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Summary  
This article studies the existence, uniqueness and bounds 
almost periodic solution for recurrent neural networks 
with fractional distributed delays. We show that the zero 
solution is asymptotically and globally exponentially 
stable by using generalized Halanay inequality and 
Laypaunov functional method. 
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1. Introduction 

 
It is well know that series of recurrent neural networks 
model have been proposed by many authors. Periodicity of 
the solutions involving almost-periodicity, pseudo-almost-
periodicity,  ω-periodicity and ω-periodicity with zero 
mean value arise in a wide variety off scientific and 
engineering applications including control systems, signal 
processing systems, dynamical systems ,identification 
systems and neural networks systems[1-3].This article 
deals with the neural network system of the form: 
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Subject to the initial condition u(0)= u0,with the following 
assumption 

 
(H1) A(t):=[aij(t)], B(t):=[bij(t)] and  C(t):=[cij(t)] are 
continuous and nonnegative n x n connection matrices   
with 
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(H2) u(t) corresponds to the state of the i-th unit at  
time t. 

(H3) Q(t) denotes the external bias on the i-th unit at time 
t, which is continuous and nonnegative on J  with 

).(sup: tQQ Jt∈=  
(H4) f(u) denotes the n- dimensional activation function 
which is continuous and nonnegative on Rn

+. Moreover, 
for a positive constant ℓ,satisfies |f(u)|≤ ℓ ||u|| and that 
f(0)=0. 
Our plan is as follows :In section 2,we discuss the 
existence and uniqueness of almost-periodic solution for 
system (1) by using Schauder fixed point theorem and 
Banach fixed point theorem respectively[4].In section 3, 
we study the explicit bounds of the solution for system (1) 
by using the explicit bounds of some inequalities 
involving fractional order. In section 4 ,we discuss the 
global exponentially stability for  
the zero solution of (1) by using the generalized Halanay 
inequality and constructing a suitable Lyapunov function 
with Dini derivative and we illustrate our results with an  
example .The following definitions and results are used  
in the sequel. 
Definition 1.1.[5]The fractional integral operator Iα of the 
continuous function f(t) is given by: 
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for t>0 and ψα(t) =0 for t≤0 and ψα(t) →δ(t) (the delta 
function) as α→0. 
Definition 1.2.A function fεB (B is Banach space) is 
called almost periodic in tεR uniformly in any K a bound 
subset of B,if for each ε>0,there exitsts δε>0 such that 
every interval of length δε>0 contains a number s with the 
following property: 
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Definition 1.3.The network(1) is said to be globally 
exponentially stable ,if there are constants ε>0 and M≥1 
such that for any two solutions x(t) and y(t) with the initial 
function Ф  and φ respectively ,for all t≥t0one has 

.exp)()( )( 0ttMtytx −−−Φ≤− εϕ  

Definition 1.4.Let f:R→R be a continuous function. Then 
the upper right Dini derivative is: 
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Lemma 1.1.[6](Generalized Halanay inequality ) Assume 
p(t) and q(t) be continuous with p(t)>q(t)>0 and  
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     for all t≥0,and  y(t) is a continuous function on t≥t0 
satisfying the following inequality for all  
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Lemma1.2. [7] Let X(t) be a fundamental matrix of the 
nonlinear system  x΄(t)=f(t,x(t)).Assume further that there 
exists a constant K>O such that  
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Further let  
xxtf μ≤),(  

With    0≤µ≤1/K. 
Then the zero solution is asymptotically stable. 

