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Summary 
Ontology formal model and ontology checking recently are still 
under hot discussion. In this paper, an ontology concept model is 
constructed using Description Logics. Based on model, the issue 
on Consistency checking of the extended ontology model is 
studied with the conclusion that the four kinds of term checking, 
including term satisfiability checking, term subsumption 
checking, term equivalence checking and term disjointness 
checking, can be reduced to the satisfiability checking, and 
satisfiability checking can be transformed into instantiation 
consistence checking. 
Key words: 
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Introduction 

Today, computers are changing from single isolated 
devices to entry points into a worldwide network of 
information exchange and business transactions. Therefore, 
support in the exchange of information and knowledge is 
becoming the key issue in computer technology. Ontology 
provides a shared and common understanding of a domain 
that can be communicated between people and across 
application systems [1]. Ontology plays a major role in 
various areas relevant to information exchange, such as 
knowledge engineering [2], knowledge representation [3], 
information modeling [4], information integration [5], 
semantic based retrieval [6], semantic web, knowledge 
management [7]. 

Currently, the formal ontology model suiting to model 
checking is still under hot discussion. Some recent 
researches of ontology are based on first order logic (FOL), 
e.g. Ontolingua [8]，CycL [9]，LOOM [10]. Although 
FOL have a more expressive power, the reasoning process 
are complex and most of them are even undecidable, 
which is not suitable for ontology model checking. There 
are still other ontology models written in natural language 
for better human’s understanding, e.g. WordNet, can’t 
support model checking because of their low formalism. 
Description Logics (DLs) is the name for a family of 
knowledge representation formalisms that represent the 
knowledge of an application domain by first defining the 
relevant concepts of the domain, and then using these 

concepts to specify properties of objects and individuals 
occurring in the domain. DL is equipped with a formal and 
logic-based semantics allowing inferring implicitly 
represented knowledge from the knowledge that is 
explicitly contained in the knowledge base. Although DL 
has a less expressive power than FOL, its inference 
procedures are more efficient and decidable, which is 
more suitable for ontology checking [11].  

Refs. [6], [11] proposed a naive ontology concept model 
O=<T, X, TD, XD>, consisting of Term Set, Individual 
Set, Term Definition Set, and Instantiation Assertion Set, 
in DLs. In this paper, an extended ontology concept model 
O=<T, X, TD, XD, TR> is established in description 
logics through introducing Term Restriction Set to the 
naive model in Refs. [6], [11]. Based on the extended 
model, we study the issue of how to check the ontology 
model for preserving the consistence of ontology.  

In the rest of paper, we present first, in section 2, an 
extended ontology concept model and its basic concepts. 
In section 3, Consistency checking of the extended 
ontology concept model is proposed and some 
Propositions are proofed. Finally, we finish with 
conclusions in section 4. 

2. An Extended Ontology Concept Model 

2.1 An Extended ontology concept model and its 
interpretation 

Definition 1: Given a terminology description language L, 
an extended ontology concept model is a 5-tuples, 

O=<T, X, TD, XD, TR>                      (1) 

For convenience, we call ontology below. T is a Term Set, 
X is an Individual Set, TD is a Term Definition Set, XD is 
an Instantiation Assertion Set, and TR is a Term 
Restriction Set. The elements included in T are also called 
atomic term, which is divided into two categories: atomic 
class term (atomic class, for short) and atomic property 
term (atomic property, for short). 
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Definition 2: Given O=<T, X, TD, XD, TR>, an ontology 
interpretation is a 2-tuples, 

I=<ΔI, ⋅I>                                      (2) 

where ΔI ≠∅ is the domain of the interpretation, and ⋅I is an 
interpretation function, which assigns to every atomic 
class C in T a set CI⊆ΔI, and to every atomic property P in 
T a binary relation PI⊆ΔI×ΔI, and to every individual a in 
X an element aI∈ΔI. 

