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Summary

This article studies the existence, uniqueness and bounds
almost periodic solution for recurrent neural networks
with fractional distributed delays. We show that the zero
solution is asymptotically and globally exponentially
stable by using generalized Halanay inequality and
Laypaunov functional method.
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1. Introduction

It is well know that series of recurrent neural networks
model have been proposed by many authors. Periodicity of
the solutions involving almost-periodicity, pseudo-almost-
periodicity, o-periodicity and o-periodicity with zero
mean value arise in a wide variety off scientific and
engineering applications including control systems, signal
processing systems, dynamical systems ,identification
systems and neural networks systems[1-3].This article
deals with the neural network system of the form:

o t (t- z_)a—l
u(t)= xt)[u(t)+£W(r)dr]

BO )+ “;;: fue

+CO[f (Ut —att)) (1)
+;j(t;7)_l fUr—o(o)d]
+Q0),

0<afy<1J=[0T]

Subject to the initial condition u(0)= ug,with the following
assumption

(H1) A®:=[az(n)], B(t):=[by()] and C(t):=[c;(1)] are
continuous and nonnegative n X n connection matrices
with

A= sup,; A(t),g = sup,_, B(t),and

C:= sup,_; C(t).

(H2) u(t) corresponds to the state of the i-th unit at
time t.
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(H3) Q(t) denotes the external bias on the i-th unit at time
t, which is continuous and nonnegative on J with

Q = sup,; QD).
(H4) f(u) denotes the n- dimensional activation function
which is continuous and nonnegative on R",. Moreover,
for a positive constant £,satisfies |f(u)|< € ||ul| and that
(0)=0.
Our plan is as follows :In section 2,we discuss the
existence and uniqueness of almost-periodic solution for
system (1) by using Schauder fixed point theorem and
Banach fixed point theorem respectively[4].In section 3,
we study the explicit bounds of the solution for system (1)
by using the explicit bounds of some inequalities
involving fractional order. In section 4 ,we discuss the
global exponentially stability for
the zero solution of (1) by using the generalized Halanay
inequality and constructing a suitable Lyapunov function
with Dini derivative and we illustrate our results with an
example .The following definitions and results are used
in the sequel.
Definition 1.1.[5]The fractional integral operator I* of the
continuous function f(t) is given by:

=f@)*y, @) I;fE)=1"f®) =$I(t—r)“lf(r)dr

Where:
0< o<l and
ta—l
t) =
v, () M@

for t>0 and y,(t) =0 for t<0 and y,(t) —0(t) (the delta
function) as a—0.

Definition 1.2.A function feB (B is Banach space) is
called almost periodic in teR uniformly in any K a bound
subset of B,if for each £>0,there exitsts .>0 such that
every interval of length 6.>0 contains a number s with the
following property:

[ft+s,u)-ftu)<e,

teR,ueK.

Definition 1.3.The network(1) is said to be globally
exponentially stable ,if there are constants >0 and M>1
such that for any two solutions x(t) and y(t) with the initial
function @ and o respectively ,for all t>tjone has

|X(t) — y(t)| <M ||<D - go" exp “
Definition 1.4.Let f:R—R be a continuous function. Then
the upper right Dini derivative is:
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D" f(t) =Eheo%[f(t+ hy— f(®)].

Lemma 1.1.[6](Generalized Halanay inequality ) Assume
p(t) and q(t) be continuous with p(t)>q(t)>0 and

of PO-4®
hol42m(t)

for all t=0,and y(t) is a continuous function on t>t,
satisfying the following inequality for all

t>t, : D y(t) <—pt)y(t) +qt)y(t), where
YO =sup, oo {YS)}-

Then for t>tg,we have,
y(t) < y(t,)exp ™ in which A*
Is

A" =inf, {A() : A1) - p(t) @
+q(t)exp™™” =0}.

Lemmal.2. [7] Let X(t) be a fundamental matrix of the
nonlinear system x'(t)=f(t,x(t)).Assume further that there
exists a constant K>O such that

t
[IX(s)ds <Kt =o0.
0

Further let

[t < ad]
With 0<p<1/K.
Then the zero solution is asymptotically stable.