 
2. The existence and uniqueness solution. 

 
In this  section we give conditions for the existence and 
uniqueness of almost-periodic solution for the modeling 
system(1).Define a Banach space  
B :=C[J,Rn

+] endow with the norm : 
}.)({sup tuu Jt∈= 

  
System (1) is equivalent to: 
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Let U be a convex close subset of B define by  
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Then we have 
Theorem 2.1. Let assumptions (H1-H4) be hold. If 
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Then the modeling system (1) has a solution. 
Proof. To prove that (1) has a solution we only need to 
prove that P has a fixed point 
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Thus P: Br→Br. Then P maps Br into itself. And P maps 
the convex closure of P[Br]into itself. Since f is bouned on 
 Br ,P[Br] is equicotinuous and the Schauder fixed point 
theorem shows that P has a fixed point u(t) Є B such that 
P(u(t))=u(t),which is corresponding to the solution of (1) 
Theorem 2.2. Let assumptions (H1-H3) be hold. Assume 
that there exist a positive constant L such that for   

vuLvfufBvu −≤−∈ )()(,, 
Satisfies 
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Then system (1) has a unique solution. 
 

Proof. By the assumptions of the theorem ,we have 
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Implies that P is a contraction mapping then by Banach 
fixed point theorem has unique fixed point which 
corresponds to the solution of system (1). 
The next result will discuss the conditions of almost –
periodic for the solution (3). 
(H5):For ε>0 and θ>0 assume that A(t),B(t),C(t) and Q(t) 
are almost-periodic functions of period θ. And satisfy 
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Lemma 2.1. Let  assumption (H5) be hold. Then operator 
P is almost periodic function. 
Proof. By assumption (H5) we have 
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Implies that P is almost periodic function. 
Theorem 2.3. Let assumptions of theorem 2.2 with 
(H5)be hold .Then system (1) has a unique almost periodic 
solution. 
Proof. By theorem 2.2 and Lemma 2.1. 

 
3. Explicit bounds for fractional integral 
inequalities. 

 
In this section we establish the explicit bounds variants 
integral inequalities in the following results. 
Theorem 3.1. Assume that u(t) is nondecreasing 
nonnegative and continuous on J. If for 0<α,β,γ≤1,ck≥0,for 
all k=1,….,m and µ≥0 
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Proof. Define a function z(t) by the right hand side of (4) 
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Consequently we obtain the result. Hence the proof.  
Theorem 3.2. Assume that u(t) is nondecreasing 
nonnegative and continuous on J. If for tєj=[0,T], 
0<α,β,γ≤1,ck≥0,for all k=1,….,m and continuous, 
nondecreasing and nonnegative function a(t) on J 
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 Theorem 3.3. Let the assumptions (H1-H4) be hold. 
Then all solutions of system (1) are bounded. 
Proof. Let u(t) be a  nondecreasing nonnegative and 
continuous solution on J for the system (1). Denotes  
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4. Asymptotic and global exponential 
stability. 

 
The study of stability of system(1) is equivalent to study 
of stability for the following system 
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On the asymptotic stability  of the zero solution for system 
(8) we have the following result. 
Theorem 4.1. Let the assumptions  (H1-H4) be hold. 
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According to Lemma 1.1 we obtain 
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Where λ* is defined in equation (2). 
Implies that the zero solution of the network (8) and 
consequently (1) is globally exponentially stable. This 
complete  the proof. 

 
An  example. Consider the simple recurrent neural 
network of the form 
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Subject to the initial condition u(0)=0.Assume that 
α=β=γ=1,tєJ:=[0,0.25],ℓ=L=0.5 and σ(t)=0.From above 
information , we have 
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Thus in view of theorems 2.3 and 3.3 the neural system 
has a unique ,almost-periodic and bounded solution ,also  
we can find that 
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Then we have p(t)>q(t)>0.  
Moreover, 

,0:2)}()({inf
0

>=≥−≥ ηtqtptt   
Thus in view of  theorems 4.1 and 4.2,the solution of the 
system is asymptotically stable and globally exponentially 
stable. 

 

5. Conclusion. 
This paper  studies the existence, uniqueness and bounds 
almost periodic solution for recurrent neural networks 
with fractional distributed delays. 

 The main point of this study is  to  apply the Dini 
derivative combined with Lyapunov  function method to 
obtain exponentially stable solution for recurrent neural 
networks with fractional distributed delays. 
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