
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 84

Forms of Data Materialization in Data-Intensive Web
Sites

Ali Ben Ammarj, Abdelaziz Abdellatifjj, and Henda Ben Ghezalajjj

jInstitut Supérieur de Documentation, Manouba, 2010, Tunisia

jjFaculté des Sciences de Tunis, Tunis, 2092, Tunisia
jjjEcole Nationale des Sciences de l’Informatique, Manouba, 2010, Tunisia

Summary
Data-Intensive Web Sites (DIWS) use a large volume of data
which are stored in several databases. They serve to answer
dynamic queries. That is the queries for which the response may
be changed from a period of time to another or from a user to
another. To carry out these queries, the required data must be
generated each time from the sources. In general, the sources are
distributed and heterogeneous databases. So, such queries are
characterized by a highly response time that increase the server
load. In this context, several tools and approaches are proposed to
improve the server response time. The data materialization,
which has been applied in databases and data warehouse, is a
good solution to answer speedily queries in DIWS. In this paper,
we will present the different forms of data materialization in
DIWS. That is the data materialization in structured format, in
semi-structured format, or in these two formats. The structured
format is called views and the semi-structured one is called
webview. A webview is a HTML document whose content is
dynamically extracted from structured databases. We will
compare the profits produced by the materialization of data in
these three forms. Our experiments demonstrate that the best
profit is produced by the combination of the structured and the
semi-structured formats and that the materialization profit
depends on the number of accessed sources.
Key words:
 Web data forms, Materialization, Data-Intensive Web Sites,
Views, and Webviews.

1. Introduction
The data on the DIWS are stored in structured databases.
They are extracted and transformed into web pages to
satisfy some dynamic queries. E-commerce, voyages,
stock exchange, and meteorology sites are examples of
DIWS. They need the following tasks to carry out user’s
queries: data extraction, data integration when the sources
are heterogeneous, and web page construction. So, for a
DIWS with a high number of sources, the data access will
be more complex. It makes the web server more loaded
and in need for more resources. Consequently, several
techniques have been developed to meet the demand for
faster and more efficient access to the DIWS. The majority
of these techniques have been applied in other domains
like databases and operating systems. Among them a main
role is acquired by the replication, refreshing, caching, and

materialization of data. The last technique consists of
storing some query results to avoid their repetitive
research. The stored results are those rarely updated and
frequently asked. The view materialization has been used
efficiently in data warehouse because of the high volume
of data and the complex queries [8, 9, 11]. On the web, this
technique is used to improve the server load by storing
data in two formats: (i) views of structured data on the
source databases or (ii) HTML documents on the server [1,
2, 3, 4, 5, 6]. The purpose is to avoid generating and
transforming data when there is no update on the sources.
This will improve query response time and provide good
data quality that is data freshness. In this paper, we will
compare three materialization profits that may be provided
for a DIWS. The first corresponds to the materialization of
data using the structured format that is using views. The
second corresponds to the materialization of data using the
semi-structured format that is using HTML documents
called webviews. The Third correspond to the
materialization of data using the two formats that is views
on the sources and webviews on the server. Our
experiments show that the latest profit is the best.
The data materialization is a good solution for improving
DIWS server load. This is because of the high number of
sources that may be accessed by a DIWS. The profit of
such solution will be demonstrated in our experiments. So,
our contributions in this paper are twice: (i) compare the
different forms of data materialization, and (ii) prove the
need for the materialization as a solution to improve DIWS
response time.
This paper is organized as follow: section 2 presents the
related works. Section 3 describes in more detail the data
materialization on the web. Section 4 we present our
solution and experiments. Section 5 is the conclusion.

2. Related Works
Recently, there has been a lot of interest on how to

improve web server response times. Several approaches
and tools have been developed for this reason. The web
caching, the data replication and the processing
distribution are the techniques that interest the researchers.
The data materialization on the web is addressed by a few
works [1, 2, 3, 4, 5, 6, 7]. The majority of these works

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

85

concern the materialized webview selection. Only in [5],
the authors discuss the data materialization forms. They
compare two data materialization forms: the
materialization of views and the materialization of
webviews. We are not aware of any work addressing the
combination of these two forms of data materialization.
That is considering the view materialization on the source
databases and the webview materialization on the web
server.