2. The existence and uniqueness solution.

In this section we give conditions for the existence and
uniqueness of almost-periodic solution for the modeling
system(1).Define a Banach space

B :=C[J,R",] endow with the norm :

Jull = sup,.; Juo-
System (1) is equivalent to:
u®=u, +j{—A(S) [u(s)+1"u(s) I+ B[ (U(s))

+7 T UE)HCOIf (Us-o(s))

+I"f(Us—o(s)) FQs)Jds
3

Define a continuous operator PER"; as follows

Pub =y, +I FEASUE)+I"UE)+BE)(f (UE))
+H7F UE)HCE)I (Us—0ofs)]
+H"f (U —o(s)) FQs)jds

Let U be a convex close subset of B define by

Then we have
Theorem 2.1. Let assumptions (H1-H4) be hold. If

0<p= AT[l+— ]+ BIT[I+ L —]
T(a+1) (B +1)
+E€T[1+L]<l
I'(y+1)

Then the modeling system (1) has a solution.
Proof. To prove that (1) has a solution we only need to
prove that P has a fixed point

Pu(t) < Ju,| + j {AG[us)] + 1“Ju(s)]

+ (B f u(s))] + 17| f u(s)|]
+|C|f (us —a(s))|+ 17| f (u(s — o (9))]
+|Q(s)[rds

NI+NMT ]+WWW
[+ F(,H+1) ” "T F(;/+1)
+TQ
= |uo|+ plu] + TQ.

Hence we have B
|Pu(t)|SM::r,p<l.
l1-p

Thus P: B,—B,. Then P maps B; into itself. And P maps
the convex closure of P[B,]into itself. Since f is bouned on
B; ,P[B,] is equicotinuous and the Schauder fixed point
theorem shows that P has a fixed point u(t) € B such that
P(u(t))=u(t),which is corresponding to the solution of (1)
Theorem 2.2. Let assumptions (H1-H3) be hold. Assume
that there exist a positive constant L such that for

<L

Satisfies



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 161

— T = T’
{AT[1+ ]+ BLT[1+——]
INa+1) rpg+1
— T}’
+CLT[1+F +1)]}<1

Then system (1) has a unique solution.

Proof. By the assumptions of the theorem ,we have

Pu(t) — P(v(D)| < I{|A(S)|[|U(S) —V(s)|

+1u(s) = v(s)1+ [B(S)[| f (u(s))
— f )+ 17| f () - F (o))
+|ICO] f(u(s—o(s)) - f(V(s—a(9))
+17|f(u(s— o (s) - f(v(s —o(s))]}ds

_ T¢
< Alu-v|T[1+ r(a+1)]

FBLJu V[T + ]
rp+1

T7
I'(y+1)

= {AT[1+ T ]+§|_T[1+L
INa+1) rp+1

+CLju —v|T[1+

]

T
I'(y+1)

+CLT[1+ BHu-v|

Implies that P is a contraction mapping then by Banach
fixed point theorem has unique fixed point which
corresponds to the solution of system (1).

The next result will discuss the conditions of almost —
periodic for the solution (3).

(H5):For £>0 and 6>0 assume that A(t),B(t),C(t) and Q(t)
are almost-periodic functions of period 0. And satisfy

At +6) - At)| < id

3

T ]
INa+1)

4T |ufr+

[B(t+6)—B(t)| < e

4T |Juerr + TG+ 1)]
&

IC(t+60)-C(b) < o
4T |uflert + ]
T(y+1)

And

Q(t+6)-Q(t)| < %.

Lemma 2.1. Let assumption (HS5) be hold. Then operator
P is almost periodic function.
Proof. By assumption (H5) we have

Ye>0

There exist d, such that there exist

sely,y+9,]
With the following properties

P(u(t+6)) - Pu(t)| < .|.{|A(s +6)— A(s)|

[u(s)|+ 1“[u(s)|1+[B(s + &) — B(s)|

[[f )|+ 17| fFuE)+
IC(s+6)—C(s)|[| f (u(s — o (s))|
+17|f(u(s—o(s)]1+]Q(s + ) - Q(s)[}ds

g

< a ><T||u||[1+l_ 1 ]
4T|ul1+ (@+D
[(a+1)
& T’
+ T ullert+ ]
4T ulef1 + ] FA+D
r(pg+1)
&
+ T7
4T |Jujerr + m]
xT||u||£[1+T—]+ixT =¢.
C(y+1)" 4T

Implies that P is almost periodic function.

