
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 
 
 

 

165

Manuscript received December 8, 2006. 
Manuscript revised December 25, 2006. 
 

 

 
Communication Role Allocation for Joint Air 

Operations in a Network-Centric Environment  
 

Matthew D. Bailey†, Madjid Tavana††, and Timothy E. Busch††† 
   

†Assistant Professor of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA 
††Lindback Distinguished Chair & Professor of Information Systems, La Salle University, Philadelphia, PA 19141, USA 

†††Senior Engineer, Information Systems Research Branch, Air Force Research Laboratory, Rome, NY 13441 USA

Abstract  
 
Joint Air Operations (JAO) are traditionally orchestrated using 
static vehicle roles assigned from command and control. With 
recent advances in information and communication technology 
and the increased need for a dynamic and flexible response, 
vehicles are expected to assume multiple roles over the course of 
a mission. In addition, this level of flexibility requires the 
capability for a vehicle to determine when to facilitate network 
communication. In this study, we develop an efficient 
mathematical model that can be used to dynamically assign 
vehicles to roles including the role of communication in a 
threat-filled environment. We compute rewards for role 
assignment based on the marginal benefit to the system and the 
risk to the individual vehicle. These rewards are utilized within 
an efficient network optimization formulation to allocate vehicle 
roles. 
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1. Introduction 

Joint Air Operations (JAO) involve joint air capabilities 
and forces in support of a military operation. Currently in 
JAO, vehicles are assigned predefined tasks through the 
Air Tasking Order (ATO) from the centralized command 
and control. The tasks are based on the needs of the 
mission and the limits of the vehicle capabilities. This 
results in a set of vehicles with static roles during an 
operation, such as communication, surveillance and 
reconnaissance (ISR), and strike. With recent advances in 
information and communication technology and the 
increasing need for flexibility and responsiveness in JAO, 
vehicles are expected to perform multiple tasks and roles 
depending on situation needs and circumstances. Various 
infrastructures based on centralized control and 
decentralized execution are currently being investigated by 
the Air Force. However, these network-centric operations 

require communication connectivity in the battlespace that 
has not previously been investigated. In this paper, we 
present a task allocation model that can be used to reassign 
vehicles their roles as ISR or strike vehicles in a 
threat-filled environment, while also assigning vehicles to 
facilitate communication in the battlespace.  

In the event the command and control decides to 
reallocate vehicle roles based on new information or 
reallocation needs during a battle, we reallocate the roles 
and tasks of vehicles utilizing a network optimization 
algorithm that considers communication benefits and area 
threats. We define the reallocation events as the following:  
 

(i) An unsuccessful or successful confirmation of a 
target,  

(ii) A strike on a confirmed target,  
(iii) Verification of an unsuccessful or successful strike on 

a target, and  
(iv) The loss of a vehicle.  
 

Upon the occurrence of one of the above events or by 
command decision, we reassign the tasks of the vehicles 
by determining the marginal benefit to the system of the 
vehicle performing that task, e.g., strike target i or confirm 
a target j, while approximating the threat to the vehicle 
based on the distance to the target in a Voronoi graph and 
the proximity of the integrated air defense sites (IADs) 
over that path. We also incorporate the value of 
information by discounting these values based on the 
amount of time elapsed since full communication network 
connectivity existed between the vehicles. This 
connectivity is only achieved by assigning a vehicle the 
role of a communications hub. As a result, we can 
explicitly determine the trade-off for the value of assigning 
a vehicle the role of communication in lieu of the other 
roles. At this point, we only require (and allow) a single 
vehicle to be assigned as a communications hub. This 
builds a foundation on which future work can incorporate 
connecting sets of disconnected networks through multiple 
hub allocations.  
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The scope of our problem is related to the 
weapon-to-target assignment problem and vehicle task 
allocation. The weapon-to-target assignment problem deals 
with allocating weapons to targets in either a static or 
dynamic environment and has been studied extensively 
with surveys in [7], [14], and [23]. These classic target 
assignment models consider static and dynamic 
assignment, but they neglect multiple roles for vehicles 
and communication. Task allocation is primarily discussed 
in the cooperative control of unmanned air vehicle (UAV) 
literature; see [5, 6, 16, 17, 20, and 21]. It includes 
assigning vehicles to various tasks such as attacking 
targets, classifying targets, and verifying a strike on targets 
with battle damage assessment (BDA).  

