWS method based on permutation statistics and 
high-intensive computational estimates of significant 
cut-off values providing an effective procedure of 
predictor selection.  
 
2.2.1. Optimal partitioning (OP) 
      
OP method is used for constructing the optimal 
syndromes for each class (G1 and G3) using the 
training set

0S% . The OP is based on the optimal 
partitioning of some potential prognostic variable iX  
the range that allows the best separation of the 
samples belonging to different classes. To evaluate 
the separating ability of partition R  (see below) in 
the training set 

0
~S  the chi-2 functional is used [9]. 

The optimal partitions are searched inside observed 
variable domain which contains partitions with 
critical values not greater than a fixed threshold 
(defined below). The “informative” partition with the 
maximal value of the chi-2 functional is considered 
optimal for the given variable.  
 
2.2.2. Stability of partitioning  
 
Another important characteristic that allows 
evaluation the prognostic ability of partitioning 
model for specific variables is the index of boundary 
instability. Let 

oR , mRR ,,1 K be optimal partitions of 
variable iX  ranges that is calculated by training set 

mSSS ~,,~,~
10 K , where kS~  is the training set without 

description of the thk  sample. Let Kj denote the 
different classes (j=1,2). Let  k

r
k bb 11 ,, −K  be 

boundary points of optimal partition kR  found by 

training set kS~ ; iD  is the variance of variable iX . 

The boundary instability index ),,~( 0 rKS jκ  for 
partitioning with r  elements is calculated as the 
ratio: 
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2.2.3. Selecting of optimal variables set  
 
The OP can be used at the initial stage of training for 
reducing the dimension of the prognostic variables 
set. Selection of the optimal set of prognostic 
variables depends on a sufficiently high partition 
value determined by the Chi-2 function. The 
threshold for selection of informative variables is 
estimated based on p-value of Chi-2 function 
estimated based on a permutation procedure. 
 
The additional criterion of selection of prognostic 
variables is the instability index ),,~( 0 rKS jκ . The 

variable is used if value ),,~( 0 rKS jκ  is less than 

threshold 0κ , defined a priori by the user. When the 
partition of the given variable is instable 
( ),,~( 0 rKS jκ <

0κ ), the  variable is removed from the 
final optimal set of prognostic variables. Finally, the 
optimal set of prognostic variables is defined if both 
selection criteria are fulfilled.  
 
2.2.4. The weighted voting procedure  
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Let 0~
jQ  denote the set of constructed syndromes for 

class 
jK . Let *x  denote the point of parametric 

space. The SWV estimates a posteriori probability 
*( )sv

jP x  of the class jK  at the point *x  that 

belongs to the intersection of syndromes rqq ,,1 K  
from 0~

jQ  as follows: 
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 where  j
iν  is the fraction of  class 

jK  among objects 
with prognostic variables vectors belonging to 
syndrome iq , iw  is the so-called “weight” of 
syndrome iq . The weight  iw  is calculated by the 
formula,     
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of fraction j
iν  variance has the second term 

jj

im 00 )1(1 νν−  , which is used to avoid a value 

id
)

equal to zero in cases when the given syndrome is 

associated only with objects of one class from the 
training set.  
     The results of testing applied and simulated tasks 
have demonstrated that formula (1) gives too low of 
estimates of conditional probabilities for classes that 
are of smaller fraction in the training set. So, in this 
study, the additional correction of estimates in (1) has 
been implemented. The final estimates of conditional 
probability at point *x  are calculated as 

(SWV
jP x*)= (sv

jP x*) ),( 0

~

jKSχ ,

 
where   

∑= sv
j PKS /(1),( 0

~
χ (x k) )  

and where x k  is the vector of prognostic variables 
for the k-th samples from the training set. 

2.3. Statistical analysis of Gene Ontology 
(GO) terms  

GO analysis was facilitated by PANTHER software 
(https://panther.appliedbiosystems.com/). Selected 
gene lists were statistically compared (Mann–

Whitney) with a reference list (ie, NCBI Build 35) 
comprised of all genes represented on the microarray 
to identify significantly over- and under-represented 
GO terms. 

