
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

100

Manuscript received December 14, 2006.
Manuscript revised December 18, 2006.

A Hierarchical Model for Auto-adjusting of Information Issuance

Chenguang Luo†, Rong Pan†† and Shan Wang†††,

† Peking University, Beijing, 100871, China
†† Wuhan University of Science and Technology, Wuhan, 430081, China

††† Hunan University of Science and Technology, Xiangtan, 411201, China

Summary
This paper brings out a mathematical model of information for
its auto-adjusting when issued in different hardware environment
from a hierarchical perspective, discusses possible solutions to
the construction of the model, and gives two implementations of
algorithms for solutions together with their complexity analysis.
Key words:
information issuance; auto-adjusting; hierarchical model;
algorithms

Introduction

As the world is entering an information era, the scale of
sorts of information is expanding at an exponential speed.
This brings about a significant and practical problem with
the issuance of information. It mainly lies in that different
hardware devices have different capability of information
exhibition, which leads to misrepresentation of informa-
tion on some terminals and inconvenience for people to
recognize it. For example, an ordinary web page would fit
almost any computer display, but on the screen of a PDA
or even a mobile phone it may turn out a mess: the limited
screen cannot hold so many contents and the user will
have to make every effort to scroll the page for something
she is interested in. With the development of various inter-
connected devices, the situation is still deteriorating.

Such problem calls for the auto-adjusting in the
issuance of information. That is, the device should auto-
matically choose a best way to display it. Take the former
example, a web page with the ability of auto-adjusting will
exhibit itself in a multimedia style when the terminal is a
computer; however, it will reduce the quality of pictures
on a PDA, and only display some word-based descriptions
if shown on a mobile phone. In a word, the auto-adjusting
of information will allow the terminal to display contents
according to the competence of hardware device, to
change the information into an acceptable form, and to
reduce the misrepresentation to a lowest level.

This paper will discuss the auto-adjusting of infor-
mation with the following arrangements. The next section
will create the hierarchical model of information, then the
two sections followed will propose and compare two algo-
rithms about the model, and the last section summarizes.

1. Hierarchical Model for Auto-adjusting of
Information Issuance

1.1 Preliminaries

The introduction has given a basic description to the
problem of information issuance, and the objective of this
section is to formalize the method of information auto-
adjusting by modeling the information to be issued, and to
simplify the model to a solvable level.

Before any formal discussion, the final goal of auto-
adjusting of information issuance should be explained. As
is depicted, the same information should be exhibited in
certain forms on different devices respectively, according
to the capability of the device, with the aim that it should
make full use of the limited resource of the terminal to
ensure the correctness and wholeness of the information.

Based on this goal, we focus on the abstract structure
of the information to find a suitable model for it. The
structure should have the feature to enable the information
to be condensed at a proper degree when necessary, such
as being browsed on a mobile phone; meanwhile, the
structure must be feasible in computational complexity, to
guarantee a tolerable time cost for readers.

For these two features, one possible solution is the
hierarchical model of information, providing different
degrees of information abstraction on different levels of
the model, and the needed information can be computed
from the model efficiently.

Prior to the definition of the model, an informal (and
ideal) way to compress the information will be described.
First divide the information into 2n equal parts, and then
combine each adjacent two parts into one part with the
same size of any original part, as the abstraction of the
former two parts. Now the 2n-1 parts of information are a
compressed edition of the original information. Repeat the
process until the result turns out only one part.

In fact, the former compression method generates a
hierarchical structure of information. Denote the result of
2i parts of each dividing and compression process as one
level of information, and we gain (n + 1) levels of infor-
mation. Then, on competent display devices (such as a

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

101

computer monitor) we may issue the information on lower
levels to get a better view, and on devices with limited
resources (such as mobile phones) the information may be
shown in an abstracted style for the reader’s convenience.
In this way, the information will have a correct and whole
exhibition on any device, and our aim can be achieved.

