
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

121

FPGA Based Hardware Implementation of Image Filter
With Dynamic Reconfiguration Architecture

*B. Rajan and **S.Ravi

*Research Scholar, Dept. of ECE, Dr. M.G.R. University, Chennai-95.
**Professor and Head, Dept. of ECE, Dr. M.G.R. University, Chennai-95

ABSTRACT

Reconfigurable computing has been proposed for
image and signal processing applications with
various objectives, including high performance,
flexibility, specialization, and most recently,
adaptability. Reconfiguration is characterized by
how fast the reconfiguration can occur and how
many possible reconfigurations can be used and
this feature is referred to as dynamic
reconfiguration. For many image processing
systems [5], it is possible to exploit variations in
image signals to vary computation and memory
requirements. In this paper, based on noise levels
at a specific time instant, minimally sufficient
hardware resources are dynamically allocated to
meet the MDPP requirements of the application.
These architectures can be characterized via a set
of architectural parameters which can be
determined experimentally. In this work, the
analysis and hardware implementation of a
dynamic reconfigurable unit based image
filtering algorithm is described. This work is the
first operational implementation of the
reconfigurable architecture and its algorithm and
is targeted to a Xilinx 600K Spartan-IIE FPGA
to take advantage of computational specialization
and parallelism. Our work has the capability to
adapt the amount of computation performed and
the amount of storage used at both a fine-
timescale (ms) and coarse-timescale (s) level.
Experimental results show that the overall run-
time of the image filter implementation on a
Spartan-IIE FPGA, including bus overhead, is up
to 400 times faster than a software
implementation on a 2.8GHz Pentium processor.

Keywords: Reconfigurable computing, FPGA
implementation, Image processing.

1. INTRODUCTION

General-purpose image filters lacks the
flexibility and adaptability for un-modeled noise
types. The reconfiguration circuit based image
filtering algorithm is considered as a means to
enhance performance without compromising
image visual quality. The hardware resource
requirements can be altered in response to noise
conditions for a fixed MDPP. A significant
amount of noise demands a large number of
repeated reconfigurations, to achieve a MDPP
similar to that achieved for a less noisy image. In
this work, in implementing the VRC based
image filter, the dynamic reconfiguration
architecture is proposed by considering both the
reconfiguration options, fine-timescale and
coarse-timescale reconfiguration. Coarse-
timescale reconfiguration of the image filter is
performed in accordance to variations in noise
conditions over seconds. Reconfiguration at this
time scale minimizes the performance impact of
millisecond FPGA reconfiguration times.
Coarse-timescale reconfiguration is motivated by
changing noise characteristics from parameters
such as weather, distance, or camera battery-
power. These parameters result in a signal-to-
noise ratio (SNR) that changes relatively slow.
When more improved image quality is required,
a lower clock-speed can be used. When less
accuracy is required, a higher-performance
circuit is swapped in. If dynamic reconfiguration
was not allowed, the lower-performance circuit
would always need to be resident. Current FPGA
architectures [9] require reconfiguration times
measuring in milliseconds.

2. IMAGE CHARACTERIZATION

 In order to process an image it is
essential to identify its basis components. The
term image refers to a two dimensional light
intensity function [5], denoted by g(x, y), where
the value at spatial coordinates (x, y) gives the
intensity of the image at that coordinate. As light

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

122

is a form of energy, g(x, y) must be non-zero and
finite, i.e.

0 < g(x, y) < ∞
 The basic nature of g(x, y) may be
represented by two components namely: The
amount of light incident on the object being
viewed and the amount of light reflected by the
object. These two components are called the
illumination and reflectance components
respectively, and are denoted by i(x, y) and r(x,y),
so that,
 g(x, y) = i(x, y) x r(x, y) ---(1).
In (1) the nature of i(x, y) is determined by light
source and r(x, y) is determined by the
characteristics of the object

3. FPGA BASED IMAGE FILTER

The proposed filter considers spatial domain
approach and uses the overlapping window to
remove the noise in the image. The approach
chosen here is based on functional level
evolution whose architecture contains many
nonlinear functions and uses an evolutionary
algorithm to evolve the best configuration [9].
The digital image filter contains dynamic
reconfigurable circuit (DRC) together with
genetic unit. The corrupted image is given as
input to the reconfigurable circuit and the filtered
image is obtained. The filtered image is
compared with the original image and the fitness
is evaluated. The DRC processes nine 8-bit
inputs I0 – I8 and produces a single 8-bit output
and consists of a total of 25 PEs. Every pixel
value of the filtered image will be calculated
using a corresponding pixel and its eight
neighbors.

