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ABSTRACT 
 
Reconfigurable computing has been proposed for 
image and signal processing applications with 
various objectives, including high performance, 
flexibility, specialization, and most recently, 
adaptability. Reconfiguration is characterized by 
how fast the reconfiguration can occur and how 
many possible reconfigurations can be used and 
this feature is referred to as dynamic 
reconfiguration. For many image processing 
systems [5], it is possible to exploit variations in 
image signals to vary computation and memory 
requirements. In this paper, based on noise levels 
at a specific time instant, minimally sufficient 
hardware resources are dynamically allocated to 
meet the MDPP requirements of the application. 
These architectures can be characterized via a set 
of architectural parameters which can be 
determined experimentally. In this work, the 
analysis and hardware implementation of a 
dynamic reconfigurable unit based image 
filtering algorithm is described. This work is the 
first operational implementation of the 
reconfigurable architecture and its algorithm and 
is targeted to a Xilinx 600K Spartan-IIE FPGA 
to take advantage of computational specialization 
and parallelism. Our work has the capability to 
adapt the amount of computation performed and 
the amount of storage used at both a fine-
timescale (ms) and coarse-timescale (s) level. 
Experimental results show that the overall run-
time of the image filter implementation on a 
Spartan-IIE FPGA, including bus overhead, is up 
to 400 times faster than a software 
implementation on a 2.8GHz Pentium processor. 
 
Keywords: Reconfigurable computing, FPGA 
implementation, Image processing. 
 
 
 
 
 
 

1. INTRODUCTION 
 

General-purpose image filters lacks the 
flexibility and adaptability for un-modeled noise 
types. The reconfiguration circuit based image 
filtering algorithm is considered as a means to 
enhance performance without compromising 
image visual quality. The hardware resource 
requirements can be altered in response to noise 
conditions for a fixed MDPP. A significant 
amount of noise demands a large number of 
repeated reconfigurations, to achieve a MDPP 
similar to that achieved for a less noisy image. In 
this work, in implementing the VRC based 
image filter, the dynamic reconfiguration 
architecture is proposed by considering both the 
reconfiguration options, fine-timescale and 
coarse-timescale reconfiguration. Coarse-
timescale reconfiguration of the image filter is 
performed in accordance to variations in noise 
conditions over seconds. Reconfiguration at this 
time scale minimizes the performance impact of 
millisecond FPGA reconfiguration times. 
Coarse-timescale reconfiguration is motivated by 
changing noise characteristics from parameters 
such as weather, distance, or camera battery-
power. These parameters result in a signal-to-
noise ratio (SNR) that changes relatively slow.  
When more improved image quality is required, 
a lower clock-speed can be used. When less 
accuracy is required, a higher-performance 
circuit is swapped in. If dynamic reconfiguration 
was not allowed, the lower-performance circuit 
would always need to be resident. Current FPGA 
architectures [9] require reconfiguration times 
measuring in milliseconds. 
 
2. IMAGE CHARACTERIZATION 
 
 In order to process an image it is 
essential to identify its basis components. The 
term image refers to a two dimensional light 
intensity function [5], denoted by g(x, y), where 
the value at spatial coordinates (x, y) gives the 
intensity of the image at that coordinate. As light 
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is a form of energy, g(x, y) must be non-zero and 
finite, i.e. 

0 < g(x, y) < ∞ 
 The basic nature of g(x, y) may be 
represented by two components namely: The 
amount of light incident on the object being 
viewed and the amount of light reflected by the 
object. These two components are called the 
illumination and reflectance components 
respectively, and are denoted by i(x, y) and r(x,y), 
so that, 
             g(x, y) = i(x, y) x  r(x, y)                ---(1). 
In (1) the nature of i(x, y) is determined by light 
source and r(x, y) is determined by the 
characteristics of the object 
 
3. FPGA BASED IMAGE FILTER 
 
The proposed filter considers spatial domain 
approach and uses the overlapping window to 
remove the noise in the image. The approach 
chosen here is based on functional level 
evolution whose architecture contains many 
nonlinear functions and uses an evolutionary 
algorithm to evolve the best configuration [9]. 
The digital image filter contains dynamic 
reconfigurable circuit (DRC) together with 
genetic unit. The corrupted image is given as 
input to the reconfigurable circuit and the filtered 
image is obtained. The filtered image is 
compared with the original image and the fitness 
is evaluated. The DRC processes nine 8-bit 
inputs I0 – I8 and produces a single 8-bit output 
and consists of a total of 25 PEs. Every pixel 
value of the filtered image will be calculated 
using a corresponding pixel and its eight 
neighbors. 