The informal discussion above has shown a hierarchi-
cal model for information issuance, of which the search
algorithm will set a base for the auto-adjusting.

1.2 The Hierarchical Model

Suppose in the process of information division above,
any two parts at a lower level will take no less resource for
issuance than their counterpart at a high level does. Then
the problem can be described as the following form.
Definition 1. Let Nnm ∈, , denote m as n ’s parent if
n=2m + 1 or n=2m + 2.
Definition 2. Let Nnm ∈, , denote m as n ’s ancestor if a
sequence ,, 2,1 mmm …, nmk , exists, such that in each

adjacent pair, the left one is the parent of the right one.
With the two definitions above, the problem can be

changed to a new form: given a sequence of positive real
values ,, 10 ww …,

22 −kw , where 3222 ++ +≤ mmm www , con-

struct a set ,1,0{⊆S …, }22 −k , satisfying that for any a,
,,2212 1 Sba kk ∈∃−≤≤−∀ − b=a or b is a ’s parent, and

ww
Si

i <∑
∈

, where w is a given value.

According to the former informal discussion about
information division and its levels, natural numbers from

12 1 −−k to 22 −k in the conditions above represent the 12 −k
parts divided from the original information. Then each two
parts will be combined to a new part on a higher level of
information, and the parts on the new level are still
combined to construct a higher level … until only one part
left on the top level. Each level consists of 12 −i parts
(ki ≤≤1), standing for different degrees of information
abstraction. Among all these parts on all the levels, some
will be selected for issuance, taking no more resource than
w (the upper limit of terminal device).

In data structures, a natural way to model different
levels of data is trees. So the division of information and
the resulted levels can be formalized as the following defi-
nition.
Definition 3. Denote a full binary tree T as a hierarchical
model, if each node of T has been assigned a natural
number as a subscription (the assignment is in breadth-
first order and begins at zero), and each node ni has unique
weight wi, where parent node ni and its children n2i+1, n2i+2
have an inequality

2212 ++ +≤ iii www for their weights.
Now the problem of information division and issu-

ance can be transformed to a problem of the hierarchical

model. To describe the solution to the problem we still
need another definition.
Definition 4. Set S is defined to be a cover set of a
hierarchical model T, if TnSn ∈∈∀ , holds for any node n,
and for any leaf node)1212(1 −≤≤−− kk

a an in T, on the
path from it to the root node n0, there exists one and only
one node ns, such that Sns ∈ . (For empty hierarchical
models, their cover sets are defined as empty sets.)

Intuitively, the nodes in a cover set “cover” all the
original information to be issued; so in the process of
issuance, the nodes in a cover set are both necessary and
sufficient. Now the problem is changed to a new form: for
certain hierarchical model T and constant w, find a cover
set S of T, such that provided the sum of weights of the
nodes in S does not exceed w, |S| should be maximized.

2. The Best-solution Algorithm for the Model

2.1 Analysis of Cover Sets

In the last section we have defined the hierarchical
model for information issuance, and turned the problem to
a more formal one. For any given hierarchical model T
and constant w, a natural way to find a best (or largest)
cover set S is to try every cover set of T, and choose the
one with the most nodes and not exceeding the weight
limit w. This section will go far in this way to find a best
solution.

First we do not take weights into consideration, but
just focus on cover set itself. The set containing only the
root, namely, {n0}, is a cover set. Besides this one, there
are still many cover sets, which all follow the rule that any
of them are built up by two smaller cover sets, one of
which is a cover set of the left child tree of the model’s
root, while the other is a cover set of the right child tree. It
is not difficult to prove that only these two types of cover
sets exist. So an equivalent definition of cover set may be
stated as follows.
Definition 5. Set S is defined to be a cover set of a
hierarchical model T, if S = {n0}, or

rl SSS ∪= , where Sl

and Sr are cover sets of n0’s left and right child trees,
respectively. (For any empty hierarchical model, its cover
set is defined as empty set.)