Theorem 2.3. Let assumptions of theorem 2.2 with
(H5)be hold .Then system (1) has a unique almost periodic
solution.

Proof. By theorem 2.2 and Lemma 2.1.

3. Explicit bounds for fractional integral
inequalities.

In this section we establish the explicit bounds variants
integral inequalities in the following results.

Theorem 3.1. Assume that u(t) is nondecreasing
nonnegative and continuous on J. If for 0<a,B,y<1,c,>0,for
all k=1,....,m and p>0

ut) < u+ j [ick (U(s) + 1 *u(s))lds

0

4)
Then

m m T o -1
u) <1+ ¢, Jexpy ¢, [1+
k=1 k=1

Ney)

65
)
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Proof. Define a function z(t) by the right hand side of (4)

2(t) = p+ j [> ¢, (u(s) + 1 “u(s))lds

Then z(t) is nondecreasing nonnegative and continuous on

J. Also z(0)=p, n(t)<z(t) and

2'(t)= Y e, (u(t) + 1 u(t))

< Zm:ck(z(t) + 1% z(1)).
k=1

Suppose that
m

X(t) =Y ¢, (z(t) + 1™ 2(1))
k=1

Then

X(0) = 10’6, 1, 2(1) < X(1), Z'(t) < X(D),

Then by using some properties of the fractional calculus
[5] we obtain

x(t)<20 [z (t)+

ayg -1

P ['(ay)

ay -1

+
k=1 I(ay)
o -1

X(t) < Ach ] exp2ck [1+; ”

172

1Z’(H)

x(®) =

=

ak -1

z(t)<u{1+[2ck]exp2ck[l+ It
a ey )
Consequently we obtain the result. Hence the proof.
Theorem 3.2. Assume that u(t) is nondecreasing
nonnegative and continuous on J. If for tej=[0,T],
0<a,B,y<1,c,>0,for all k=1,....,m and continuous,
nondecreasing and nonnegative function a(t) on J

u(t) <a(t)+ j[ick (u(s)+1*u(s))ds

0 k=1
©6)
Then
ut) <at)+et)
{H[Zq]epocK[HT()]t}
k=1 k=1
@)

Where

e(t) = j [ick[a(t) +1%at)lds

0 k=l
Proof. Define a function z(t)by

z(t) = j[i c [u(s)+1*u(s)lds,
0 k=l

Then z(t) is nondecreasing nonnegative and continuous on
J. Also z(0)=0,u(t) <a(t)+z(t) and

20 < [ I3 el(a®) + 2(1)

0

+ 1% (a(t) + z(t))]] ds

[> c.(a(t)+1a(t))]ds

MB EMB

+

[ C [z(t) + 1™ z(t)]]ds

O e o'—.’-»

=~
._.

=e(t) + j [Zm: c [z(t) + 1 “ z(t)]]ds

0 _, (1) , o 20
e(t) i[;[ P

Thus an application of theorem 3.1 ,with p=1 we have

z(t) “K‘l
e(t)<1+[kz;c expkz;c Mo K)

z(t)se(t){lHick]e"pickm1T -
k=1 k=1 “x

u(t)y <a(t)+e(t)x
{1+[ZC ]epoC

Theorem 3.3. Let the assumptions (H1-H4) be hold.
Then all solutions of system (1) are bounded.

Proof. Let u(t) be a nondecreasing nonnegative and

continuous solution on J for the system (1). Denotes

at) = u,|+ J.|Q(s)|ds.

Then in view of theorem 3.2,u(t) has a bound of the form

(7):

)]t} =

aK—l

"T(a ay )

1t5.



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

u®| <fuo|+ [HAGu)]+1<Ju(s)]

+ B f u(sy] + 17| f (sl
+CE|fu(s—o(s)|+ 17| f(u(s —a(s))]
+|Q(s)[rds

<a(t)+ [{Alu(s)[+ 1“[u(s)]]

+ EBu(s)|+ 17 |u(s)]]
+ LCI|u(s)[1+ 17 |u(s)|1} ds.

