
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

115

A Novel Quasi-human Heuristic Algorithm for
Two-dimensional Rectangle Packing Problem

Duanbing Chen1, Wenqi Huang1, 2

1

1 College of Computer Science, Huazhong University of Science and Technology, Wuhan 430074, China
2 Corresponding author

Summary
Two-dimensional rectangle packing problem is the problem
of packing a series of rectangles into a larger container with
maximum area usage of the container. This problem involves
many industrial applications, such as shipping, timber
cutting, very large scale integration (VLSI) design, etc. It
belongs to a subset of classical packing problems and has
been shown to be NP hard. For solving this problem, many
algorithms such as genetic algorithm, simulated annealing
and other heuristic algorithms are presented. In this paper, a
novel quasi-human heuristic algorithm is proposed according
to the experience and wisdom of human being. 21
rectangle-packing test instances are tested by the produced
algorithm, 16 instances of them having achieved optimum
solutions within reasonable runtime. The experiment results
demonstrate that the produced algorithm is rather efficient
for solving two-dimensional rectangle packing problem.

Key words:
Two-dimensional rectangle packing; Quasi-human heuristic;
Corner-occupying action; Caving degree

1. Introduction

Two-dimensional rectangle packing problem is the
problem of packing a series of rectangles into a
larger container with maximum area usage of the
container. This problem involves many industrial
applications, such as shipping, timber cutting, very
large scale integration (VLSI) design, etc. It belongs
to a subset of classical packing problems and has
been shown to be NP hard [1]. For solving this
problem, various algorithms based on different
strategies have been suggested. In general, these
algorithms can be classified into two major
categories: non-deterministic algorithms and
deterministic algorithms.

In 2001, Hopper and Turton gave an empirical
investigation of meta-heuristic and heuristic
algorithms of the orthogonal packing problem of
rectangles[2]. Recently, some robust heuristic
algorithms were presented[3, 4]. And some literatures
combine genetic algorithm or simulated annealing
with deterministic method and obtain hybrid
algorithm[5, 6]. In addition, some people formalize
the experience and wisdom of human being and
obtain the quasi-human heuristic algorithm[7].

Inspired by the above approaches, a novel
quasi-human heuristic algorithm for
two-dimensional rectangle packing problem is
proposed according to the experience and wisdom
of human being. The objective is to maximize the
area usage of the container. The key point of this
algorithm is that the rectangle packed into the
container always occupies a corner, even a cave,
where possible. In this way, the rectangles will be
close to each other wisely, and the wasted space is
decreased. Compared with those in literatures, the
results from our method are much improved. For 21
rectangle-packing test instances taken from
reference [2], 16 of them are achieved optimum
solutions by our method, 2 instances achieved
optimum solutions by Heuristic1[3], and 3 instances
achieved optimum solutions by HH[4]. Experiment
results show that our algorithm is rather efficient for
solving two-dimensional rectangle packing
problem.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

116

2. Problem description and mathematical

formulation

An empty container C0 is given of width w0 and
height h0. And there is a series of rectangles Ri of
width wi and height hi (i=1, 2,…, n). The objective
is to maximize the area usage of the container. The
constraints for packing rectangles are:

1. Each edge of a rectangle must be parallel to an
edge of the container.

2. There is no overlapping for any two rectangles,
i.e., the overlapping area is zero.

3. Description of our approach

3.1. Main idea

If some rectangles have been packed into the
container without overlapping, the question is
which one is the best candidate for the remainder,
and which position is the best one to be filled? An
ancient Chinese proverb “Golden corners, silvery
sides, and strawy voids” can be used to answer this
question relevantly. This proverb means the corner
inside the container is the best place to be filled,
then the boundary line of the empty space, and the
void space is the worst. And more, if the rectangle
not only occupies a corner, but also touches some
other rectangles, the action for packing this
rectangle is perfect. We may call the corresponding
packing action as cave-occupying action. So, we
can develop foresaid proverb into “Golden corners,
silvery sides, strawy voids, and highly valuable
diamond cave”. Thus, the following packing rule is
natural: The rectangle to be packed into the
container always occupies a corner, and the caving
degree of the packing action should be as large as
possible. So, the rectangles are close to each other
wisely, and the area usage of the container improves
consequently.