Figure 1 Block diagram of FPGA based image
filter using VRC

4. IMPLEMENTATION OF THE GA
PROCESSOR

 The Genetic Algorithm (GA) is a
powerful optimization algorithm inspired by
natural evolution [8]. The optimization is
generally performed by creating a population of
solutions. In GA, the offspring are produced by

standard genetic operators: reproduction,
crossover, and mutation. The GA
implementation configures the evolving design
by placing individuals in Random Access
Memory (RAM). In each generation, a selection
scheme is used to select the survivors to the next
generation according to their fitness values
defined by users. With this artificial evolution,
the solutions are gradually improved generation
by generation. The GA process starts with a
random population and iterates until the
termination condition is met i.e. the optimal
solution is found, or reaches the maximum
number of generations. Over the past years, GA
has been successfully applied to many hard
optimization problems. On the limitations side,
however, the GA process is time-consuming. For
many real world applications, GA can run for
days, even when it is executed on a high-
performance workstation and, the algorithm’s
memory requirement and computation count
pose a performance obstacle when configuration
bit size and its fitness function evaluation are
large.

Figure 2 GA Processor (GAP) along with the
dynamic reconfigurable block

The hardware implementation of GAP consists
of the basic modules; pseudo random number
generator, population memory, selection unit,
mutation unit, fitness evaluator and output buffer
as shown in figure 2. A Pseudo Random Number
Generator (PRNG), is used in two of the major
steps in GA. First, during initial population
creation, and next to select individuals and
mutate or copy. In this work, the PRNG for
FPGA implementation is done using a Linear
Feedback Shift Register (LFSR). A word size of
12 is chosen. It is important to choose a good
polynomial to ensure that the RNG can generate
a maximal sequence of 2n-1 random numbers,
while keeping the number of taps to a minimum
for efficiency. For a 12 bit word the polynomial
x12 (xnor) x6 (xnor) x4 (xnor) x1 is used. The

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

123

block diagram of the LFSR is shown in Figure 3.
The RNG is designed such that a random number
is generated in every clock. The 12th bit is taken
as the random bit. To create a 10 bit random
number, 10 single bit pseudo random number
generators are combined in parallel.

Figure 3 LFSR based 12-bit random number
generator

4.1 VHDL IMPLEMENTATION OF GAP

The VHDL coding is used to describe the
different modules of the GA processor. The 12-
bit random number is obtained in parallel vector
processors represented by signals s1 to s16. The
implementation result captured using the
Modelsim package is shown in figure 4.

Figure 4 Synthesized test-bench waveforms of
the GAP using Modelsim package

5. PERFORMANCE MEASURE AND
FITNESS FUNCTION

 Various performance measures and
image features exist to measure image visual
quality. The Peak Signal-to-Noise Ratio (PSNR)
and the Mean Difference Per Pixel (MDPP) are
the commonly used approaches. The fitness
function using the PSNR is given by

dB
MSE

55210log PSNR
2

10=

The fitness function using MDPP is given by

∑
=

=
N

1ji,

|j)filt(i, - j)orig(i, |
NxN

1 MDPP

where |orig(i,j) – filt(i,j)| is the absolute
difference between the original and filtered
images [5]. The MDPP fitness function is
computationally easier for hardware
implementation as compared to PSNR and hence,
in this work MDPP function is taken for the
fitness calculation.

6. ALGORITHM FOR IMAGE FILTERING

The algorithm for digital image filtering consists
of the following seven steps:

1. Read the corrupted and original
images and store in a buffer.

Input buffer consists of RAM. Original
and distorted images are read from the external
source and stored in the input buffer. During
runtime pixels are given as input to the dynamic
reconfigurable circuit (DRC) from the input
buffer.

2. Generate initial population of size

‘n’ with a chromosome length of L
each.

During initial population creation, a
250 bit chromosome is created using 10 bit
random number generator in 25 clock cycles.
Chromosomes are stored in the Block RAM of
FPGA. The initial population size is taken as 16.
Totally 16x25 clock cycles are needed for initial
population generation.

3. For each chromosome in the

population
a) Take 3x3 overlapping window
and input 9 pixel values to the VRC
to replace the center pixel. Repeat
for full image.
b) Calculate the Mean Difference
Per Pixel (MDPP) and Fitness.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

124

c) Retain the chromosome that has
maximum fitness.

Fitness function is used to select the best
chromosome. The original and DRC output
values are taken from the memory and the
absolute difference between them is computed
and the fitness is evaluated. The chromosome
which has highest fitness is selected as the best
chromosome and it is retained for subsequent
generations.

4. Select parent chromosomes
according to roulette wheel.

5. Apply crossover and mutation
operations on the selected
chromosomes to get Childs.

6. Replace the old population.
The chromosome which has highest fitness is
selected for mutation. Bit by bit mutation is
used for the creation of childs. Fifteen new childs
are created in every generation and stored in the
population memory.