2.4. Survival analysis 

The Kaplan Meier estimate was used to compute 
survival curves, and the p-value of the likelihood-
ratio test was used to assess the statistical 
significance of the resultant hazard ratios. Disease-
free survival (DFS) in the Uppsala, Stockholm 
cohorts was defined as the time interval from surgery 
until the first recurrence (local, regional, or distant) or 
last date of follow-up. Survival statistics were 
performed in the R survival package.  

2.5. Descriptive statistics  
For inter-group comparisons using the clinico-
pathological measurements, Mann–Whitney U-test 
statistics were used for continuous variables and one-
sided Fisher’s exact test used for categorical 
variables (Statistica-6 and StatXact-6 software). 
 

3. Results  
 
3.1. SWV as the discovery method of novel 
classes of tumors 
 
     Our methodology is based on the schema 
presented in Fig 1. Beginning with the Uppsala 
dataset comprised of 68 G1 and 55 G3 tumors, we 
used SWV optimal partitioning (OP) at the initial 
stage of training to reduce the dimension of the 
prognostic set of variables. SWV rank orders the set 
of probes according to specific algorithmic criteria 
for assessing differential expression between classes. 
Based on this two-criteria selection algorithm, we 
used SWV chi-2 values more than 24.38 (at p-value 
less then 0.00001); in combination with low 
boundary instability index criteria ( 0κ <0.1 for 90% 
of the selected informative variables and 0κ <0.4 for 
10% of the other informative variables). This 
procedure provides optimal (robust) partitioning of 
the informative variables and leads to selection of 
relatively small sets of the potential gene predictors. 
We also used the U-test with critical value p=0.05 
(with Bonferroni correction). Based on these criteria, 
we selected 264 probesets (see Supplementary 
Material in [12]). Table 1 shows 25 (of 264) top-level 
selected probesets exhibiting the highest SWV chi-2 
values and the significant cut-off p-values of survival 
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Figure 2. (A-D) Probability (Pr) scores from the SWV genetic 
grade classifier. Pr scores (0-1) generated by the class prediction 
algorithm are shown on the y-axes. Number of tumors per 
classification exercise is shown on the x-axis. For training set on 
Panel A: Green dot denotes G1 tumor; red dot denotes G3 tumors. 
Panels B,C and D show the results of predictions for three 
independent cohorts of patients with grade 2 tumors. In all these 
cohorts only few patients (0.25<Pr<0.75) might be considered as  
true Grade 2 tumor patients.   
 
statistics (see below). Using 264 probesets, SWV provided 
small class error rate (CER) (4.5% for G1, and 5.5% for 
G3, respectively) when the leave-one-out cross-validation 
procedure is used.  A posterior probability for G1 and G3 
was also estimated by PAM [13] for each tumor sample by 
the leave-one-out cross-validation procedure with 
resulting CER of 5% for G1, and 6% for G3, respectively.  
     To extract the smallest possible genetic grade classifier 
from the 264 p.s., we varied the initial parameters of the 
SWV algorithm to minimize the number of predictors in 
training set providing the maximum correlation coefficient 
between posteriori probabilities and true class indicators 
(specifically, “0” was the indicator of G1 tumors, and “1” 
was the indicator of G3 tumors in the G1-G3 comparison) 
(Figure 2A). The smallest robust genetic grade signature 
contains only 6 gene probesets (A.212949_at; 
B.228273_at; B226936_at; A.208079_s_at; A.204825_at; 
A.204092_s_at) representing 5 genes: BRRN1, PRR11, 
C6orf173, STK6, MELK.  CER was 4.4% for class G1 
and 5.5% for class G3 (Figure 2.A). By PAM, for the G1-
G3 comparisons, maximal prediction accuracies were 
obtained with 18 probesets (A.212949_at; A.221520_s_at; 

A.201710_at; B.228273_at;A.202768_at; B.226936_at; 
A.208079_s_at;B.222608_s_at;A.205046_at;A.204822_at
;A.219197_s_a;A.209189_at;A.210052_s_at; 
B.235572_at; 
A.202580_x_at;A.204825_at;B.224753_at;A.221436_s_at
). Both SWV and PAM correctly classified ~96% (65/68) 
of the G1s and ~ 95% (52/55) of the G3s (by leave one-
out method). The smaller number of probes sets required 
by SWV (6 probesets) compared to PAM (18 probesets) 
reflects an ability of SWV to use synergetic effect (co-
expression patterns) during variable selection (see 
Methods).  
      Based on consistency between SWV and U-tests and 
PAM, we further considered the classification results 
using the 264 variables. In two-group comparisons high 
CERs were observed in the G1-G2 and G2-G3 predictions 
(data not shown), while in the G1-G3 CER was low (<5% 
errors). It suggests that G2 tumors could be not 
molecularly distinct from either low or high aggressive 
tumors. 
 