This recursive definition reveals the essence of cover
sets; meanwhile, it shows a direct way to find all the cover
sets of a hierarchical model. First find all the cover sets of
the left child tree, then all of them of the right child tree,
and at last make a combination with each cover set from
each side, plus the cover set containing only the root. In
the following section, this idea will be implemented as an
algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

102

2.2 The Algorithm Based on Direct Search

In the last section a recursive definition of cover set
was given, which inspires a natural way to generate all the
cover sets of a hierarchical model. This section first intro-
duces an algorithm to search for all the cover sets, and
then the best one could be chosen from them.

Suppose the model has on every node a flag (initially
0) and two variables to store cover sets (leftcoverset and
rightcoverset, initially NULL), then the algorithm to find
next cover set of a tree can be designed as follows.

Figure 1: Algorithm for Best Solution

It is easy to see the algorithm is based on the direct
search strategy. It just utilizes the recursive definition of
cover sets, and returns the next cover set by each call.

With this algorithm, the task to find the best cover set
turns out simple. The procedure NEXT_COVER_SET
should be invoked once and again, with the root as the
parameter, until NULL is returned. Then the largest cover
set gained before is the best solution to the problem.
Below is an example of such solution, with weights

marked beside the nodes, and the weight limit w = 6. The
black nodes are the components of the cover set.

Figure 2: Best solution of a problem

2.3 Analysis of the Algorithm

The algorithm above provides the best solution to any
hierarchical model; however, the complexity of the algo-
rithm is far from the best. The algorithm has to traverse all
the possible cover sets and finds the best at last. So it is
essential to estimate the scale of solution space according
to the size of the model.

When the model has only one node, it has only one
cover set, say, 11 =T . Then, on the condition of a model
with three nodes, considering the recursive definition of
cover set, it may be found that each child tree of the root
has exactly T1 cover set (s), so the total cover sets add up
to 21 2

13 =+= TT . In this way, consequent results are T7 = 5
and T15 = 26. To conclude, the general formula is

.1 2
1212 1−− −+= kk TT (k > 1) (1)

Take another sequence Si, where .1−= ii TS Then (1)
can be written in a new form

.1 2
22 1−=− kk SS (k > 1) (2)

From the discussion above, it can be seen that the
scale of cover sets is exponential to that of nodes, since for
sequence)2(,2 2

224 1 >== − kRRR kk
, or)2(2

22
2

≥=
−

kR
k

k
, the

value of each item, compared with its subscription, is the
level of power of 2, and for each meaningful i we even
have Ri < Si. In a word, the scale of cover sets is, un-
fortunately, an exponential blow-up of that of nodes.

To this algorithm, some improvement can be made to
better its performance. For example, it may use a depth-
first search with certain strategy to generate the cover set
with the least weight first, then increase the weight of
cover sets gradually and cut out any cover sets exceeding
the weight limit and their possible descendants. This
pruning method may reduce the cost for best solution to a
minimal degree, but it cannot get off the trap of the)2(nO
complexity.

Based on the result above, the best solution algorithm
is not practical for applications of information issuance.
So we need a trade-off for a better balance between the
quality of the solution and the time cost.

function NEXT_COVER_SET(btree) returns next
cover set of btree
inputs: btree, the binary tree
if btree.root.flag = 0 then

btree.root.flag ← 1
return {btree.root}

elseif btree.root.leftchild = NULL then
return NULL

else
if btree.root.leftcoverset = NULL then

btree.root.leftcoverset←NEXT_COVER_
SET (btree.root.leftchildtree)

end if
btree.root.rightcoverset ← NEXT_COVER_

SET (btree.root.rightchildtree)
if btree.root.rightcoverset = NULL then

btree.root.leftcoverset ←
NEXT_COVER_SET (btree.root.leftchildtree)
if btree.root.leftcoverset = NULL then