3.2. Fundamental conceptions

(1) Corner-occupying action (COA)

A packing action is called a corner-occupying
action (COA), if the rectangle to be packed touches
two previously packed rectangles including the
container, and the touching lengths are longer than
zero. The rectangle to be packed occupies a corner
formed by those two previously packed rectangles.
For example, in figure 1, the shadowy rectangles
have been packed, and the rectangle “1” is outside
the container. The packing action is a COA, if
rectangle “1” is situated at place A, B, C or D; it is
not a COA if situated at place E or F.

Figure 1 Corner-occupying action

In particular, a COA is called a cave-occupying
action, if the rectangle related to this COA not only
occupies a corner, but also touches some other
previously packed rectangles including the
container. For example, in figure 1, if rectangle “1”
is situated at place A, it occupies the corner formed
by rectangles a and b. Furthermore, it touches
rectangle c. Thus, rectangle “1” occupies a cave
formed by rectangles a, b and c, and this COA for
packing rectangle “1” is a cave-occupying action.

(2) Caving degree of COA

As shown in figure 2, if a rectangle Ri is packed
into the container according to a COA, let the
Manhattan distance between rectangle Ri and it’s
nearest rectangles (except the rectangles a and b
that form this corner) be dmin, the caving degree
CCOA of the corresponding COA can be defined as

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

117

following:

min1COA
i i

dC
w h

= −
⋅

 (1)

Where wi and hi is the width and height of Ri

respectively.

Actually, the caving degree reflects the nearness

between the rectangle to be packed and the

previously packed rectangles (except the rectangles

that form this corner). It is equal to 1 when the

corresponding rectangle occupies a cave formed by

three or more previously packed rectangles, and it is

less than 1 when just occupies a corner formed by

two previously packed rectangles. In the packing

process, we always select the COA with the largest

caving degree, and pack the corresponding

rectangle into the container at the corresponding

position and orientation.

Figure 2 Caving degree of COA

(3) Edge degree of COA

For a given COA, the related rectangle is R, the
number of edges that overlap with the rectangle R is
defined as edge degree of the corresponding COA.
For example, as shown in figure 3, the shadowy
rectangles have been packed, if rectangle “1” is
situated at place A, B, C, the edge degree of the
corresponding COA is 3, 2, 4, respectively.

Figure 3 Edge degree of COA

(4) Precedence of point

Let points P1 (x1, y1) and P2 (x2, y2) be two points
in the plane rectangular coordinates o-xy, P1 has
precedence over P2 if x1< x2, or if x1= x2 and y1< y2.

3.3. Selecting rule for COA

In order to pack a rectangle at a “good” position and
orientation, we construct a series of rules as follows.

Main rule: select the COA with the largest caving
degree.

Tiebreaker 1: select the COA with the largest
edge degree.

Tiebreaker 2: select the COA with the highest
precedence of the bottom left of the corresponding
rectangle.

Tiebreaker 3: select the COA with the
corresponding rectangle packed horizontally, if
both the horizontal and vertical packings are
feasible.

Tiebreaker 4: select the COA with the smallest
index of the corresponding rectangle.

3.4. Sketch of the algorithm

Under the current configuration, we enumerate all
COAs and calculate the caving degree and edge
degree for each of them. Then select a COA
according to the selecting rule (see section 3.3) and
pack the corresponding rectangle into the container
at the corresponding position and orientation.
Repeat this process until no rectangle remains
outside the container or, none of the remaining
rectangles can be packed in.