3.2. Dichotomy of G2 tumors and  disease prognosis 

     We next applied our grade G1-G3 predictors directly to 
the 126 G2 tumors of the Uppsala cohort to ask if these 
genetic determinants of low and high grade might resolve 
moderately differentiated G2 tumors into separable classes. 
To do that we estimated the posterior probability (Pr) as 
the likelihood that a sample from the exam group of 
tumors belongs to one class (termed “G1-like”) or the 
other (i.e., “G3-like”).  
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Using the 264 p.s. classifier, we found that the G2 tumors 
could be separated into G1-like (n=83) and G3-like (n=43) 
classes. We found 96% of the G2 tumors were assigned to 
either the G1-like or G3-like classes, indicating that almost 
all G2 tumors can be well separated into distinct low- and 
high- grade-like classes (henceforth referred to as “G2a” 
and “G2b” genetic grades). Only few G2 tumors exhibit 
intermediate Pr scores (<0.75). Using U-test and t-test, we 
confirmed a high separation ability of  each of the SWV 
264 predictors (p<0.01) We also evaluated a prognostic 
ability of our 264 p.s. classifier  which we estimated using  
disease free  survival (DFS) time data sets. Kaplan-Meier  
 

 
Figure 3. Survival differences between G2a and G2b genetic 
grade subtypes. (A) Expression profiles of the Uppsala and 
Stockholm tumors segregated by the SWV (5-gene) genetic 
grade signature are shown. Green and red vertical bars (top 
panel) denote histologic G1 and G3 tumors, respectively. (B-F) 
Kaplan-Meier survival curves for G2a (green) and G2b (red) 
subtypes are shown alone, or superimposed on survival curves of 
histologic grades 1, 2, and 3. Uppsala cohort survival curves are 
shown for (B) all patients, (C) patients who received no systemic 
therapy, and (D) patients positive for ER who received endocrine 
therapy only. Stockholm cohort survival curves are shown for 
(E) patients treated with systemic therapy and (F) those with ER 
positive cancer treated with endocrine therapy only. The 
likelihood ratio test p-value reflects the significance of the 
hazard ratios.         

                          
Grade 1 

                        
Grade 2a 

                        
Grade 2 

                       
Grade 2b 

                         
Grade 3  
Figure 4. Correlation portraits of  histological and genetic grades 
Figure 2B shows that 96% of the G2 tumors (Uppsala cohort) were 
assigned by the classifier to either the G1-like or G3-like classes.  The 
result was successfully verified using Stockholm and Singapore cohorts 
(Figure 2C,D, respectively). 
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survival analysis demonstrated a highly significant 
difference between survival curves of the G2a and G2b 
patients. (Cox proportional model likelihood ratio test=7.2, 
p=0.0071). The same classification results we obtained 
using the SWV 5-genetic grade classifier (Figure 3). 
      Survival analysis of G2a and G2b tumor subtypes 
based on the 5-genetic grade classifier, showed significant 
difference between survival curves of the G2a and G2b 
patients (Figure 3A). Notably, neither the G2a and G1 
curves, nor the G2b and G3 curves were significantly 
different from each other, respectively. The G2a-G2b 
survival difference was further observed in specific 
therapeutic contexts including patients who received no 
systemic therapy (p=0.014; Figure 3B), with systemic 
therapy (Figure 3C), and those with ER positive tumors 
who received endocrine therapy only (p=0.022; Fig 3D). 
In a similar fashion, the genetic grade classifier was also 
predictive of recurrence in the Stockholm (G2) patients 
who received systemic therapy (i.e., chemotherapy, 
endocrine therapy or both) (p=0.027; Figure 3E) and those  
 

