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Summary 
Two-dimensional rectangle packing problem is the problem 
of packing a series of rectangles into a larger container with 
maximum area usage of the container. This problem involves 
many industrial applications, such as shipping, timber 
cutting, very large scale integration (VLSI) design, etc. It 
belongs to a subset of classical packing problems and has 
been shown to be NP hard. For solving this problem, many 
algorithms such as genetic algorithm, simulated annealing 
and other heuristic algorithms are presented. In this paper, a 
novel quasi-human heuristic algorithm is proposed according 
to the experience and wisdom of human being. 21 
rectangle-packing test instances are tested by the produced 
algorithm, 16 instances of them having achieved optimum 
solutions within reasonable runtime. The experiment results 
demonstrate that the produced algorithm is rather efficient 
for solving two-dimensional rectangle packing problem. 
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1. Introduction 

Two-dimensional rectangle packing problem is the 
problem of packing a series of rectangles into a 
larger container with maximum area usage of the 
container. This problem involves many industrial 
applications, such as shipping, timber cutting, very 
large scale integration (VLSI) design, etc. It belongs 
to a subset of classical packing problems and has 
been shown to be NP hard [1]. For solving this 
problem, various algorithms based on different 
strategies have been suggested. In general, these 
algorithms can be classified into two major 
categories: non-deterministic algorithms and 
deterministic algorithms.  

In 2001, Hopper and Turton gave an empirical 
investigation of meta-heuristic and heuristic 
algorithms of the orthogonal packing problem of 
rectangles[2]. Recently, some robust heuristic 
algorithms were presented[3, 4]. And some literatures 
combine genetic algorithm or simulated annealing 
with deterministic method and obtain hybrid 
algorithm[5, 6]. In addition, some people formalize 
the experience and wisdom of human being and 
obtain the quasi-human heuristic algorithm[7].  

Inspired by the above approaches, a novel 
quasi-human heuristic algorithm for 
two-dimensional rectangle packing problem is 
proposed according to the experience and wisdom 
of human being. The objective is to maximize the 
area usage of the container. The key point of this 
algorithm is that the rectangle packed into the 
container always occupies a corner, even a cave, 
where possible. In this way, the rectangles will be 
close to each other wisely, and the wasted space is 
decreased. Compared with those in literatures, the 
results from our method are much improved. For 21 
rectangle-packing test instances taken from 
reference [2], 16 of them are achieved optimum 
solutions by our method, 2 instances achieved 
optimum solutions by Heuristic1[3], and 3 instances 
achieved optimum solutions by HH[4]. Experiment 
results show that our algorithm is rather efficient for 
solving two-dimensional rectangle packing 
problem. 
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2. Problem description and mathematical 

formulation 

An empty container C0 is given of width w0 and 
height h0. And there is a series of rectangles Ri of 
width wi and height hi (i=1, 2,…, n). The objective 
is to maximize the area usage of the container. The 
constraints for packing rectangles are: 

1. Each edge of a rectangle must be parallel to an 
edge of the container. 

2. There is no overlapping for any two rectangles, 
i.e., the overlapping area is zero. 

3. Description of our approach 

3.1. Main idea 

If some rectangles have been packed into the 
container without overlapping, the question is 
which one is the best candidate for the remainder, 
and which position is the best one to be filled? An 
ancient Chinese proverb “Golden corners, silvery 
sides, and strawy voids” can be used to answer this 
question relevantly. This proverb means the corner 
inside the container is the best place to be filled, 
then the boundary line of the empty space, and the 
void space is the worst. And more, if the rectangle 
not only occupies a corner, but also touches some 
other rectangles, the action for packing this 
rectangle is perfect. We may call the corresponding 
packing action as cave-occupying action. So, we 
can develop foresaid proverb into “Golden corners, 
silvery sides, strawy voids, and highly valuable 
diamond cave”. Thus, the following packing rule is 
natural: The rectangle to be packed into the 
container always occupies a corner, and the caving 
degree of the packing action should be as large as 
possible. So, the rectangles are close to each other 
wisely, and the area usage of the container improves 
consequently.  
 
 
 
 

3.2. Fundamental conceptions 

(1) Corner-occupying action (COA) 

A packing action is called a corner-occupying 
action (COA), if the rectangle to be packed touches 
two previously packed rectangles including the 
container, and the touching lengths are longer than 
zero. The rectangle to be packed occupies a corner 
formed by those two previously packed rectangles. 
For example, in figure 1, the shadowy rectangles 
have been packed, and the rectangle “1” is outside 
the container. The packing action is a COA, if 
rectangle “1” is situated at place A, B, C or D; it is 
not a COA if situated at place E or F. 