btree.root.flag ← 0
else

btree.root.rightcoverset ← NEXT_
COVER_SET (btree.root.rightchildtree)

end if
end if

end if
return btree.root.rightcoverset ∪

btree.root.rightcoverset
end NEXT_COVER_SET

 2

2 2

 1 2 2 2

 2 2 2 2 1 1 1 1

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

103

3. An Algorithm for Second-best Solutions

3.1 The Algorithm Based on Greedy Principle

Last section presents the algorithm for the best solu-
tion to the model, and its impracticality. For more feasible
complexity we cannot search the whole space of cover sets,
but should restrict the range of searching. The aim of this
section is to propose an algorithm for second-best solu-
tions to the problem, which will result in cover sets that
are “not bad” and acceptable time cost.

There is no formal definition for what is a second-
best solution; hence they can be achieved in many differ-
ent ways. Here the greedy principle is adopted to conduct
a local search for a possible solution to the model. It re-
stricts the search within two adjacent levels of the model,
namely, for given weight limit w and hierarchical model T,
if ∑ ∑ −

−=
−
−=

+

+

+

≤≤ iiii
www

k

k

k

k
22

12
22
12

2

1

1
 holds, say, the k-th level

of T has a sum of weight no more than w and the (k+1)-th
level has a weight sum no less than w, then the search will
base on all the nodes on the k-th level, and some of them
will be replaced with nodes on the (k+1)-th level for a
better result.

The design of the algorithm is directly from the idea
above, and is exhibited as follows.

Figure 3: Algorithm for Second-best Solution

The procedure of this algorithm can be divided into
two steps. The first is to find a proper level as the search
base, and the second is to replace some nodes on the base
level with their two children. In the second step another
greedy strategy is used, that the weight sums of children
pairs on the level to be searched are calculated and sorted
in an ascendant order, and pairs with less weight sums are
earlier replaced. It also can be seen that the solutions are
restricted in the two adjacent levels.

3.2 Analysis of the Algorithm

The greedy idea restricts the search within the nodes,
not the cover sets, of the model, and each node is
considered once at most. So the complexity of the algo-
rithm is highly improved, that is,)log(nnO (where n is the
number of nodes). This is feasible enough for most appli-
cations.

However, the solution got in this way is generally a
possible solution. If take the number of nodes in the cover
set as the only standard to judge the quality of a solution,
then sometimes this solution can have a considerable gap
from the best one, which is because of the imbalance of
the weights on the left and the right trees.

Below is a somewhat extreme example.
Example 1. Suppose the nodes of a hierarchical model
have their weights listed as w0=2;w1=2;w2=2;w3=2;w4=2;
w5=1;w6=2;w7=2;w8=2;w9=2;w10=2;w11=1;w12=1;w13=1;
w14=1, and the weight limit is 6. Then the best cover set is

},,,,{ 141312111 nnnnnS = , shown in Figure 2. However, the
second-best solution algorithm will find a “worse” result

},,{ 432
' nnnS = , shown in the figure below.

Figure 4: Second-best solution of the same problem

Now that this algorithm sometimes generates solu-
tions that are not that good, then why should this algo-
rithm be introduced? The most significant reason is that its
complexity perfectly fits the needs of information issuance,
especially in the network environment –– this algorithm
will not take the place of transmission speed as the bottle-
neck. Meanwhile, the nodes that this algorithm returns are
placed on the two adjacent levels, so they are similar in
abstraction degree as to the information issuance, and are
more convenient for design and display of information
format. At last, the solutions given by this algorithm are

 2

4 2

 1 2 2 2

 2 2 2 2 1 1 1 1

function SEEK(btree, w) returns the “max” cover set
of btree
inputs: btree, the binary tree

w, the weight limit
i← 0
while i≤ n and weight≤w

weight← the total weight of the nodes on floori
if i < 0 then result←NULL
elseif i=N+1 then result← set of leaf nodes
elseif Ni ≤≤0 then

SORT(the sum of node couples on floor(i-1))
0←j

while 22 −≤ ij
if weight≤w after replacing the nodej on the

floor(i-1) with its children then
Replace(j-th node, its children)

end if
1+← jj

end while
end if

end while
return result

end SEEK

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

104

mostly acceptable when the weight limit is not too small
and the model is quite balanced, and below is a positive
example, where the second-best solution is equal to the
best one (the weight limit of which is 7).