 
Figure 1 Block diagram of FPGA based image 
filter using VRC 
 
4. IMPLEMENTATION OF THE GA 
PROCESSOR 
 
 The Genetic Algorithm (GA) is a 
powerful optimization algorithm inspired by 
natural evolution [8]. The optimization is 
generally performed by creating a population of 
solutions. In GA, the offspring are produced by 

standard genetic operators: reproduction, 
crossover, and mutation. The GA 
implementation configures the evolving design 
by placing individuals in Random Access 
Memory (RAM). In each generation, a selection 
scheme is used to select the survivors to the next 
generation according to their fitness values 
defined by users. With this artificial evolution, 
the solutions are gradually improved generation 
by generation. The GA process starts with a 
random population and iterates until the 
termination condition is met i.e. the optimal 
solution is found, or reaches the maximum 
number of generations. Over the past years, GA 
has been successfully applied to many hard 
optimization problems. On the limitations side, 
however, the GA process is time-consuming. For 
many real world applications, GA can run for 
days, even when it is executed on a high-
performance workstation and, the algorithm’s 
memory requirement and computation count 
pose a performance obstacle when configuration 
bit size and its fitness function evaluation are 
large. 
 

 
Figure 2 GA Processor (GAP) along with the 
dynamic reconfigurable block 
 
The hardware implementation of GAP consists 
of the basic modules; pseudo random number 
generator, population memory, selection unit, 
mutation unit, fitness evaluator and output buffer 
as shown in figure 2. A Pseudo Random Number 
Generator (PRNG), is used in two of the major 
steps in GA. First, during initial population 
creation, and next to select individuals and 
mutate or copy. In this work, the PRNG for 
FPGA implementation is done using a Linear 
Feedback Shift Register (LFSR). A word size of 
12 is chosen. It is important to choose a good 
polynomial to ensure that the RNG can generate 
a maximal sequence of 2n-1 random numbers, 
while keeping the number of taps to a minimum 
for efficiency. For a 12 bit word the polynomial 
x12 (xnor) x6 (xnor) x4 (xnor) x1 is used. The 
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block diagram of the LFSR is shown in Figure 3. 
The RNG is designed such that a random number 
is generated in every clock. The 12th bit is taken 
as the random bit. To create a 10 bit random 
number, 10 single bit pseudo random number 
generators are combined in parallel. 

 
Figure 3 LFSR based 12-bit random number 
generator 
 
4.1 VHDL IMPLEMENTATION OF GAP 
 
The VHDL coding is used to describe the 
different modules of the GA processor. The 12-
bit random number is obtained in parallel vector 
processors represented by signals s1 to s16. The 
implementation result captured using the 
Modelsim package is shown in figure 4. 
 

 
Figure 4 Synthesized test-bench waveforms of 
the GAP using Modelsim package 
 

 

 

5. PERFORMANCE MEASURE AND 
FITNESS FUNCTION 
 
              Various performance measures and 
image features exist to measure image visual 
quality. The Peak Signal-to-Noise Ratio (PSNR) 
and the Mean Difference Per Pixel (MDPP) are 
the commonly used approaches. The fitness 
function using the PSNR is given by  

dB   
MSE

55210log  PSNR
2

10=
 

The fitness function using MDPP is given by 

∑
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where |orig(i,j) – filt(i,j)| is the absolute 
difference between the original and filtered 
images [5]. The MDPP fitness function is 
computationally easier for hardware 
implementation as compared to PSNR and hence, 
in this work MDPP function is taken for the 
fitness calculation. 
 
6. ALGORITHM FOR IMAGE FILTERING 
 
The algorithm for digital image filtering consists 
of the following seven steps:  

1. Read the corrupted and original 
images and store in a buffer. 

Input buffer consists of RAM. Original 
and distorted images are read from the external 
source and stored in the input buffer. During 
runtime pixels are given as input to the dynamic 
reconfigurable circuit (DRC) from the input 
buffer.  

 
2. Generate initial population of size 

‘n’ with a chromosome length of L 
each. 

During initial population creation, a 
250 bit chromosome is created using 10 bit 
random number generator in 25 clock cycles. 
Chromosomes are stored in the Block RAM of 
FPGA. The initial population size is taken as 16. 
Totally 16x25 clock cycles are needed for initial 
population generation.   