3. Data materialization on the web
Data-Intensive Web Sites (DIWS) provide access to a large
number of web pages whose content is dynamically
extracted from structured databases [12]. Today, they
become necessary for allowing some e-commerce tasks or
accessing dynamic information. Their architecture includes
a database management system (DBMS) layer, a site
server layer and the client. Thus, a new kind of pages,
dynamically generated, and a new architecture were born.
We have no more the traditional couple of a web client and
a web server, but a third part is added, the application
program, running on the web server to receive the request
from the client, retrieve the relevant data from the database
and then pack them into HTML or XML format.
Newspaper sites and shopping ones are examples of such
architecture. Several tools and approaches for developing
such systems are presented in [12, 10]. For each kind of
application, a set of web development tools are specified.
The performance problem of DIWS lies in addressing the
latency reduction of page produced by the site and the
quality of data presented to the clients. Firstly, because
returning web page may require costly interaction with the
database system. So, the net effect of this situation is
network congestion, high client perceived latency, web
server overload and slow response times for web severs.
Secondly, because the quality of data is of crucial
importance, especially for applications that must always
serve fresh data (e.g. providers of stock prices, sports
scores).
The data materialization on the web is used as a technique
to improve the server load. It consists of storing data in
two formats: (i) views of structured data on the source
databases or (ii) HTML documents on the server [1, 2, 3, 4,
5, 6]. The aim is to avoid generating and transforming data
when there is no update on the sources.
Similarly to traditional database views, the term webviews
is used on the web to mean web pages that are
automatically constructed from base data using a program
or a DBMS query. The materialization approach consists
in computing webviews and storing them. Having a
webview materialized can potentially give significantly
lower query response times, provided that the update
workload is not heavy. Even if the webview computation
is not very expensive, by keeping it materialized we

eliminate the latency of going to the DBMS every time
which could lead to DBMS overloading. Having a view
materialized can also give significantly lower query
response times. It allows eliminating the local data
extraction every time.
The webview and view materialization approach is similar
to that of view materialization in a data warehouse [8, 9,
11]. The main issues of the webview and view
materialization approach are: how to select dynamically
the appropriate objects (webviews and views) to be
materialized, how to refresh them, how to distribute their
storage over several servers and how to exploit them. The
corresponding tasks to these issues constitute the
management of materialized data. They are known as the
selection, the maintenance, the storage and the use of
materialized data.

4. Solution and experiments
4.1 Solution overview
The DIWS access includes three tasks: data extraction,
data integration and webview construction. Materializing
views on the source databases can eliminate the first task.
Materializing webviews on the web server can eliminate
the three tasks. What we propose in this work is to
compare the profits produced by these two materialization
forms and by their combination.

4.1.1 Definitions of execution and maintenance costs

- The execution cost of a query Q:
CE(Q)=data extraction cost+data integration
cost+webview construction cost

Here we extract data from base tables. In all the cost
definitions, we eliminate the data access time which is
negligible for the whole execution cost.

- The maintenance cost of the webview W, corresponding
to Q: CM(W)=data extraction cost+data integration
cost+webview construction cost

We suppose that for each update we recompute the
webview. That is we execute the corresponding query Q.

- The maintenance cost of a view Vi, used to answer Q:
CM(Vi)=data extraction cost

 We suppose that for each update we recompute the view.

- The execution cost of Q when W is materialized:
CE(Q, W)=0

- The execution cost of Q when VM, the set of Vi
corresponding to Q, is materialized: CE(Q, MV)= data
extraction cost+data integration cost+webview
construction cost

Here we extract data from materialized views. We suppose
that for each webview, it corresponds a set of materialized
views that may distributed over several sources.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 86

From the above definitions, we can conclude that CE(Q,
MV)<CE(Q). This is because many table jointures are
eliminated by materializing views.

4.1.2 Definitions of execution and maintenance costs
during a time period P

In order to observe the server load during a time period P,
we need the following parameters:

- n= frequency of a query Q

- v= number of views of MV

- mi=update frequency of the source of a view Vi

- m=update frequency of W. imm ≥ because the webview
update occurs when any materialized view is updated.
That is it corresponds to the update frequencies of all the
materialized views. But since some views may be
updated at the same time or theirs updates may refer to

the same transaction, ∑
=

≤≤
v

i
ii mmm

1

 . That is an update

of a webview may refer to several updates, of
materialized views, that occur at the same time. In our
solution, we suppose that a webview is materialized
only when its update frequency is less than its access
one. That is when m is less than n.