Figure 5: A best and second-best solution to another problem

Therefore, the algorithm for the second-best solution
is still valuable for us to research on, and its implementa-
tion can be more suitable for practical use.

3.3 A Comparison between the Two Algorithms

We have made experiments over many different sorts
of information and done statistics with them. Of the entire
hierarchical model constructed, the total nodes count up to
3187, where best cover sets take up 1029, and second-best
cover sets contain 954 of them; the ratio of the two types
of solutions is about 1.08:1. It is found that, on a very
large hierarchical model (and this is the only one), the best
solution has ten more nodes than the second-best one; in
other situations the difference of nodes gained by the two
algorithms has not exceeded five, and many times there
are only one node in difference.

With a little gap in nodes quantity, the two algorithms
have distinct time performance. For all the 3187 nodes, the
best solution algorithm takes 172.774 seconds in total and
it is just 0.516 seconds for the second-best one. The
former is over 300 times more than the latter one.

Now it is quite clear that the second-best solution
algorithm is much better than the best solution one, taking
both the service quality and the service time into consider-
ation. As a matter of fact, in network environment, time is
a precious resource. An HTTP server usually has a milli-
second level time limit for the response of a webpage. So
it would be better to utilize the algorithm second-best
solutions in practical use.

4. Conclusion

In this paper the auto-adjusting of information issu-
ance is briefly discussed, and a corresponding hierarchical
model has been constructed for it. Upon this model, the
problem is turned formal, and a best solution algorithm is
found and analyzed. Meanwhile, another algorithm for
second-best solutions is also designed, and compared with

the former one, from perspectives of solution quality and
time complexity. In the end, a conclusion is drawn that the
second-best solution algorithm is more suitable in practical
use.

References
[1] Aho, A., Hopcroft, J. and Ullman, J.: Data Structures and

Algorithms, 1st ed. Pearson Education, 2003.
[2] Cormen, T., Leiserson, C. and et al: Introduction to Algo-

rithms, 2nd ed. Beijing: Higher Education Press, May 2002.
[3] Kamimura, R.: Mediated and multi-level information pro-

cessing, IJCNN 99, Jul 1999, vol. 2: 1397 – 1402.
[4] Knuth, D. E.: The Art of Computer Programming, Vol 3,

Sorting and Searching. Addison-Wesley Co. Ltd. 1998.
[5] Martin, P. and Bateman, A.: Multi-level data transmission

over mobile radio channels, IEE Colloquium on Multi-Level
Modulation Techniques and Point-to-Point and Mobile
Radio, Mar 1990.

Chenguang Luo received his both
degrees of Bachelor of Science and
Bachelor of Management in Peking
University in 2005, and is now working in
the PKU-TCL Laboratory for his Master
of Engineering. His interests include
computation and complexity theory,
formal models and their respective
algorithms.

Rong Pan received his degree of
Bachelor of Engineering in Wuhan
University of Science and Technology in
2006. His focus is mainly on data
structures and algorithms, and their
applications in practice. During his
undergraduate career he had spent much
time on the independence of information
issuance.

Shan Wang received her degree of
Bachelor of Arts in Hunan University of
Science and Technology in 2006. As a
student major in arts, her main focus is on
the morphology of languages. Meanwhile
she has a special interest in information
processing and interchange, its formal
models and related topics.

 2

2 2

 1 2 1 2

 1 1 1 2 1 1 2 1