Our model is an extension of the network optimization 
methods for task assignment and is related to the model by 
Schumacher et al. [20, 21]. Schumacher et al.’s model is a 
network flow optimization model that assigns tasks to each 
aircraft. They efficiently solve this problem with a 
specialized integer programming model. However, we note 
that their work does not account for threats in the vicinity 
or the value of communication and connectivity. Darrah et 
al. [6] and Schumacher et al. [19] also provide a mixed 
integer linear programming formulation for the assignment 
of multiple tasks over time. Their work explicitly deals 
with departure times and task timing for UAVs. In this 
study, we do not explicitly deal with the timing issue 
because we are assigning manned aircraft to tasks unlike 
UAVs. Again, their model does not account for area threats 
or lack of complete vehicle communication.  

Several papers have investigated methods for routing 
UAVs in a threat-filled search space including [4], [10], 
and [15]; however, we focus on the methodology for 
assessing path threats in [4] because of its computational 
efficiency. Beard et al. [4] develop a model for the 
cooperative control problem of dynamically assigning 
targets to aircraft while accounting for threats. They 
develop heuristic objective values derived to balance the 
objectives of minimizing the path length to a target; 
minimizing the group threat exposure; maximizing the 
number of vehicles assigned to a target; and maximizing 
the number of targets visited. Using the paradigms of 
satisficing [10] and social welfare, a target assignment 
problem is solved. The determined allocations are updated 
dynamically as new threats appear. However, their model 
ignores connectivity, lacks a communication element, and 
lacks the optimization component of the network-based 
models.  

We are not aware of any research dealing with the 
explicit allocation of a communications role to a vehicle. 
However, Beard and McLain [3] present a model of 
cooperative search using UAVs where the communication 
among the team of vehicles is maintained by a hard 
constraint on proximity of the vehicles. Flint et al. [9] 
incorporate the communication of UAVs in a stochastic 

model of cooperative autonomous search. In a 
discrete-time stochastic dynamic programming model, the 
authors model the limits of communication by only 
allowing the vehicles to communicate every b time steps in 
an N step model, where b is a given communication batch 
delay relaying the location and heading information about 
each vehicle. Mitchell et al. [12] investigate the impact of 
communication delays using a UAV control simulation 
with a task allocation model given in [21]. This is 
primarily a performance comparison and the problem of 
allocating a vehicle to facilitate communication is not 
addressed. In this paper, we combine these models to 
create a network optimization-based algorithm accounting 
for threats and explicitly allocate the task of facilitating 
communication.  

We first present a network optimization formulation 
for the static allocation of the target confirmation, strike, 
and BDA tasks in the presence of threats. We discuss how 
this model can be used to dynamically assign tasks to 
vehicles. In the subsequent section, we expand the model 
to include the communication task assignment. 
 
2. Mathematical Model 
 
2.1. Confirm, Destroy, and Verify 
 
We begin with N simultaneously deployed vehicles with 
indices i =1, 2,..., N.  In the theater of operations, we 
assume the location of the T geographically dispersed 
targets, t =1, 2,..., T, are known. During various stages of 
the operation the status of each target will be either 
unconfirmed, confirmed, unverified-destroyed, or 
verified-destroyed.  All targets begin as unconfirmed and 
are only adjusted to confirmed after a successful sensor 
sweep by a vehicle verifies a target’s viability. After target 
confirmation, a target is available for a strike. After a strike 
on a target, its status is changed to unverified-destroyed. 
This status is not changed until another sensor sweep by a 
vehicle verifies the destruction of the target. If the sensor 
verifies its destruction, its status is changed to 
verified-destroyed. Otherwise, it verifies that the target is 
still viable and changes its status back to confirmed. 
Confirming a target and verifying its destruction, also 
known as BDA, are ISR activities. Each target is assigned a 
value, Vi, representing its importance or priority in the 
mission. Although we assume that the assigned target 
values are given, these values (or weights) can be 
determined using several well-known procedures including 
SMART or SMARTER [2, 8], SWING [22], or analytical 
hierarchy process [18]. Similarly, these values could be 
derived from priorities using the current Air Force practice 
of developing a Joint Integrate Prioritized Target List. We 
also assume the target area is populated with I known IAD 
sites. At discrete decision epochs, the vehicles are assigned 
roles associated with targets. A vehicle will be assigned to 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 
 