Affiymetrix ID 

Chi-2 
(G1vs 
G3) 

Survival 
p value Gene 

A.212949_at 92.6 0.009 BRRN1 

B.226936_at 92.6 0.004   

A.204822_at 82.2 0.002 TTK 

B.228559_at 82.1 0.023   

A.218009_s_at 79.2 0.049 PRC1 

A.204033_at 79.0 0.023 TRIP13 

A.218726_at 75.5 0.039 
DKFZ 
p762E1312 

A.205024_s_at 73.4 0.004 RAD51 

A.202870_s_at 73.0 0.051 CDC20 

B.226473_at 72.6 0.004   

A.204444_at 69.3 0.034 KIF11 

A.209773_s_at 67.4 0.022 RRM2 

B.235572_at 67.3 0.008 Spc24 

A.222077_s_at 66.5 0.020 RACGAP1 

A.219990_at 66.3 0.011 FLJ23311 

A.218755_at 66.3 0.016 KIF20A 

A.219000_s_at 66.3 0.045 MGC5528 

A.218662_s_at 66.2 0.034 HCAP-G 

A.204146_at 65.3 0.027   

A.203438_at 64.0 0.032 STC2 

A.209189_at 63.9 0.036 FOS 

A.214039_s_at 63.3 0.017 LAPTM4B 

A.205898_at 63.2 0.044 CX3CR1 

A.222039_at 62.2 0.019 LOC146909 

A.214710_s_at 60.8 0.021 CCNB1 
Table 1. 25 (of 264)  top level informative p.s. which were also 
significant in survival  analysis (p<0.021). 

with ER positive disease who received only endocrine 
treatment (p=0.032; Figure 3F). 
 
3.3. The 264 p.s. provide multiple robust genetic 
grade signatures to discriminate G2a and G2b tumors 
 
     Due to high informatively and stability of variables of 
the 264-p.s. predictor, we hypothesized that there are at 
least several small alternative gene sub-sets (prognostic 
signatures) that could be used to classify low and high 
aggressive breast tumors with high accuracy (and 
therefore could provide individual classification of 
patients according to  prognostic probability of G1 and 
G3).  
     To find such small-dimension predictors, we excluded 
the  6 probesets, representing the 5-genetic grade  
classifier, from the 264 probsets, and randomly selected 
two non-overlapping subsets (each of 40 probesets) from 
the remaining 258 probesets and applied the SWV 
algorithm to each selected probe subsets.  In this way, we 
selected two additional small-dimension sets of genetic 
grade classifiers containing (A.221520_s_at; 
A.205046_at; 
A.211056_s_at;A.203929_s_at;B.222848_at;B.240112_at;
A.221870_at)and(A.210052_s_at;A.218009_s_at;A.20579
4_s_at;A.203438_at;B.225191_at;A.218002_s_at;A.2191
97_s_at). For Uppsala, Stockholm and Singapore cohorts, 
each of these predictors provides similar high accuracy of 
classification in G1-G3 comparisons (>94% correct 
predictions), reproducible levels of separation of G2a and 
G2b subtypes for different cohorts (>94% patients 
assignment with G2a and G2b) and highly significant 
differences in G2a-G2b comparison based on survival 
analysis.  
 
3.4 Comparison of performance of SWV with 
traditional pattern recognition algorithms 
 
We compare performance of SWV with several traditional 
class prediction algorithms including Fisher Discriminant 
Analysis (FDA), Q-nearest neighbors (QNN), Support 
vector Machine (SVM). Our analysis shows that SWV can 
provide similar as other methods the high accuracy in 
leave-one-out analysis when 5-gene SWV signature or 
232-gene SWV signature was used. Table 2 shows the 
results of such predictions base on the 5-gene SWV 
signature. To evaluate predictive power of the methods, 
after training step, we used the methods to predict  G1 and 
G3 tumors of Stockholm and Singapore cohorts.  In these 
two tests SWV provides better accuracy of the prediction 
G1 and G3 than the other methods.  However, the most 
pronounce differences between methods we found when 
histologic G2 tumors from independent cohorts were 
tested. Table 3 demonstrates that only SWV and PAM 
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provide strong separation of the histologic grade 2 tumors 
(Uppsala cohort)  on the G1-like and G3-like sets. Other 
methods provide diverse and poor discrimination ability of 
the G2 on these sets. 
 