An ontology model of family domain using the above 
model is gives as follows: 

O=<{Person, Female, Male, Woman, Man, Mother, 
Father, Parent, hasChild, hasHusband, Wife, Grandmother, 
MotherWithoutSon, MotherWithManyChildren}, {Alice, 
Tom, Mary}, {Woman≡Person Female, 
Man≡Person Male, Mother≡Woman ∃hasChild.Person, 
Father≡Man ∃hasChild.Person, Parent≡Father  Mother, 
Wife≡Woman ∃hasHusband.Man, 
Grandmother≡Mother ∃hasChild.Person, 
MotherWithoutSon≡ Mother ∀hasChild.¬Man, 
MotherWithManyChildren≡Mother ≥ 3,hasChild}, 
{Man(Tom), Woman(Alice), hasHusband(Alice, Tom), 
hasChild(Alice, Mary)}, {Female I Male}> 

2.2 Term set and term definition set 

Term Set comprises a group of atomic terms. However, 
atomic terms can only express limited logics and simple 

contents, because they are just the basic element with less 
expressive power. So here we adopt the term constructors 
from Description Logic to build term formulas for the 
expression of more complex contents. Given L, we call the 
expression, satisfying the syntax rule below, an L-based 
term formula. 

D, E  →  C ⏐ Τ ⏐ ⊥⏐ ¬C ⏐ D E ⏐ ∀P.D ⏐ ∃P.Τ    (3) 

Term Set comprises a group of atomic terms. However, 
atomic terms can only express limited logics and simple 
contents, because they are just the basic element with less 
expressive power. So here we adopt the term constructors 
from Description Logic to build term formulas for the 
expression of more complex contents. Table 1 gives 
ontology interpretations to six basic term constructors. 

(ⅰ) Any atomic class C is an L-based formula. 
(ⅱ) The negation of an atomic class C, expressed as “¬C”, 
is an L-based formula. 
(ⅲ) Universal Class and Empty Class, denoted as “Τ” and 
“⊥” respectively, are also an L-based formula. 
(ⅳ) The intersection of two L-based formulas D and E, 
written as “D E”, is still an L-based formula. 
(ⅴ) Given an atomic property P and an L-based formula 
D, the value restriction of P, denoted as “∀P.D” is still an 
L-based formula. 
(ⅵ) Given an atomic property P, the limited existential 
quantification of P, written as “∃P.Τ” is still an L-based 
formula. 

 

Table 1: Basic term constructors and their ontology interpretations 
Constructors Name Term Constructors Syntax Ontology Interpretation 

Universal Class Τ ΤI =ΔI 
Empty Class ⊥ ⊥I =∅ 
Atomic Class Negation ¬C (¬C)I = ΔI\CI 
Intersection D E (D E)I=DI∩EI 
Property Value Restriction ∀P.D (∀P.D)I={a∈ΔI⏐ ∀b. (a, b)∈PI→b∈DI} 
Limited Existential Quantification ∃P.Τ (∃P.Τ)I={a∈ΔI⏐ ∃b. (a, b)∈PI} 

Table 2: Extended term constructors and their ontology interpretations 
Constructors Name Term Constructors Syntax Ontology Interpretation 

Union D E (D E)I=DI∪EI 
Non-atomic negation ¬D (¬D)I=ΔI\DI 
Full Existential Quantification ∃P.D (∃P.C)I={a∈ΔI ⏐ ∃b. (a, b)∈PI∧b∈CI} 
At-least number restriction ≥ n,P (≥ n,P)I={a∈ΔI ⏐ |{b | (a, b)∈PI }| ≥ n} 
At-most number restriction ≤ n,P (≤ n,P)I={a∈ΔI ⏐ |{b | (a, b)∈PI }| ≤ n} 

 
Eq. (3) shows that the expressive power of term formulas 
strongly depends on the type of term constructors. In 
Eq.(3), L only supports six basic constructors listed in 
Table 1, so L is also called basic term description 

language, written as LB, and the corresponding term 
formulas constructed by LB is called LB-based term 
formulas. To obtain more expressive languages, more 
complex constructors should be extended to LB. Table 2 
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gives another set of term constructors, called extended 
term constructors, where P is an atomic property, and D 
and E are two term formulas. 

Definition 3(Subsumption): Given L and O=<T, X, TD, 
XD, TR>, D and E are two L-based term formulas. We say 
D is subsumed by E, if DI⊆EI for any an interpretation I. 

Definition 4(Equivalence): Given L and O=<T, X, TD, 
XD, TR>, D and E are two L-based term formulas. We say 
D and E are equivalent, if DI=EI for any an interpretation I. 

Definition 5(Disjointness): Given L and O=<T, X, TD, 
XD, TR>, D and E are two L-based term formulas. We say 
D and E are disjointness, if DI ∩ EI=∅ for any an 
interpretation I. 

Definition 6(Term Definition Item): A term definition 
item is an equivalence relationship between two terms, 
written as C≡D, where C is an atomic class term, called 
definiendum, and D is a term formula, called definiens.  