 
Figure 1 Corner-occupying action 

In particular, a COA is called a cave-occupying 
action, if the rectangle related to this COA not only 
occupies a corner, but also touches some other 
previously packed rectangles including the 
container. For example, in figure 1, if rectangle “1” 
is situated at place A, it occupies the corner formed 
by rectangles a and b. Furthermore, it touches 
rectangle c. Thus, rectangle “1” occupies a cave 
formed by rectangles a, b and c, and this COA for 
packing rectangle “1” is a cave-occupying action. 
 

(2) Caving degree of COA 

As shown in figure 2, if a rectangle Ri is packed 
into the container according to a COA, let the 
Manhattan distance between rectangle Ri and it’s 
nearest rectangles (except the rectangles a and b 
that form this corner) be dmin, the caving degree 
CCOA of the corresponding COA can be defined as 
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following: 

min1COA
i i

dC
w h

= −
⋅

                 (1) 

Where wi and hi is the width and height of Ri 

respectively. 

Actually, the caving degree reflects the nearness 

between the rectangle to be packed and the 

previously packed rectangles (except the rectangles 

that form this corner). It is equal to 1 when the 

corresponding rectangle occupies a cave formed by 

three or more previously packed rectangles, and it is 

less than 1 when just occupies a corner formed by 

two previously packed rectangles. In the packing 

process, we always select the COA with the largest 

caving degree, and pack the corresponding 

rectangle into the container at the corresponding 

position and orientation. 

 
Figure 2 Caving degree of COA 

(3) Edge degree of COA 

For a given COA, the related rectangle is R, the 
number of edges that overlap with the rectangle R is 
defined as edge degree of the corresponding COA. 
For example, as shown in figure 3, the shadowy 
rectangles have been packed, if rectangle “1” is 
situated at place A, B, C, the edge degree of the 
corresponding COA is 3, 2, 4, respectively. 

 
Figure 3 Edge degree of COA 

(4) Precedence of point 

Let points P1 (x1, y1) and P2 (x2, y2) be two points 
in the plane rectangular coordinates o-xy, P1 has 
precedence over P2 if x1< x2, or if x1= x2 and y1< y2. 

3.3. Selecting rule for COA 

In order to pack a rectangle at a “good” position and 
orientation, we construct a series of rules as follows. 

Main rule: select the COA with the largest caving 
degree. 

Tiebreaker 1: select the COA with the largest 
edge degree. 

Tiebreaker 2: select the COA with the highest 
precedence of the bottom left of the corresponding 
rectangle. 

Tiebreaker 3: select the COA with the 
corresponding rectangle packed horizontally, if 
both the horizontal and vertical packings are 
feasible. 

Tiebreaker 4: select the COA with the smallest 
index of the corresponding rectangle. 

3.4. Sketch of the algorithm 

Under the current configuration, we enumerate all 
COAs and calculate the caving degree and edge 
degree for each of them. Then select a COA 
according to the selecting rule (see section 3.3) and 
pack the corresponding rectangle into the container 
at the corresponding position and orientation. 
Repeat this process until no rectangle remains 
outside the container or, none of the remaining 
rectangles can be packed in.  

Actually, above text describes a pure greedy 
packing process. In order to obtain higher area 
usage of the container, we introduce backtracking 
process. First, enumerate all COAs by 
pseudo-packing each remaining rectangle. By 
“pseudo-pack” we mean the rectangle is 
temporarily packed and will be removed from the 
container in the future. Second, for each COA, 
pseudo-pack the rectangle according to the COA, 
and calculate a score for this COA by calling greedy 
packing process. This score represents the quality of 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 
 
118

the COA, the higher the score is, the higher the 
quality of COA is. Finally, select the COA with the 
highest score and pack the corresponding rectangle 
according to the selected COA, if there are multiple 
COAs with the highest score, then use the selecting 
rule (see section 3.3) to break tie. Repeat this 
process until no rectangle remains outside the 
container or, none of the remaining rectangles can 
be packed in.  

4. Implementations and Experiments 

The algorithm proposed in this paper is 
implemented by C#.net programming language 
running on an IBM portable PC with 2.0GHz 
processor and 256MB memory. The performance of 
the algorithm has been tested with 21 
rectangle-packing test instances taken from Hopper 
and Turton [2].  