Prediction base on the 6 
best SWV selected p.s. 

Method   
Test 1: Uppsala DB 

G1 G3 

SWV  65(95.6%) 52(94.5%) 

LFD 65(95.6%) 51(92.7%) 

QNN 66(97.1%) 50(90.9%) 
SVM 66(97.1%) 50(90.9%) 

Test 2: Stockholm DB G1 G3 
SWV  27(96.4%) 46(75.4%) 

LFD 27(96.4%) 40(65.6%) 

QNN 27(96.4%) 45(73.8%) 

SVM 27(96.4%) 41(67.2%) 

Test 3 Singapore DB G1 G3 
SWV  10(91%) 34(72.3%) 

LFD 10(91%) 27(57.4%) 

QNN 10(91%) 29(61.7%) 

SVM 10(91%) 29(61.7%) 

Table 2. Evaluation of performance of pattern recognition 
methods. 

Method  
G1-like 
(Pr≤ 0.25) 

True G2 
(0.25< Pr 
<0.75) 

G3-like 
(Pr≥ 0.75)

SWS (6 p.s.) 38(30%) 4(4%) 83(66%) 
LFD  (6 p.s.) 6(5%) 81(64%) 39(31%) 
QNN (6 p.s.) 25(20%) 22(17%) 79(63%) 
SVM (6 p.s.) 17(13%) 40(32%) 69(55%) 
PAM (18 p.s.) 37(29%) 6(5%) 83(66%) 

Table 3. Discrimination of  Uppsala histologic G2 tumors base 
on 5-gene SWS signature using SWS, LFD, QNN, SVM and 
base on 17-gene signature using  PAM.  

3.5. Co-expression analysis of 264 gene predictors 
support genetic grade 2 re-classification 

We found that the 264 gene predictors can be grouped base 
on their co-regulation patterns, which are represented on 
Figure 4 using Kendal tau correlation coefficient matrix 
for these predictors.  Figure shows the images of the 
matrix of correlation coefficients clustered with respect 
values of paired correlation coefficients between probe 
sets into several separated groups of genes. The probes are 
ordered by using Gene Cluster software and then 
visualized using TreeView program 
(http:/www.lbl.gov/EisenSoftware.htm                 ). To 
avoid possible bias in the images we selected randomly by 
34 patents from G1, G2a, G2, G2b and G3 tumor sets. 

Only statistically significant correlations (p<0.01 after 
Bonferroni correction) were presented. Increasingly 
positive significant correlations are represented with reds 
of increasing intensity, and increasingly negative 
significant correlations are represented with greens of 
increasing intensity. Non-significant correlations are in 
black. The order of gene on all matrixes is the same. 
Figure 4 demonstrates the pronounced differences in 
expression co-regulation patterns of the genes 
differentially expressed in the G1, G2 and G3 groups. 
However, expression gene correlation matrix for G1 and 
G2a pair are very similar to the each other. The same 
phenomenon was found when we compared correlation 
matrixes in the pair G2a and G3 tumors. These findings 
support the view that low and high 