Given O=<T, X, TD, XD, TR>, Term Definition Set TD is 
such a set that consists of term definition items subject to 
the following restrictions, written as TD={C1≡D1, 
C2≡D2,…, Cn≡Dn}. Where, Ci∈T, Di is a term formula, 
and every term in Di is from T. 

(ⅰ) for any i, j (i≠j,1≤i≤n,1≤j≤n), Ci ≠Cj holds. 
(ⅱ) if there exist C1′≡D1′, C2′≡D2′,…, Cm′≡Dm′ in TD, and 
Ci′ occurs in Di-1′ (1<i≤m, m≤n), then C1′ must not occur 
in Dm′. 

Definition 7 (Model of Term Definition Item): Given 
O=<T, X, TD, XD, TR>, if there exists an ontology 
interpretation I satisfying a term definition item A of TD, 
then I is called a model of A. If I is a model of all term 
definition item of TD, then we say I is a model of TD. 

Definition 8(Defined Term & Primitive Term): Given 
O=<T, X, TD, XD, TR>, atomic terms of T can be divided 
into two sets: defined terms, which occur in the 
definiendum of term definition item of TD, written as Td, 
and primitive terms, which occur only in the definiens, 
written as Tp. 

Definition 9(Expansion of term definition item): Given 
TD={C1≡D1, C2≡D2,…, Cn≡Dn}, each term definition item 
in TD is expanded through an iterative process by 
replacing each occurrence of a defined term in the 
definiense with the primitive terms it stands for. Since no 
cycle term definition is allowed in TD (guaranteed by 
Restriction (ⅱ) above), the process eventually stops and 
we end up with a Term Set T′={C1≡D1′, C2≡D2′,…, 
Cn≡Dn′}, where Di′ contains only primitive terms and no 
defined terms. We say that Di′ is the expansion of Di with 

respect to TD, written as e(Di), and Ci≡Di′ is the expansion 
of Ci≡Di with respect to TD, and T′ is the expansion of T 
with respect to TD, written as e(T). 

Proposition1: Given O=<T, X, TD, XD, TR>, where 
TD={C1≡D1, C2≡D2,…, Cn≡Dn}, and E is a term formula. 
If I is a model of TD, then EI=e(E)I holds. 
Proof: Since I is a model of TD, we can conclude that 
Ci

I=Di
I holds for any term definition item Ci≡Di in TD. 

Then replace one of defined term Cj occurring in E with Dj 
and obtain a new term formula E′. we have EI=E′I since 
Ci

I=Di
I. Moreover, e(E) can be obtained through the above 

replacing process in finite times until all defined terms are 
replaced with primitive terms, so EI=e(E)I holds. 

Proposition 2: Given O=<T, X, TD, XD, TR>, where 
TD={C1≡D1, C2≡D2,…, Cn≡Dn}, and S is a term formula. 
If I is a model of e(TD), then there must exists a model of 
TD I′, such that SI′=e(S)I. 
Proof: Let Tp={B1, B2,…, Bm} be the Primitive Term Set. 
Since TD={C1≡D1, C2≡D2,…, Cn≡Dn}, we get the Defined 
Term Set Td={C1, C2,…, Cn}. Suppose e(TD)={C1≡D1′, 
C2≡D2′,…, Cn≡Dn′}, i.e. Di′=e(Di). If I is a model of e(TD), 
then Ci

I=Di′I holds for any term definition item in e(TD). 
Then we use I to build a new ontology interpretation I′, 
such that Bi

I′=Bi
I for any primitive term Bi; Ci

I′=Di′I, for 
any defined term Ci. With the new interpretation I′, we 
have SI′=e(S)I for any term formula S, which result in 
Di

I′=e(Di)I. Moreover, since Ci
I′=Di′I=e(Di)I, we can 

conclude Ci
I′=Di

I′, i.e. I′ is a model of TD. 

2.3 Individual set and instantiation assertion set 

Individual Set is a set of individuals whose names are 
denoted as a, b, c. Instantiation Assertion Set consists of a 
group of class instantiation assertions, property 
instantiation assertions and individual inequality assertions. 

A class instantiation assertion, written as C(a), states that 
individual a belongs to class C. a property instantiation 
assertion, written as P(a, b), states that there exists a 
relation P between a and b, and b is called the value of a 
about property P. Individual inequality assertion, written 
as a ≡/ b, means that the two objects denoted by a and b are 
distinct. 