Consequently,

- The execution cost of Q during P:)(),(QCEnPQCE ∗=

- The materialization cost of W during P:
)()(),(QCEmWCMmPWmatC ∗=∗=

Here we suppose that for each source update we must
recompute W. The materialization cost measure the server
load during P when W is materialized. In this case, we will
have only the update cost of W because the execution cost
of Q will be null.

- The materialization cost of MV during P:

),())(
1

(),(MVQCEniVCM
v

i imPMVmatC ∗+∗∑
=

=

In this case, we will have the update cost of the
materialized views and the execution cost of Q when MV
is materialized.

- The materialization cost of W and MV during P:

{ }),())(
1

(),,(MVQCEmiVCM
v

i
imPMVWmatC ∗+∗∑

=
=

In this case, we will have the update cost of the
materialized views and the update cost of W when MV is
materialized. W will be updated using the materialized
views.

4.1.3 Definitions of materialization profits during a
time period P

- The materialization profit of W during P:
)()(),(),(),(Pr QCEmQCEnPWCPQCEPW matmat ∗−∗=−=

- The materialization profit of MV during P:

)),())((()(

),(),(),(Pr

1

MVQCEnVCMmQCEn

PMVCPQCEPMV

i

v

i
i

matmat

∗+∗−∗

=−=

∑
=

- The materialization profit of MV and W during P:
{ } { }),,(),(),,(Pr PMVWCPQCEPMVW matmat −=

)),())((()(
1

MVQCEmVCMmQCEn i

v

i
i ∗+∗−∗= ∑

=

4.2 Experiments
4.2.1 Experiment details

For these experiments we used a machine with AMD
Athlon 64 Processor 3200+498 MHZ and 512 MB of
memory. The web server used is Apache 1.3.33. The data
server used is MySQL 4.1.9. We chose to work in a non
distributed environment in order to eliminate the
(uncontrollable) network latency. We used a voyage web
site to define ours webviews and databases. This site
makes access to five sources corresponding to five
different air companies.
Our workload consisted of 30 webviews. The total access
to the web server averaged to 5 requests per second.
According to [5], this should correspond to a quite heavy
load on the server, of about 0.4 million requests per day.
We have considered four experiments. Each experiment
was run for 10 minutes. In the first experiment all the
webviews were kept virtual. In the second experiment all
the webviews were materialized at the web server. In the
third experiment all the views were materialized at the
source databases. In the fourth experiment all the
webviews and all the views were materialized respectively
at the web server and the source databases. We suppose
that for each webview, it correspond 5 views distributed
over the accessed sources. In all the experiments the
update and the access frequencies are chosen to be,
respectively, 10 per webview and 100 per webview during
the 10 minutes. The 10 updates are distributed over the 5
sources. That is we suppose that, during the 10 minutes,
each source is averagely updated twice which correspond
to the update frequency of each view.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

87

4.2.2 Experiment results

The materialization costs of the different forms, observed
during 10 minutes, are presented in the table1. The
materialization cost includes the query execution cost and
the update cost of the data materialization. In column, we
varied the number of the accessed sources. In the first line,
we measured the server workload when there is no data
materialization. In the second line, we measured the server
workload when we materialize only webviews. In the third
line, we measured the server workload when we
materialized only the views. In the fourth line, we
measured the server workload when we materialize the
views and the webviews. The variation of these
materialization costs is represented in the fig.1.