 

 

167

 

either confirmation of a target (confirm), strike a confirmed 
target (strike), or verify the destruction of a target (BDA). 
The vehicle’s tasks are then defined by a role, {confirm, 
strike, BDA}, and an associated target, t =1, ..., T. We 
assume that a vehicle can only be assigned a single task and 
each task can only be performed by a single vehicle. This 
can be relaxed if there are tasks that can be performed 
simultaneously, e.g., communication and ISR; however, we 
leave this extension as part of future research. Although 
there are other relevant tasks that can be assigned to 
vehicles, for this initial model we restrict ourselves to these 
narrowly defined roles.  

At each reallocation event or decision we assign a 
feasible task to each vehicle. To determine the task 
allocations for each vehicle, we utilize a framework that is 
an extension of the classic assignment problem [11, 13]. 
This formulation has the advantage that although it is a 
binary integer program it can be solved in polynomial time. 
We define xcnf(i, t) = 1 if vehicle i is allocated to confirm 
target t and 0 otherwise. We similarly define xstr(i, t) and 
xbda(i, t).  Additionally, we define rcnf (i, t), rstr(i, t) and 
rbda(i, t) as the rewards for assigning the ith vehicle to the tth 
target for the various roles. These definitions result in the 
following binary integer program, 
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The set of constraints 1b restrict each vehicle to be 

assigned to at most one task. The confirmation role for each 
target t is restricted to at most one vehicle through the set of 
constraints 1c. The constraints 1d and 1e are defined 
similarly for strike and BDA roles. Central to this 
formulation is the definition of the rewards for assigning a 
vehicle to a task. Given the current statuses of the targets, if 
an assignment is infeasible due to precedence constraints, 
e.g. a vehicle cannot strike a target until it is confirmed, we 
assign an appropriately low weight to remove its selection 
when there are feasible alternatives. We next discuss the 
elements and derivations of the rewards.  

When assigning a vehicle to a target we must account 
for both the benefit to the mission and the threat to the 

vehicle. For a given vehicle-target assignment, we measure 
the threat based on a set of preferred paths through a 
Voronoi graph [1] considering threats and distance. Given 
the set of IAD sites, we determine the Voronoi network 
presented in Figure 1. 

  

 
Figure 1: Voronoi graph with 30 IADs and four targets 

 
This network provides a set of feasible paths through 

the IADs that maximizes the distance from individual IADs. 
We then connect the targets to this network by finding the 
closest vertices creating a connected network with a set of 
nodes V and arcs A. Although pilots will select their own 
paths to minimize exposure, these path approximations are 
used for computationally efficient target assignment 
valuation. As in Beard et al. [4], an efficient measure of the 
threat along an arc a of this network is computed based on 
its proximity to the set of IADs. For an arc Aa∈  of length 
da, we use three points along the arc (da/6, 3da/6, 5da/6) to 
estimate the threat over that link. Using the distance from 
IAD b to the point 1/6 of the length along arc a, defined as 
d1/6,a,b, and the similarly defined d3/6,a,b and d5/6,a,b, we 
compute a cumulative threat measure over arc a,  
 

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=

I

b bababa

a
a ddd

dthreat
1

4
,,6/5

4
,,6/3

4
,,6/1

111
3

    (2) 

 
We seek a task assignment that accounts for the 

distance travelled and the threat over that path for a given 
vehicle to task assignment. We therefore find the closest 
node to the vehicle based on the vehicle’s current location 
and determine a “shortest path” to a target using a weighted 
average of the length of each arc and the above threat 
measure for that arc, .0where,)1( ≥−+= γγγ aaa threatdm  
The weight γ will be determined by the decision-maker’s 
preference to balance a vehicle’s proximity to a target and 
the threat over that path. We define c(i, t) as the shortest 
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path for vehicle i to travel to target t using the ma values as 
arc lengths. We incorporate this into the reward for 
assigning vehicle i to target t as subsequently described.  