Given an ontology interpretation I, if a class instantiation 
assertion C(a) holds, then aI∈CI. If a property instantiation 
assertion (a, b) holds, then (aI, bI)∈PI. If an individual 
inequality assertion a ≡/ b holds, then aI≠bI. 

Definition 10(Model of Instantiation Assertion): Given 
O=<T, X, TD, XD, TR>, if there exists an ontology 
interpretation I making an instantiation assertion α holds, 
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then I is said to be a model of α. If I is model of all the 
instantiation assertions in XD, then I is called a model of 
XD. 

Definition 11 (Expansion of Instantiation Assertion): 
Given O=<T, X, TD, XD, TR>. C(a) is a class instantiation 
assertion in XD, and e(C) is an expansion of C with 
respect to TD. e(C)(a) is said to be the expansion of C(a) 
with respect to TD. Through transforming each class 
instantiation assertion into the form of expansion, we can 
get a new Instantiation Assertion Set XD′. The new set 
XD′ is called the expansion of XD with respect to D, 
denoted as e(XD). 

2.4 Term restriction set 

Given O=<T, X, TD, XD, TR>, the Term Restriction Set 
TR is a set of term relationships in the form of 
subsumption, equivalence or disjointness, which is 
intended to restrict the logical relationship between terms 
in T. Suppose D, E are two term formulas, the meaning of 
the three kinds of relationship are given as follows:  

(ⅰ) DΜE states that every instance of the class D is also 
the instance of the class E. 
(ⅱ) D≡E states that every instance of the class D is also 
the instance of the class E, and vice versa. 
(ⅲ) D I E states that the two classes D and E have no 
instance in common. 

e(D)Μe(E), e(D)≡e(E) and e(D) I e(E) are called the 
expansion of DΜE, D≡E and D I E respectively. 

Definition 12(Model of Term Restriction): Given O=<T, 
X, TD, XD, TR>, if there exists an ontology interpretation I 
satisfying a term relation R in TR, then we say I is a model 
of R. If I is the model of all the term relation in TR, then I 
is called a model of TR. 

Definition 13(Expansion of Term Restriction Set): 
Given O=<T, X, TD, XD, TR>. For convenience, we 
assume TR={D1ΜE1, D2≡E2, D3 I E3}. If each term 
relation in TR has been transformed into the expansion 
form, a new Term Restriction Set TR′={e(D1)Μe(E1), 
e(D2)≡e(E2), e(D3) I e(E3)} is obtained. TR′ is said to be 
the expansion of TR, written as e(TR). 

Definition 14(Model of Expansion of Term Restriction 
Set): Given O=<T, X, TD, XD, TR>, if there exists an 
ontology interpretation I satisfying all the term 
interpretations in e(TR), then we call I a model of e(TR). 

Proposition 3: Given O=<T, X, TD, XD, TR>, if TD and 
TR have a model I in common, then I also is a model of 
e(TR). 

Proof: Let TR be {D1ΜE1, D2≡E2, D3 I E3} for the sake 
of simplicity, then we have e(TR)={e(D1)Μe(E1), 
e(D2)≡e(E2), e(D3) I e(E3)}. If TD and TR have a 
common model I, then D1

I⊆E1
I, D2

I=E2
I and D3

I∩E3
I=∅ 

hold since I is a model of TR. Moreover, I is also a model 
of TD, so we can conclude that CI=e(C)I holds for any 
term formula C according to Proposition 1. With the above 
conclusion, we can further obtain that e(D1)I⊆e(E1)I, 
e(D2)I=e(E2)I, e(D3)I∩e(E3)I=∅. So I is a model of e(TR). 

Proposition 4: Given O=<T, X, TD, XD, TR>, where 
TD={C1≡D1, C2≡D2,…, Cn≡Dn}. Tp={B1, B2,…, Bm} is the 
set of primitive terms in TD, and S is a term formula. If I is 
a model of e(TR), then there must exist a common model I′ 
of both TD and TR, such that SI′=e(S)I. 
Proof: Since TD={C1≡D1, C2≡D2,…, Cn≡Dn}, the set of 
defined terms in TD is Td={C1, C2,…, Cn}. Suppose that 
e(TD)={C1≡D1′, C2≡D2′,…, Cn≡Dn′}={C1≡e(D1), 
C2≡e(D2),…, Cn≡e(Dn)} and TR={D1ΜE1, D2≡E2, 
D3 I E3}, we can get e(TR)={e(D1)Μe(E1), e(D2)≡e(E2), 
e(D3) I e(E3)}. If I is a model of e(TR), then e(D1)I⊆e(E1)I, 
e(D2)I=e(E2)I, e(D3)I ∩ e(E3)I=∅. Then we use I to 
construct a new ontology interpretation I′, such that 
Bi