  G1 vs G2a G2a vs G2b G2b vs G3 

  p-value p-value p-value 

    
Biological 

process   

1 6.20E-06 5.70E-28 2.50E-06 

2 1.30E-02 2.50E-02 -- 

3 2.70E-02 6.80E-15 1.10E-03 

4 -- 4.40E-03 4.90E-03 

5 1.60E-02 5.50E-04 5.50E-03 

6 -- 3.60E-02 4.40E-02 

7 -- 5.00E-03   

    
Molecular 
Function   

8 1.10E-03 7.20E-06 -- 

9 3.50E-03 5.00E-02 -- 

10 1.30E-02 -- -- 

11 -- 7.60E-07 4.20E-04 

12 -- -- 7.50E-03 

13 -- 7.80E-04 -- 

14 -- 1.90E-02 -- 

    Pathway   

15 4.90E-02 -- -- 

16 -- -- 4.90E-02 

17   3.00E-02   
Table 4. Gene ontology analysis of 264 p.s. grade classifier. 
Selected terms are shown with corresponding p-values that 
reflect significance of term enrichment. (by Panther software 
http://www.pantherdb.org/panther/). 1:Cell cycle; 2: Chromatin 
packaging and remodeling; 3: Mitosis; 4: Inhibition of apoptosis; 
5: Oncogenesis; 6: Cell motility; 7: Stress response; 8: Kinase 
activator; 9: Histone; 10:Nucleic acid binding; 11: Microtubule 
family cytoskeletal protein; 12: Chemokine; 13: Non-receptor 
serine/threonine protein kinase; 14: Extracellular matrix linker 
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protein; 15: Insulin/IGF pathway-MAPKK/MAPK cascade; 16: 
Apoptosis signaling pathway; 17: Ubiquitin proteasome pathway. 
Genetic grade diseases (G1+G2a and G2b+G3) could be 
represented by different cancer cell precursors and Figure 
4 reflects specific pathobiological pathways associated 
with intrinsic biological networks of these two tumor cell 
types. 
 

3.6. Statistical Analysis of GO terms 

A separation into the G2a and G2b is strongly supported 
by statistical analysis of enrichment of specific gene 
ontology (GO) categories of 237 RefSeq annotated gene 
names represented by 264 predictors in comparison to  
enrichment of the same GO categories in the  human 
genome (NCBI Build 35.1). Table 4 displays a selected set 
of significantly enriched GO categories which includes 
cell cycle, inhibition of apoptosis, cell motility, stress 
response, kinase activators, microtubule family 
cytoskeletal proteins, ubiquitin proteasome pathway, 
suggesting essential differences in genetic programs and 
pathways of the G2a- and G2b-type tumor cells. 
Interestingly, GO comparison G1 vs G2a and G2b vs G3 
also demonstrate some significant biological differences, 
however, these differences less different and  multiple than  
in G2a  vs G2b. 

 
3.7. Many genetic grade features are significantly 
associated with cell cycle, mitosis and patient 
survival time 
 
Interestingly, among patients separated by a median of 
DFS time in survival analysis, a large proportion  
probesets (58 of the 264) can significantly discriminate (at 
p<0.05) the patients on the poor and good responders 
(This result presents for the 25 top-level significant 
probesets in Table 1). GO analysis of the list of the gene 
assigned by these 58 probesets strongly indicates that the 
associated genes are essentially involved in cell cycle, 
mitosis including microtubule-based process, mitotic 
chromosome condensation, mitotic spindle organization 
and biogenesis. These biological processes are well-
known as the essential in cancer outcome. 
 
4. Discussion 
 
We initially investigated several distinct class 
prediction/pattern recognition algorithms, including the 
classical Fisher discriminant analysis, k-nearest neighbors 
method, and Support Vector Machines (SVM) method. 
Empirically, these machine learning algorithms provide 
approximately similar discrimination ability on the 
training sets. However we found that SWV and PAM [13] 