Actually, above text describes a pure greedy
packing process. In order to obtain higher area
usage of the container, we introduce backtracking
process. First, enumerate all COAs by
pseudo-packing each remaining rectangle. By
“pseudo-pack” we mean the rectangle is
temporarily packed and will be removed from the
container in the future. Second, for each COA,
pseudo-pack the rectangle according to the COA,
and calculate a score for this COA by calling greedy
packing process. This score represents the quality of

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

118

the COA, the higher the score is, the higher the
quality of COA is. Finally, select the COA with the
highest score and pack the corresponding rectangle
according to the selected COA, if there are multiple
COAs with the highest score, then use the selecting
rule (see section 3.3) to break tie. Repeat this
process until no rectangle remains outside the
container or, none of the remaining rectangles can
be packed in.

4. Implementations and Experiments

The algorithm proposed in this paper is
implemented by C#.net programming language
running on an IBM portable PC with 2.0GHz
processor and 256MB memory. The performance of
the algorithm has been tested with 21
rectangle-packing test instances taken from Hopper
and Turton [2].

We compare our algorithm with some most
advanced algorithms, Heuristic1[3] and HH[4].
Algorithm Heuristic1 and HH are not implemented
in this paper, so the results are directly taken from
references [3] and [4]. Heuristic1 is run on a SUN
Sparc20/71 with a 71MHz SuperSparc CPU and
64M RAM; HH is run on a Dell GX260 with a
2.4GHz CPU; and our algorithm is run on an IBM
portable PC with a 2.0GHz processor and 256MB

memory. As an example, the layouts of instances 3,
6, 9, 12, 15 and 17 achieved by our algorithm are
shown in figure 4. In figure 4, each layout is the
perfect layout, that is, all rectangles are packed into
the container, and there is no dead space for the
container.

For 21 rectangle-packing instances provided by
Hopper and Turton[2]. The area usage of the
container of each instance is obtained by our
algorithm. For 21 instances, 16 of them having
achieved optimum solutions, i.e., all rectangles are
packed into the container without overlapping, the
area usage of the container is 100%, and % of
unpacked area is 0%, where % of unpacked area is
defined by:

% of unpacked area =100 (the total area of
unpacked rectangles / container area) (2)

3 and 2 instances achieved optimum solutions by
HH and heuristic1, respectively. Table 1 shows the
results of 21 instances between heuristic1, HH and
our method. From table 1, we can see that our
algorithm is rather efficient for solving
two-dimensional rectangle packing problem.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

119

Instance 3, # of rectangles: 16
Container dimensions: 20x20

Instance 6, # of rectangles: 25
Container dimensions: 40x15

Instance 9, # of rectangles: 28
Container dimensions: 60x30

Instance 12, # of rectangles: 49
Container dimensions: 60x60

Instance 15, # of rectangles: 73
Container dimensions: 60x90

Instance 17, # of rectangles: 97
Container dimensions: 80x120

Figure 4 The packing results of instance 3, 6, 9, 12, 15 and 17

Table 1. Computational Experiments on Heuristic1[3], HH[4] and our algorithm

Our algorithm Heuristic1 HH
Instance # of

rectangles

Container
dimensions

(wxh)
% of

unpacked area
Runtime

(sec)
% of

unpacked area
Runtime

(sec)
% of

unpacked area
Runtime

(sec)

1 16 20 x 20 0 0.04 2 1.48 2 0.00
2 17 20 x 20 0 0.59 2 2.42 3.5 0.00
3 16 20 x 20 0 0.03 2.5 2.63 0 0.00
4 25 40 x 15 0 0.12 0.67 13.35 0.67 0.05
5 25 40 x 15 0 0.16 0 10.88 0 0.05
6 25 40 x 15 0 3.01 0 7.92 0 0.00
7 28 60 x 30 0 2.43 0.67 23.72 0.67 0.05
8 29 60 x 30 0 42.83 0.83 34.02 2.44 0.05
9 28 60 x 30 0 3.09 0.78 30.97 1.56 0.05