I′=Bi
I, for any primitive term Bi; Ci

I′=Di′I, for any defined 
term Ci; aI′=aI, for any individual a. With the new 
constructed interpretation I′, we can conclude SI′=e(S)I for 
any term formula S, which result in Di

I′=e(Di)I. Moreover, 
since Ci

I′=Di′I=e(Di)I, we can conclude Ci
I′=Di

I′, i.e. I′ is a 
model of TD. Furthermore according to the above 
conclusion: e(D1)I⊆e(E1)I, e(D2)I=e(E2)I and e(D3)I ∩

e(E3)I=∅, we can obtain that D1
I′⊆E1

I′, D2
I′=E2

I′ and D3
I′∩

E3
I′=∅, i.e. I′ is a model of TR. 

3. Consistency Checking of Ontology Concept 
model 

3.1 Term checking 

(1) Term satisfiability checking 
Given O=<T, X, TD, XD, TR> and a term formula D, if 
there exists an ontology interpretation I, such that DI≠∅, 
then D is said to be satisfiable and unsatisfiable otherwise. 
If there exists a model of TR, such that DI≠∅, then D is 
satisfiable with respect to TR. If there exists a common 
model of both TR and TD, such that DI≠∅, then D is said 
to be satisfiable with respect to TR and TD, or else 
unsatisfiable with respect to TR and TD. 

(2) Term subsumption checking 
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Given O=<T, X, TD, XD, TR> and two term formulas D 
and E, if DI⊆EI holds for all the ontology interpretation I, 
then D is said to be subsumed by E, or E subsumes D, 
denoted as ╞DΜE. If for all the models I of TR, DI⊆EI 
holds, then we say TR entails that D is subsumed by E, 
denoted as TR╞DΜE. If DI⊆EI holds for all the common 
models I of both TR and TD, then we say TR and TD 
jointly entails that D is subsumed by E, denoted as 
(TR+TD)╞DΜE. 

(3) Term equivalence checking 
Given O=<T, X, TD, XD, TR> and two term formulas D 
and E, if DI=EI holds for all the ontology interpretation I, 
then we say D and E are equivalent, written as ╞D≡E. If 
DI=EI holds for all the models I of TR, then we say TR 
entails that D and E are equivalent, written as TR╞D≡E. If 
for all the common models I for both TR and TD, DI=EI 
holds, then we say TR and TD jointly entails that D and E 
are equivalent, written as (TR+TD)╞D≡E. 

(4) Term disjointness checking 
Given O=<T, X, TD, XD, TR> and two term formulas D 
and E, if DI ∩ EI=∅ holds for all the ontology 
interpretation I, then we call D and E are disjoint, written 
as ╞D I E. If in all models I of TR, DI∩EI=∅ holds, then 
we call TR entails that D and E are disjoint, written as 
TR╞D I E. If DI∩EI=∅ holds in all the common models 
I for both TR and TD, then we call TR and TD jointly 
entails that D and E are disjoint, written as 
(TR+TD)╞D I E. 

Proposition 5(Reduction to Subsumption): Given O=<T, 
X, TD, XD, TR>, for any two term formulas D, E: 
(ⅰ) D is unsatisfiable with respect to TR and TD, iff  
(TR+TD)╞DΜ⊥; 
( ⅱ ) (TR+TD)╞D≡E, iff (TR+TD)╞DΜE and 
(TR+TD)╞EΜD; 
(ⅲ) (TR+TD)╞D I E, iff (TR+TD)╞(D E)Μ⊥. 

Proposition 6 (Reduction to Unsatisfiability): Given 
O=<T, X, TD, XD, TR>, for any two term formulas D, E: 
(ⅰ ) (TR+TD)╞DΜE, iff D ¬E is unsatisfiable with 
respect to TR and TD; 
(ⅱ ) (TR+TD)╞D≡E, iff both D ¬E and ¬D E are 
unsatisfiable with respect to TR and TD; 
(ⅲ ) (TR+TD)╞D I E, iff D E is unsatisfiable with 
respect to TR and TD. 

Proposition 5 and 6 can be proved easily, so the proofs are 
omitted here. The facts stated in the two propositions 
imply that all the four kinds of term checking can be 
reduced to the (un)satisfiability or subsumption. 