4. Asymptotic and global exponential
stability.

The study of stability of system(1) is equivalent to study
of stability for the following system

u'(t) = —AM[u(t) + I%u(r)dr]

(t-o)
L'(p)

+BOLT(ut) + j

+COLf(ut-o)

ft—7)
v

f(u(z))dr]

f(u(r —o(r))dr].

®)
On the asymptotic stability of the zero solution for system
(8) we have the following result.
Theorem 4.1. Let the assumptions (H1-H4) be hold.
Then the zero solution of (8) is asymptotically stable.
Proof. Directly from Lemma 1.2 with

L
Tl

Now by using the generalized Halanay inequality and
Lyapunov method to establish the global exponential
stability. For this purpose we need to the following
assumptions.

(H6) Denotes

max ., |ui (t)| = \J.

p(t)

a-1

@)

=min ., {3 a, (O[1+ Ft I
=1

And

n tﬁ' 1
q(t) = max ., by (O/[1+
j=1

(,5)

y-1

n t
+ jz;cij ()1 + r(y)] }

Such that p(t)>q(t)>0.Moreover,

163

inf,., (P -qM} =7 >0,t =1, >0.

(H7) For a positive constant £,satisfies

| F (up(®)] < Au; ()

And that £(0)=0.

Theorem 4.2. Let assumptions (H6) and (H7) be hold.
Then the zero solution of system (8) is globally

exponential stable.
Proof. Set

u(t) = (U, (t),....,u ()" =

where G, u

are two solations for (8) with the initial conditions
G(O) =Uo , u(0)=u, respectively.
Consider the Lyapunov function[6],

V(u):= i|ui (1) with V (u) := Z\H (t)‘.

Calculating the Dini derivative D'V along the solution of
(8) and by using the assumptions (H6-H7),we get

D'V =Y sgn(u, (H)u] (1)
= D fsent, )3 (O, O-+1°u, 0]

+ibi,- OLF; ;@) +17u; ;)]
j=1

+Zn ¢, (D[ f,(u(t— o (1))
j=1
+ 17 f,(u;(t—o ()N}

i{sgn(u O, 01,0

a—

)u (t)]+2b., ®fu; @)

F(ﬂ)‘u ()] +Zc“ OAu; -0 (1)

<Z{ Za.,(t)[1+ ]\u ()|

+ Zbij ()1 o

]\u i (©)

ij
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taf—l
')

<—min,., (Y a, O+~
j=1 t/#l

I'(p)

x {Zn]ui (t)|+ max,_._, {Zn: by (D1 + ]
i=1 j=1

e

t
(y)
=—p(t)V +qt)V.

+Zn:cij )1+ Ui (t)‘

According to Lemma 1.1 we obtain
n

Z |Ui (t;to;uo)|
i=1

=V (1) <V (t,)exp “ 0 t>t, 20

Where A is defined in equation (2).

Implies that the zero solution of the network (8) and
consequently (1) is globally exponentially stable. This
complete the proof.

An example. Consider the simple recurrent neural
network of the form

u;(t) - cos(t) 1
uy(t)) 11
[(umHl:ul(t)J]
u,®) (17U, ()
sin(t) 0)(0.5u,(t)) (0.51%u,(t)
0 1 Mlo.su (t) "losi ]
U, SHuy ()
(o O]{O.Sul(t)j (0.5I7u1(t)j (1}
[ + |+ .
1 0)10.5u,(t) 0.517u,(t) 0.5
Subject to the initial condition u(0)=0.Assume that
o=P=y=1,teJ:=[0,0.25],£=L=0.5 and o(t)=0.From above

information , we have

20
p="c<lor==.

32 3
Thus in view of theorems 2.3 and 3.3 the neural system
has a unique ,almost-periodic and bounded solution ,also

we can find that

p(t) = min{2/cos(t)| + 2,4} and

q(t) = max {sin(t)],2}
Then we have p(t)>q(t)>0.
Moreover,
inf, {p(t)—-a(t)}=22:=n>0,
Thus in view of theorems 4.1 and 4.2,the solution of the

system is asymptotically stable and globally exponentially
stable.

5. Conclusion.

This paper studies the existence, uniqueness and bounds
almost periodic solution for recurrent neural networks
with fractional distributed delays.

The main point of this study is to apply the Dini
derivative combined with Lyapunov function method to
obtain exponentially stable solution for recurrent neural
networks with fractional distributed delays.
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