10 49 60 x 60 0.22 142.56 0.97 438.18 1.36 0.44
11 49 60 x 60 0 195.95 0.22 354.47 0.78 0.44
12 49 60 x 60 0 40.72 No report No report 0.44 0.33
13 73 60 x 90 0 16.49 0.3 1417.52 0.44 1.54
14 73 60 x 90 0 17.18 0.04 1507.52 0.44 1.81
15 73 60 x 90 0 289.074 0.83 1466.15 0.37 2.25
16 97 80 x 120 0 1409.86 0.25 7005.73 0.66 5.16
17 97 80 x 120 0 476.47 3.74 5537.88 0.26 5.33
18 97 80 x 120 0.13 1748.53 0.54 5604.70 0.5 5.60
19 196 160 x 240 0.10 3745.91 No report No report 1.25 94.62
20 197 160 x 240 0.08 3158.71 No report No report 0.55 87.25
21 196 160 x 240 0.13 3712.34 No report No report 0.69 78.02

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

120

5. Conclusion

In this paper, a novel quasi-human heuristic
algorithm for two-dimensional rectangle packing
problem is proposed. High area usage of the
container can be obtained by this algorithm within
reasonable runtime. 16 of 21 test instances taken
from Hopper and Turton[2] are achieved optimum
solutions. The experiment results demonstrate that
the algorithm proposed in this paper is rather
efficient for solving two-dimensional rectangle
packing problem.

Acknowledgments

This work was partially supported by National
Natural Science Foundation of China under Grant
NO. 10471051 and by NKBRPC (2004CB318000).

References

[1] Leung J, Tam T, Wong C S, Young S, Chin F (1990).
Packing squares into square, Journal of Parallel and
Distributed Computing, 10: 271-275.

[2] Hopper E, Turton B (2001). An empirical investigation
of meta-heuristic and heuristic algorithm for a 2D
packing problem, European Journal of Operational
Research, 128: 34-57.

[3] Wu Y L, Huang W, Lau S, Wong C K, Young G H
(2002). An effective quasi-human based heuristic for
solving the rectangle packing problem, European
Journal of Operational Research, 141: 341-358.

[4] Zhang D, Deng A, Kang Y (2005). A hybrid heuristic
algorithm for the rectangular packing problem, Lecture
Notes in Computer Science, 3514: 783-791.

[5] Liu D, Teng H (1999). An improved BL-algorithm for
genetic algorithm of the orthogonal packing of
rectangles, European Journal of Operational Research,
112: 413-420.

[6] Leung T W, Chan C K, Troutt M D (2003).
Application of a mixed simulated annealing-genetic
algorithm heuristic for the two-dimensional orthogonal
packing problem, European Journal of Operational
Research, 145: 530-542.

[7] Huang W, Li Y, Akeb H, Li C M (2005). Greedy
algorithms for packing unequal circles into a
rectangular container, Journal of the Operational
Research Society, 56: 539-548.

[8]

Duanbing Chen is a PhD candidate of Computer
Science at Huazhong University of Science and
Technology, P.R. China. He received his BSc in
Mathematics in 1994 from Sichuan Normal College,
his MS in 1997 from Southwest Petroleum Institute.
His main area of research is in combinatorial
optimization. He has published some articles on this
topic in journals such as Computers and Operations
Research and Computer Science (in Chinese).

Wenqi Huang is a Professor of Computer Science
at Huazhong University of Science and Technology,
P.R. China. He received his BSc in Mathematics in
1964 from Peking University. From 1981 to 1982,
he worked as a visiting scholar at Mathematics
Department, Cornell University. He got the gold
prize of the Third International Competition for
Solving NP-Complete Problem SAT in 1996. His
research interests include P =? NP problem,
practical algorithm for solving NP-hard problems.
He has published numerous articles on this topic in
journals such as European Journal of Operational
Research, Journal of Operational Research Society,
Computers and Operations Research, Simulation
Modeling Practice and Theory, and Annals of
Operations Research.