To determine a reward for various assignments, we 
must first define several parameters. We assume a vehicle 
confirms a target in its sensor range in a region with a given 
probability. Although the actual probability of confirmation 
is based on several factors, such as the sensor footprint and 
angle to the target, we simplify this by defining the 
probability that a vehicle confirms a target as a fixed pc. 
After a target is confirmed, a vehicle can be assigned to 
strike the target. For a strike, we utilize a single probability 
ps as the probability that a vehicle destroys a target. Once a 
target has been attacked a vehicle can be assigned for BDA. 
We assume that there is no error in a vehicle’s BDA. 
Although each of these parameters could be vehicle and 
target specific, for clarity of presentation, we assume they 
are homogeneous. Similar to Schumacher et al. [21], we 
define the benefits for vehicle to task allocation: 
 

),( tircnf  = The expected reward from confirming target t and 
subsequently destroying target t with vehicle i – the 
threat/distance of vehicle i traveling to target t, 

).,( ticVpp tdc
m βα −=  
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target i with vehicle t – the threat/distance of 
vehicle i traveling to target t, 

).,( ticVp td
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),( tirbda  = The expected reward for verifying the post-strike 
status of target t by vehicle i – the threat/distance of 
vehicle i traveling to target t, 
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where m is the amount of time elapsed since a 
communication network was in place and α is a discount 
factor, 10 ≤≤α  to account for the lack of communication 
network connectivity. The β is a scaling factor to relate the 
path threat values and the expected rewards.  

Each time a reallocation event occurs or by a command 
decision, the roles and tasks of the available aircraft will be 
reevaluated using the above optimization problem. Through 
the use of penalty parameters, assignment preferences can 
be included in the model. For example, if role consistency is 
preferred for a subset of aircraft, the previous role can be 
tracked and the reward function for changing roles can be 
reduced. In this way, the role will only change when there is 
a significant expected advantage for the system. Similar 
methods, can be used to reduce possible cycling between 
roles for aircraft. However, these will be mission specific 
and will not be discussed in detail here. Using the above 
allocation optimization problem, the roles and assigned 
targets will not be static, but could vary with each 
reallocation decision. However, the above model neglects 
to incorporate the every increasing role of communication 

networks in today’s military missions. In the next section 
we address the issue of assigning the role of communication 
to an aircraft during a mission. 
 
2.2. The Role of Communication 
 
In addition the tasks of target confirmation, target strike, or 
BDA, we also allow the assignment of a vehicle to the role 
of communication. This vehicle will facilitate 
communication between all vehicles ensuring that m = 0 in 
the ensuing assignment optimization problem. We evaluate 
this by solving an assignment problem similar to above, but 
requiring that a vehicle be assigned a communications role. 
We then compare this solution to the optimal objective 
value of the assignment without communication, WC, to 
determine which is greater. The role of communication 
does not have an associated target, so it can also be defined 
as a task. We define xcomm(i) = 1 if vehicle i is designated as 
the communications vehicle and zero otherwise.  
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Constraint 3f ensures that exactly one vehicle is assigned 
the communication role. After solving the above problem, 
we have an objective value under full communication, FC, 
and can determine a task assignment. If NC >FC, we assign 
the vehicles to tasks according to the assignment that attains 
NC, i.e., there is no communications vehicle. If  NCFC ≤ , 
we assign the vehicles to tasks according the assignment 
that attains FC and a vehicle will be assigned to the 
communications role. This optimization is computed 
dynamically when a reallocation event occurs or command 
deems it necessary to revaluate the current roles of the 
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vehicles.  
 
3. Conclusion 
 
The existing vehicle-target assignment models either lack 
flexibility or the capability to consider the value of 
connectivity in a networked environment. In contrast, our 
model can be used in a dynamic manner, since the outcome 
of previous engagements and current position impact the 
future assignments; flexible, since it allows multiple roles 
over time for vehicles; and incorporates communication, 
since it takes into account the value of connectivity and 
communication. This model can be used to analytically 
determine when a vehicle should adjust its role during a 
battle in response to changes in the environment or 
information received in command and control. Given a 
suitable military test environment, the model parameters 
can be refined to create a robust decision support tool. In 
addition, the model can be used to gain tactical insight into 
when vehicle roles should be reassessed and determine 
rules of thumb for making these allocations.  

Future work will expand this model to allow the 
simultaneous assignment of roles. In addition, further 
enhancements will partition the battlespace to only solve 
localized versions of the problem and then combine these 
results into a large-scale role allocation solution. This 
large-scale problem will address the issues of multiple 
vehicles creating a connected communication network.  
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