 
3. For each chromosome in the 

population  
a) Take 3x3 overlapping window 
and input 9 pixel values to the VRC 
to replace the center pixel. Repeat 
for full image. 
b) Calculate the Mean Difference 
Per Pixel (MDPP) and Fitness.  
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c) Retain the chromosome that has 
maximum fitness. 

Fitness function is used to select the best 
chromosome. The original and DRC output 
values are taken from the memory and the 
absolute difference between them is computed 
and the fitness is evaluated. The chromosome 
which has highest fitness is selected as the best 
chromosome and it is retained for subsequent 
generations. 

4. Select parent chromosomes 
according to roulette wheel. 

5. Apply crossover and mutation 
operations on the selected 
chromosomes to get Childs. 

6. Replace the old population. 
The chromosome which has highest fitness is 
selected for mutation. Bit by bit mutation is 
used for the creation of childs. Fifteen new childs 
are created in every generation and stored in the 
population memory. 

7. Repeat from step 3 for N number of 
generations 

After the specified number of generations the 
evolution is complete and the best chromosome 
is stored in the memory. The fitness value is 
obtained and stored in the output buffer. 
 
7. FPGA BASED HARDWARE 
IMPLEMENTATION 
 
A more effective approach is to perform image 
filtering using a FPGA based dynamic 
reconfigurable circuit (DRC) architecture as this 
does not require any apriori knowledge of noise 
characteristics. In the FPGA based 
implementation decoder computation and 
memory requirements are minimized to support 
faster performance. The algorithms discussed in 
section 6 of this paper are implemented in real-
time on a high performance video processing 
system designed using FPGA architecture.  
 

 
    Figure 5 FPGA BASED Hardware Board 
 

The developed hardware board is shown in 
figure 5. The architecture is compactly designed 
by exploiting the inherent parallelism built into 
FPGA based solutions. The designed module has 
the advantage that it is possible to execute video 
processing algorithms many times faster than 
that could be achieved if implemented using 
conventional DSP processors. The onboard 
FPGA acts as a video processing engine and 
multiple coefficient and data memories provides 
a general purpose platform to the user for 
implementing all the video processing needs 
 
7.1 FEATURES OF THE HARDWARE 
MODULE 
 
The hardware unit [7] consists of the following 
onboard modules: 
• 600K Spartan-IIE FPGA chip 
• Data Memory of size 4M x 16 each of which 

is arranged as 4 independent banks of 1M x 
16 SRAMs 

• Coefficient Memory of size 1M x 16 
arranged as two independent banks of 512K 
x !6 Flash ROMs 

• One analog input channel that can sample 
the input signal at the rate of 10 MSPS. The 
converted digital output is of size 14-bit. 

• Onboard 10 bit video DAC to provide 
composite video signal RGB/YUV.  

• Two channel full duplex serial port RS232 
compatible interface 

• 32-bit/33MHz PCI interface unit 
 
The performance improvement achieved in this 
work can be attributed to the parallelism 
available within the FPGAs. Under reduced-
noise conditions, a less complex hardware design 
can be swapped into the FPGA to achieve the 
same accuracy. Due to the reduced complexity of 
the algorithm, logic resource requirements are 
reduced by more than a factor of two compared 
to standard implementations. An empirical study 
shows that hardware requirements for our image 
filter grow at a rate substantially less than the 
exponential growth exhibited by standard 
algorithms. 
 
8. EXPERIMENTAL RESULTS 
 
8.1 IMAGE NOISE FILTERING 
 
The original and distorted bitmap images are 
stored in input buffer initially. Simulations were 
performed using Gaussian noise distorted 
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bitmaps. Bitmap of IEEE test images were used 
as the target images at different distortion levels 
for testing the performance of the FPGA DRC 
architecture. All results were compared with the 
results obtained from a Gaussian filter. The 
results are shown in Mean Difference, MSE in 
dB and PSNR in dB for different images with 
different levels of variance in Tables 1 to 3. 

 
Figure 6a 

 
                            Figure 6b 

 
Figure 6c 

 
                             Figure 6d 
Fig. 6a Original Chemical Plant image 
128x128, Fig. 6b Image Distorted by Gaussian 
Noise of Mean 0 and Variance 0.006 Fig. 6c 

Image Filtered by Gaussian Filter, Fig. 6d 
Image Filtered by FPGA filter. 