7. Repeat from step 3 for N number of
generations

After the specified number of generations the
evolution is complete and the best chromosome
is stored in the memory. The fitness value is
obtained and stored in the output buffer.

7. FPGA BASED HARDWARE
IMPLEMENTATION

A more effective approach is to perform image
filtering using a FPGA based dynamic
reconfigurable circuit (DRC) architecture as this
does not require any apriori knowledge of noise
characteristics. In the FPGA based
implementation decoder computation and
memory requirements are minimized to support
faster performance. The algorithms discussed in
section 6 of this paper are implemented in real-
time on a high performance video processing
system designed using FPGA architecture.

 Figure 5 FPGA BASED Hardware Board

The developed hardware board is shown in
figure 5. The architecture is compactly designed
by exploiting the inherent parallelism built into
FPGA based solutions. The designed module has
the advantage that it is possible to execute video
processing algorithms many times faster than
that could be achieved if implemented using
conventional DSP processors. The onboard
FPGA acts as a video processing engine and
multiple coefficient and data memories provides
a general purpose platform to the user for
implementing all the video processing needs

7.1 FEATURES OF THE HARDWARE
MODULE

The hardware unit [7] consists of the following
onboard modules:
• 600K Spartan-IIE FPGA chip
• Data Memory of size 4M x 16 each of which

is arranged as 4 independent banks of 1M x
16 SRAMs

• Coefficient Memory of size 1M x 16
arranged as two independent banks of 512K
x !6 Flash ROMs

• One analog input channel that can sample
the input signal at the rate of 10 MSPS. The
converted digital output is of size 14-bit.

• Onboard 10 bit video DAC to provide
composite video signal RGB/YUV.

• Two channel full duplex serial port RS232
compatible interface

• 32-bit/33MHz PCI interface unit

The performance improvement achieved in this
work can be attributed to the parallelism
available within the FPGAs. Under reduced-
noise conditions, a less complex hardware design
can be swapped into the FPGA to achieve the
same accuracy. Due to the reduced complexity of
the algorithm, logic resource requirements are
reduced by more than a factor of two compared
to standard implementations. An empirical study
shows that hardware requirements for our image
filter grow at a rate substantially less than the
exponential growth exhibited by standard
algorithms.

8. EXPERIMENTAL RESULTS

8.1 IMAGE NOISE FILTERING

The original and distorted bitmap images are
stored in input buffer initially. Simulations were
performed using Gaussian noise distorted

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

125

bitmaps. Bitmap of IEEE test images were used
as the target images at different distortion levels
for testing the performance of the FPGA DRC
architecture. All results were compared with the
results obtained from a Gaussian filter. The
results are shown in Mean Difference, MSE in
dB and PSNR in dB for different images with
different levels of variance in Tables 1 to 3.

Figure 6a

 Figure 6b

Figure 6c

 Figure 6d
Fig. 6a Original Chemical Plant image
128x128, Fig. 6b Image Distorted by Gaussian
Noise of Mean 0 and Variance 0.006 Fig. 6c

Image Filtered by Gaussian Filter, Fig. 6d
Image Filtered by FPGA filter.

Figure 7a

Figure 7b

Figure 7c

Figure 7d

Fig. 7a Original Man image 128x128, Fig. 7b
Image Distorted by Gaussian Noise of Mean 0
and Variance 0.009, Fig. 7c Image Filtered by
Gaussian Filter, Fig. 7d Image Filtered by
FPGA filter.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

126

Figure 8a

Figure 8b

Figure 8c

 Figure 8d

Fig. 8a Original Moon image 128x128, Fig. 8b
Image Distorted by Gaussian Noise of Mean 0
and Variance 0.01,Fig. 8c Image Filtered by
Gaussian Filter, Fig. 8d Image Filtered by
FPGA filter.

Table 1 Comparison of Mean Difference Per

Pixel for various standard test images

Table 2 Comparison of Mean Square Error

(dB) for various standard test images

Image Variance Gaussian
Filter

FPGA
Filter

Chemical
Plant 0.006 22.44 21.08

Man 0.009 23.96 23.14
Moon 0.01 24.41 20.98

Table 3 Comparison of PSNR (dB) for various

standard test images

Image Variance Gaussian
Filter

FPGA
Filter

Chemical
Plant 0.006 25.69 27.05

Man 0.009 24.17 24.99
Moon 0.01 23.72 27.15

8.2 FPGA RESOURCE USAGE

The logic resources used by the dynamic
reconfigurable algorithm described are measured
in terms of configurable logic block (CLB) usage
[6]. The time generation report for each of the
individual operations of the FPGA based filter is
shown in Table-4. Also, Table-5 summarizes the
resource utilization of the algorithm on the
Spartan-IIE FPGA. From Table 5, it can be
observed that the implemented algorithm fits
within the device. The values in Table-4 and 5
were obtained with the FPGA run at the
maximum possible frequency. The measurement
of the total time taken to execute the algorithm
on the FPGA includes the 33 MHz PCI bus
access time. The total time was then divided by
the length of the sequence to obtain time per bit.
The results indicate that the FPGA based
implementation outperforms the processor based
implementation.