 Table 1: Materialization costs in seconds for the different

materialization forms.
Materialization
formats \ source

number

1 2 3 4 5

No data
materialization

60 130 180 200 237

Webview
materialization

6 15 19 24 33

View materialization 30 60 80 100 130
View and webview

materialization
2 3 5 10 12

The results presented in the table1 prove that the webview
materialization is more profitable than the view
materialization. This conclusion is found by the authors of
[5]. Our contribution is the combination of these two
formats. From table 1, we can deduce that our contribution
always gives the smallest materialization cost. This is due
to the fact that, with this materialization scenario, we will
update only the materialized data. The extraction and the
integration costs will be reduced in this scenario. The
materialization costs of this scenario are less than the
webview materialization ones. This is because the update

frequency of some views is less than the update frequency
of their corresponding webview. That is when a webview
is updated, only some base views are updated. However
the rest of the base views will be used to extract data rather
than the base table. So, the data extraction cost will be
reduced especially in the case of a high number of sources
or a heavy table.
The fig. 1 shows that the materialization costs increase
with the source number for the different materialization
forms. The materialization costs produced by our
contribution are the smallest ones for the different numbers
of sources. In fig. 2, we present the variation of the
materialization profits which are the differences between
the server overload when there is no data materialization
and the different materialization form costs. This fig.
shows that (i) the best profit corresponds to our
contribution and (ii) the materialization profits increase
with the number of sources. The later conclusion proves
the need for the materialization as a technique to improve
the data access on the DIWS which are characterized by a
high number of data sources.

5. Conclusion
In this paper we have shown that the data materialization
is a good solution to improve the data access on the DIWS
which are characterized by a high number of data sources.
The combination of the view and the webview
materializations is the scenario that always produces the
best materialization profit. This is because the server
workload will consist only of updating materialized data.
That is the data extraction, data integration and webview
construction costs will be reduced. In the future work, we
will develop an approach to select the optimal objects
(views and webviews) that should be materialized to
improve the query response time. This selection must
respect some resource constraints.

Variation of materialization costs

0

50

100

150

200

250

1 2 3 4 5

Source number

Materialization costs
in seconds

No data materialization

Webview materialization

View materialization

View and webview
materialization

Fig. 1: Variation of materialization costs.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 88

Variation of materialization profits

0

50

100

150

200

250

1 2 3 4 5

Source number

Materialization
profits in seconds

Webview materialization

View materialization

View and Webview
materialization

 Fig. 2: Variation of materialization profits.

References
[1] A. Labrinidis, N. Roussopoulos. “Adaptive WebView

Materialization”. WebDB'01: 85-90. 2001.
[2] A. Labrinidis, N. Roussopoulos. “Balancing Performance and

Data Freshness in Web Database Servers”. VLDB'03: 393-
404. 2003.

[3] A. Labrinidis, N. Roussopoulos. “On the Materialization of
WebViews”. In ACM SIGMOD Workshop on the Web and
Databases (WebDB '99): 79-84. 1999.

[4] A. Labrinidis, N. Roussopoulos. “Online View Selection for
the Web”. Technical report. 2002.

[5] A. Labrinidis , N. Roussopoulos. “WebView Materialization”.
Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data. pp.367-378. May 15-18,
2000, Dallas, Texas, United States.

[6] B. Christos, K. Agisilaos. “Efficient Materialization Of
Dynamic Web Data To Improve Web Performance”. 15th
International Conference on Computer Communication
(ICCC 2002) Mumbai. India, August 11-14 2002.

[7] B. Zhang, Z. Sun, and W. Jin. “Update of Materialized
WebView”. IEEE International Conference on e-Business
Engineering (ICEBE 2005). October 18-20, 2005, Beijing,
China.

[8] H. Gupta, I. S. Mumick. “Selection of Views to Materialize
Under a Maintenance-Time Constraint”. 7th International
Conference on Database Theory Jerusalem, Israel, January
10-12, 1999.

[9] H. Gupta. “Selection of Views to Materialize in a Data
Warehouse”. International Conference on Database Theory.
Delphi, Greece, January 8-10, 1997.

[10] P. Fraternali. “Tools and Approaches for Developing Data-
Intensive Web Applications: A Survey”. In ACM Computing
Surveys Volume 31:3, pp 227-263. 1999.

[11] S. Iqbal, J. J. Bunn, H. B. Newman. “Distributed
Heterogeneous Relational Data Warehouse In A Grid
Environment”. Computing in High Energy and Nuclear
Physics, 24-28 March 2003, La Jolla, California.

[12] Yagoub, D. Florescu, V. Issarny, and P. Valduriez. “Caching
strategies for data intensive web sites”. In Proceedings of the
VLDB 2000 Conference, pp 188-199. 2000.