 
Figure 7a 

 
Figure 7b 

 
Figure 7c 

 
Figure 7d 

Fig. 7a Original Man image 128x128, Fig. 7b 
Image Distorted by Gaussian Noise of Mean 0 
and Variance 0.009, Fig. 7c Image Filtered by 
Gaussian Filter, Fig. 7d Image Filtered by 
FPGA filter. 
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Figure 8a 

 

 
Figure 8b 

 

 
Figure 8c 

 

 
     Figure 8d 

Fig. 8a Original Moon image 128x128, Fig. 8b 
Image Distorted by Gaussian Noise of Mean 0 
and Variance 0.01,Fig. 8c Image Filtered by 
Gaussian Filter, Fig. 8d Image Filtered by 
FPGA filter. 
 

 
Table 1 Comparison of Mean Difference Per 

Pixel for various standard test images 

 
Table 2 Comparison of Mean Square Error 

(dB) for various standard test images 
 

Image Variance Gaussian 
Filter 

FPGA 
Filter 

Chemical 
Plant 0.006 22.44 21.08 

Man 0.009 23.96 23.14 
Moon 0.01 24.41 20.98 

 
Table 3 Comparison of PSNR (dB) for various 

standard test images 
 

Image Variance Gaussian 
Filter 

FPGA 
Filter 

Chemical 
Plant 0.006 25.69 27.05 

Man 0.009 24.17 24.99 
Moon 0.01 23.72 27.15 
 
 
8.2 FPGA RESOURCE USAGE 
 
The logic resources used by the dynamic 
reconfigurable algorithm described are measured 
in terms of configurable logic block (CLB) usage 
[6]. The time generation report for each of the 
individual operations of the FPGA based filter is 
shown in Table-4. Also, Table-5 summarizes the 
resource utilization of the algorithm on the 
Spartan-IIE FPGA. From Table 5, it can be 
observed that the implemented algorithm fits 
within the device. The values in Table-4 and 5 
were obtained with the FPGA run at the 
maximum possible frequency. The measurement 
of the total time taken to execute the algorithm 
on the FPGA includes the 33 MHz PCI bus 
access time. The total time was then divided by 
the length of the sequence to obtain time per bit. 
The results indicate that the FPGA based 
implementation outperforms the processor based 
implementation. 
 

 

Image Variance Gaussian 
Filter 

FPGA 
Filter 

Chemical 
Plant 0.006 173449 143152

Man 0.009 203399 180606
Moon 0.01 217764 143384
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Table 4 FPGA Operations 
 

FPGA Operation Time 
Taken 
(ms) 

Image Storage .409 
Random Number generator 
(Population Generation) 

.1 

Individual output evaluation  .409 
Single population  6.55 
New population generation .093 
 
Raw FPGA decoding time per bit was obtained 
from HDL simulations.  
 
8.3 COMPARISON TO A PROCESSOR 
IMPLEMENTATION 
 
The performance of our Spartan-IIE FPGA based 
implementation of the algorithm was compared 
with a 2.8GHz Processor based implementation. 
A ‘C’ version of the algorithm was compiled. 
Subsequent simulation was performed and cycle 
counts were obtained [4]. Table-5 shows the 
performance comparison between the FPGA and 
Processor based implementations of the image 
filter. The comparison indicates that an FPGA 
implementation achieves a speed-up of up to 
400x versus the processor implementation 
(without bus and API overheads). Table-5 shows 
that bus and API overheads slow down decoding 
by only a factor of 1.25 to 2. 
 

Table 5 Performance comparison between 
FPGA and 2.8GHz processor implementation 

 
Processing time (sec) 

 
CLBs 

 
FF CPU 

FPGA 
(No Over

head) 

FPGA 
(PCI 
Over 
head) 

FPGA 
Clock 
(MHz) 

Speed 
Up 
% 

563 286 2250 2.996 5.376 40.5 418.6 
1200 551 4762 6.09 8.496 20.1 560.5 
1213 732 5263 6.161 8.598 19.9 612.1 
1226 766 5620 6.218 8.756 19.7 641.85
1290 799 5814 6.963 9.040 17.6 643.14
1301 832 6944 7.087 9.276 17.3 748.6 

 
9. CONCLUSION 
 
In this paper, a novel dynamically reconfigurable 
circuit (DRC) based image filter was presented. 
The DRC was implemented on the Spartan-IIE 
FPGA board and important algorithm parameters 
were determined. The FPGA based 
implementation was applied to a PCI-based 
system. The approach has shown significant 

speed up versus software implementation on a 
2.8GHz processor. Through hardware 
implementation it was shown that the present 
FPGA based image noise filter can be used to 
effectively improve overall performance by at 
least 25%. If noise corrupting the image 
increases, a more accurate but slower running 
DRC filter is swapped into the FPGA hardware 
and similarly any decrease in noise introduces 
the opposite effect. 
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