Image Variance Gaussian
Filter

FPGA
Filter

Chemical
Plant 0.006 173449 143152

Man 0.009 203399 180606
Moon 0.01 217764 143384

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

127

Table 4 FPGA Operations

FPGA Operation Time
Taken
(ms)

Image Storage .409
Random Number generator
(Population Generation)

.1

Individual output evaluation .409
Single population 6.55
New population generation .093

Raw FPGA decoding time per bit was obtained
from HDL simulations.

8.3 COMPARISON TO A PROCESSOR
IMPLEMENTATION

The performance of our Spartan-IIE FPGA based
implementation of the algorithm was compared
with a 2.8GHz Processor based implementation.
A ‘C’ version of the algorithm was compiled.
Subsequent simulation was performed and cycle
counts were obtained [4]. Table-5 shows the
performance comparison between the FPGA and
Processor based implementations of the image
filter. The comparison indicates that an FPGA
implementation achieves a speed-up of up to
400x versus the processor implementation
(without bus and API overheads). Table-5 shows
that bus and API overheads slow down decoding
by only a factor of 1.25 to 2.

Table 5 Performance comparison between
FPGA and 2.8GHz processor implementation

Processing time (sec)

CLBs

FF CPU

FPGA
(No Over

head)

FPGA
(PCI
Over
head)

FPGA
Clock
(MHz)

Speed
Up
%

563 286 2250 2.996 5.376 40.5 418.6
1200 551 4762 6.09 8.496 20.1 560.5
1213 732 5263 6.161 8.598 19.9 612.1
1226 766 5620 6.218 8.756 19.7 641.85
1290 799 5814 6.963 9.040 17.6 643.14
1301 832 6944 7.087 9.276 17.3 748.6

9. CONCLUSION

In this paper, a novel dynamically reconfigurable
circuit (DRC) based image filter was presented.
The DRC was implemented on the Spartan-IIE
FPGA board and important algorithm parameters
were determined. The FPGA based
implementation was applied to a PCI-based
system. The approach has shown significant

speed up versus software implementation on a
2.8GHz processor. Through hardware
implementation it was shown that the present
FPGA based image noise filter can be used to
effectively improve overall performance by at
least 25%. If noise corrupting the image
increases, a more accurate but slower running
DRC filter is swapped into the FPGA hardware
and similarly any decrease in noise introduces
the opposite effect.

10. REFERENCES

1. Murakawa, M., Higuchi, T., Iwata, M., Kajitani, I.,

Liu, W., and Salami, M. (1997). “Evolvable
Hardware at Functional Level” IEEE.

2. Xilinx Corporation (2001) Xilinx Virtex Data Sheet,
San Jose, CA. http://www.xilinx.com.

3. Iwata, M., Kajitani, I., Liu, Y., Kajihara, N.,
Higuchi, T. “Implementation of a Gate-Level
Evolvable Hardware Chip” IEEE.

4. J.Anderson and S.Mohan, “Sequential coding
algorithms: A survey and cost analysis”, IEEE
Trans . Commn., Vol. Com-32, Pp. 169-176, Feb
1984.

5. Anil k Jain, “Advanced Digital Image Processing”,
PHI India.

6. L.Shang, A.Kaviani and K.Bathala, “Dynamic in
Proc. ACM/SIDGA Int. Symp. Field
Programmable Gate Arrays, Monterey, CA, Feb
2002, Pp.157-164.

7. Xilinx Corporation, “ISE Manual”, San Jose,
CA,2001.

8. Goldberg, D. E. (1989). “Genetic Algorithms
in Search, Optimization & Machine Learning”.
Pearson Education, Inc.

9. Hollingworth, G., Smith, S. and Tyrell, A. (2000).
“Safe intrinsic evolution of Virtex devices”. In Proc.
of 2 nd NASA/DoD Workshop on Evolvable
Hardware, IEEE.

11. BIOGRAPHIES

1) Mr.B.Rajan is presently a
research scholar in ECE Dept.
Dr.M.G.R. University, Chennai.
His areas of interest include
image processing,
reconfigurable computing and
VHDL programming.

2) Dr.S.Ravi is presently the
professor and Head, Department
of ECE, Dr.M.G.R. University,
Chennai. He has published
more than ten papers in
international/national journals.