We compare our algorithm with some most 
advanced algorithms, Heuristic1[3] and HH[4]. 
Algorithm Heuristic1 and HH are not implemented 
in this paper, so the results are directly taken from 
references [3] and [4]. Heuristic1 is run on a SUN 
Sparc20/71 with a 71MHz SuperSparc CPU and 
64M RAM; HH is run on a Dell GX260 with a 
2.4GHz CPU; and our algorithm is run on an IBM 
portable PC with a 2.0GHz processor and 256MB 

memory. As an example, the layouts of instances 3, 
6, 9, 12, 15 and 17 achieved by our algorithm are 
shown in figure 4. In figure 4, each layout is the 
perfect layout, that is, all rectangles are packed into 
the container, and there is no dead space for the 
container. 

For 21 rectangle-packing instances provided by 
Hopper and Turton[2]. The area usage of the 
container of each instance is obtained by our 
algorithm. For 21 instances, 16 of them having 
achieved optimum solutions, i.e., all rectangles are 
packed into the container without overlapping, the 
area usage of the container is 100%, and % of 
unpacked area is 0%, where % of unpacked area is 
defined by: 

% of unpacked area =100 (the total area of 
unpacked rectangles / container area)         (2) 

3 and 2 instances achieved optimum solutions by 
HH and heuristic1, respectively. Table 1 shows the 
results of 21 instances between heuristic1, HH and 
our method. From table 1, we can see that our 
algorithm is rather efficient for solving 
two-dimensional rectangle packing problem. 
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Instance 3, # of rectangles: 16
Container dimensions: 20x20

Instance 6, # of rectangles: 25
Container dimensions: 40x15

Instance 9, # of rectangles: 28
Container dimensions: 60x30

Instance 12, # of rectangles: 49
Container dimensions: 60x60

Instance 15, # of rectangles: 73
Container dimensions: 60x90

Instance 17, # of rectangles: 97
Container dimensions: 80x120  

Figure 4  The packing results of instance 3, 6, 9, 12, 15 and 17 

Table 1. Computational Experiments on Heuristic1[3], HH[4] and our algorithm 

Our algorithm Heuristic1 HH 
Instance # of 

rectangles 

Container 
dimensions 

(wxh) 
% of 

unpacked area
Runtime

(sec) 
% of 

unpacked area
Runtime

(sec) 
% of 

unpacked area 
Runtime

(sec) 

1 16 20 x 20 0 0.04 2 1.48 2 0.00 
2 17 20 x 20 0 0.59 2 2.42 3.5 0.00 
3 16 20 x 20 0 0.03 2.5 2.63 0 0.00 
4 25 40 x 15 0 0.12 0.67 13.35 0.67 0.05 
5 25 40 x 15 0 0.16 0 10.88 0 0.05 
6 25 40 x 15 0 3.01 0 7.92 0 0.00 
7 28 60 x 30 0 2.43 0.67 23.72 0.67 0.05 
8 29 60 x 30 0 42.83 0.83 34.02 2.44 0.05 
9 28 60 x 30 0 3.09 0.78 30.97 1.56 0.05 

10 49 60 x 60 0.22 142.56 0.97 438.18 1.36 0.44 
11 49 60 x 60 0 195.95 0.22 354.47 0.78 0.44 
12 49 60 x 60 0 40.72 No report No report 0.44 0.33 
13 73 60 x 90 0 16.49 0.3 1417.52 0.44 1.54 
14 73 60 x 90 0 17.18 0.04 1507.52 0.44 1.81 
15 73 60 x 90 0 289.074 0.83 1466.15 0.37 2.25 
16 97 80 x 120 0 1409.86 0.25 7005.73 0.66 5.16 
17 97 80 x 120 0 476.47 3.74 5537.88 0.26 5.33 
18 97 80 x 120 0.13 1748.53 0.54 5604.70 0.5 5.60 
19 196 160 x 240 0.10 3745.91 No report No report 1.25 94.62 
20 197 160 x 240 0.08 3158.71 No report No report 0.55 87.25 
21 196 160 x 240 0.13 3712.34 No report No report 0.69 78.02 
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5. Conclusion 

In this paper, a novel quasi-human heuristic 
algorithm for two-dimensional rectangle packing 
problem is proposed. High area usage of the 
container can be obtained by this algorithm within 
reasonable runtime. 16 of 21 test instances taken 
from Hopper and Turton[2] are achieved optimum 
solutions. The experiment results demonstrate that 
the algorithm proposed in this paper is rather 
efficient for solving two-dimensional rectangle 
packing problem.  
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