Proposition 7: Given O=<T, X, TD, XD, TR>. D and E are 
two term formulas. e(D) is the expansion of D with respect 

to TD, and e(E) is the expansion of E with respect to TD. 
We have: 
(ⅰ) D is satisfiable with respect to TR and TD, iff e(D) is 
satisfiable with respect to e(TR); 
(ⅱ) (TR+TD)╞DΜE, iff e(TR)╞e(D)Μe(E); 
(ⅲ) (TR+TD)╞D≡E, iff e(TR)╞e(D)≡e(E); 
(ⅳ) (TR+TD)╞D I E, iff e(TR)╞e(D) I e(E). 
Proof (sufficient condition): If e(D) is satisfiable with 
respect to e(TR), then there must exist such a model I of 
e(TR) that satisfying e(D)I≠∅. According to Proposition 4, 
if I is a model of e(TR), then there must exist a common 
model I′ of both TD and TR, such that DI′=e(D)I. So we 
can get DI′≠∅ from e(D)I≠∅ and DI′=e(D)I. That is D is 
satisfiable with respect to TR and TD. 
 Proof (necessary condition): If D is satisfiable with 
respect to TR and TD, then there must exist a common 
model I of both TR and TD, such that DI≠∅. Since I is a 
model of TD, DI=e(D)I holds based on Proposition 1. 
Therefore we have e(D)I≠∅. Moreover, according to 
Proposition 4, we can conclude that I also is a model of 
e(TR). So e(D) is satisfiable with respect to e(TR). 

The remaining three proofs can be conducted similarly, so 
they are omitted here due to the limit of the space. 
Proposition 7 states that problems of term checking can be 
solved through checking the expansion of the terms. 

3.2 Instantiation checking 

Definition 15 (Consistence of Instantiation Assertion): 
Given O=<T, X, TD, XD, TR> and an instantiation 
assertion α. If there exists such an ontology interpretation I 
that is a model of α, then we say α is consistent, and 
inconsistent otherwise. If I is not only a model of α, but 
also a common model of both TD and TR, then we say α is 
consistent with respect to TD and TR. If I is a model of XD, 
then we say XD is consistent. If I is not only a model of 
XD, but also a common model of both TD and TR, then we 
say XD is consistent with respect to TD and TR.  

Proposition 8: Given O=<T, X, TD, XD, TR> and a class 
instantiation assertion C(a), we have: 
(ⅰ) C(a) is consistent with respect to TD and TR, iff 
e(C)(a) is consistent with respect to e(TR). 
(ⅱ) XD is consistent with respect to TD and TR, iff e(XD) 
is consistent with respect to e(TR). 
Proof (Sufficient Condition): If e(C)(a) is consistent with 
respect to e(TR), then there exists a model I of e(TR) 
satisfying aI∈e(C)I. Since I is a model of e(TR), there must 
exits a common model I′ of both TD and TR such that 
aI′∈aI and CI′=e(C)I according to Proposition 4 So we can 
obtain aI′∈CI′, i.e. C(a) is consistent with respect to TD 
and TR. 
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Proof (Necessary Condition): If C(a) is consistent with 
respect to TD and TR, then there exists a common model I 
of both TD and TR such that aI∈CI. Since I is a model of 
TD, we have CI=e(C)I according to Proposition 1, which 
imply that aI∈e(C)I. Moreover Proposition 3 states that I 
also is a model of e(TR). So we can conclude that e(C)(a) 
is consistent with respect to e(TR). 

Proposition 9: Given an ontology O=<T, X, TD, XD, TR> 
and a term formula C, C is satisfiable with respect to TD 
and TR, iff C(a) is consistent with respect to TD and TR, 
where a is an arbitrarily chosen individual name. 

Proposition 8 states that the consistence of an instantiation 
assertion is equivalent to the consistence of the expansion 
of the instantiation assertion. Proposition 9 states that the 
consistence of instantiation assertion can be determined 
through checking the satisfiability of the term. 

4. Conclusions 

In this paper, an extended ontology model is constructed 
in DLs extending the naive model built in Refs. [6], 
[11],[12]. Based on the extended model, issues of 
consistency checking of the extended ontology concept 
model, including term checking and instantiation checking, 
are studied with the conclusion that: the four kinds of term 
checking, including term satisfiability checking, term 
subsumption checking, term equivalence checking and 
term disjointness checking, can be reduced to the 
satisfiability checking, and satisfiability checking can be 
transformed into instantiation checking. The problem of 
instantiation consistence can be decided by Tableau 
Algorithm (see Ref. [12] for details). 
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