had the greatest discriminative ability and were most 
robust regarding individual  predictions when  prediction 
rules on independent cohorts were used. 
           As we have shown, SWV method allows the 
selection of a smaller number of genes (only 5 genes 
representing by 6 probesets) compared to PAM (18 
probesets) while the classification accuracies remain 
identical. SWV and PAM were used side-by-side in this 
study to allow a performance comparison between two 
robust but mathematically distinct class prediction 
algorithms in terms of classification accuracies and total 
number of genes required for maximum accuracy. PAM is 
a widely used statistical method for class prediction in 
large datasets. However, a limitation of PAM is that it is 
prone to over-parameterization (i.e., the selection of non-
independent variables (genes) with redundant 
characteristics) because it does not take into account 
interactions between genes. The SWV method relies on a 
different statistical approach which involves a “voting” 
class prediction function using only the most informative 
and robust variables. SWV is strongly oriented towards 
the selection of a relatively small number of genes (which 
is more amenable to PCR-based diagnostic applications 
than large gene sets), even if the number of patients is 
limited. This is because SWV takes into account 
interactions between variables, thus minimizing the 
number of predictors needed and reducing the risk of over-
parameterization. We have utilized both approaches to 
allow a simple performance comparison in terms of 
classification accuracies and total number of genes 
required for high-accuracy classification.     
     Ma et. al. (2003) were the first to report a histologic 
grade genetic signature capable of distinguishing low and 
high grade breast cancer. Using ~12K cDNA microarrays 
to analyze from 10 G1, 11G2, and 10 G3 microdissected 
tumor samples, they identified 200 genes differentially 
expressed between G1 and G3 tumors [3]. Using these 
genes for tumor clustering, they observed that the majority 
of G2 tumors possessed a hybrid signature intermediate to 
G1 and G3, with few exceptions (Figure 3 of their original 
report). Notably, this finding is in contrast with our 
discovery that the majority of G2 tumors do not display 
hybrid signatures, but rather possess clear G1-like or G3-
like genetic features. According to our classifier, only a 
small percentage (~6% or less) of the tumors in our study 
had intermediate genetic grade measurements (ie, Pr 
scores <0.75 for G1-like and G3-like). To address this 
discrepancy, we cross-compared the 200 grade-associated 
genes in their list to our expanded set of 232 genes, and 
observed a statistically significant overlap of 35 genes 
(p<1.0x10-7; Monte Carlo simulation). This overlap, 
however, represents only a small percentage of either gene 
list, indicating that the discrepant observations are most 
likely explained by fundamentally different signature 
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compositions. It is also possible that differences in sample 
selection and preparation, sample size (we have much 
larger samples and used 3 independent cohorts), RNA 
purification, quality of microarray analysis, and data 
normalization could have contributed to the variable 
results.  
     Ma et al. results inconsistent to our data (see also [12]) 
and   Sotiriou et. al. data [14]. Sotiriou et al. published 
their findings of “the 97-gene expression grade index” 
associated with histologic grade and correlated with 
relapse-free survival in ER-positive breast cancer [14]. 
Their grade index, like our grade signatures, could 
dichotomize the vast majority of G2 tumors into two 
groups with expression profiles and survival 
characteristics resembling those of G1 and G3 tumors. 
Comparison of our gene classifiers and the 97-gene 
classifier we revealed that 3 of our 5-gene grade signature 
genes, and 68 of our larger 232-gene set, overlapped with 
their 97-gene index. This high degree of overlap suggests 
that the 232-gene set and 97-gene set may utilize the 
fragments of the same fundamental transcriptional 
programs/pathways for predicting patient outcomes. For 
instant, in the both studies cell cycle genes were 
essentially enriched in the classifiers. Whether the two 
predictors are collinear with respect to patient survival will 
be an important question moving forward. Nevertheless, 
our studies  and [14] converge on similar findings 
reinforces the view that gene expression-based 
measurements of histologic grade can substantially 
contribute to patient prognosis. 
     We could consider the 264 probe sets and its smaller 
reliable subsets which we discussed in this study as  
genetic predictors of the G1+G2a (G1-like) and G2b (G3-
like)+G3 tumor types. This finding shows that extensive 
molecular heterogeneity exists within the G2 tumor 
population, and this heterogeneity is robustly defined by 
the major determinants of G1 and G3 cancer. It also 
demonstrates that a much larger and pervasive 
transcriptional program underlies the genetic grade 
predictions of the several SWV signatures – despite its 
composition of the mere 5 – 17 genes. Based on SWV, 
PAM and multivariate analyses, a minor fraction (~6%) of 
grade II breast cancers is still unclassified and might be 
considered as the “mixture” cancers [3] or as the 
“technical noise”.  
    Our findings show that genetic grade signatures could 
after additional biological validation improve a prognosis 
for patients with histologic grated II and, thus, be used in 
therapeutic planning for breast cancer patients. 
     Our results support the view that low and high grade 
disease (G1+G2a and G2b+G3), as re-defined genetically, 
reflect genetically stable independent pathobiological 
entities rather than a continuum of progression, which 

could  be associated with distinct breast epithelium stem 
cell types [see [12] for references] .      
     This study demonstrates that a system approach to 
microarray data analysis combining with data mining, 
multivariate analysis, GO analysis, histopatological 
information from tissue samples and survival data of large 
patient cohorts can provide insight in molecular 
classification of cancers and other diseases. Such approach 
allows for the identification of coordinately expressed 
genes with essential biological and clinical associations. 
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