
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 
 

 

211

Manuscript received  December 5, 2006. 
Manuscript revised  December 25, 2006. 

An Efficient Group Rekeying Method Using Enhanced One 
Way Function Tree Protocol 

B.Parvatha Varthini † and  S.Valli ††, 
  

†Department of Computer Applications, St.Joseph's College of Engineering,Chennai – 119, India. 
††Department of Computer Science, Anna UniversityChennai – 25, India. 

 
Summary 

There are several group key management solutions to 
implement group rekeying in secure multicast communication. 
These solutions suffer from 1 affects all phenomena if they use 
centralized architecture or from data translation latency if they 
use decentalised architecture. Further, these group rekeying 
protocols add communication as well as computational overhead 
in every group member and in the group key controller (GKC) of 
the group. This proposed work develops an efficient group 
rekeying solution that follows an adaptive group rekeying 
architecture. This adaptive group rekeying architecture provides 
a good tradeoff between the one affects all phenomena and the 
data translation latency. This method uses an enhanced one way 
function tree (EOFT) algorithm based on the Chinese remainder 
theorem for group rekeying. EOFT has minimum computational 
overhead and communicational overhead particularly during the 
join of the members in the group.  
 
Key words: 

data translation latency, enhanced one way function tree, 
group key controller, rekeying the group key 
. 

Introduction 

Multicast effectively delivers the messages from one 
source to many destinations instead of sending n unicast 
messages to n destinations. Multicast reduces the load and 
network resource consumption. Due to the explosive 
growth of the Internet, multicast applications need a lot of 
attention in recent years. Many Internet applications like 
software update, pay channel TV, video conferencing and 
multiplayer games use multicast. Multicast security is 
more complex than unicast security. The content of the 
multicast traffic is to be sent confidentially among the 
group members. Another important multicast security 
requirement is group authentication. Encrypting the 
messages using a cryptographic secret key (the group key) 
provides security in multicast communication. The GKC 

generates and distributes the group key to the group 
members.  

The dynamic nature of the group introduces a great 
challenge for multicast communication. The group key is 
to be changed (rekeying) when a new member joins the 
group or an existing member leaves the group. If the group 
is highly dynamic, the rekeying process is to be triggered 
often and it increases the complexity in computation and 
communication. The group rekeying procedure should 
ensure forward secrecy (the group members leaving the 
group cannot derive the future group keys) and backward 
secrecy (a new member joining the group cannot discover 
the previous keys). The existing group rekeying schemes 
maintain forward secrecy and backward secrecy. But they 
fail to meet both the scalability issue of the centralized 
group rekeying architecture and the data translation 
latency of the decentalised group rekeying architecture. 

This proposed work provides an adaptive group 
rekeying solution that provides a good trade off between 
the scalability issue and the data translation latency. This 
work uses EOFT algorithm for group rekeying because 
EOFT has a minimum number of rekeying update 
messages compared to the other existing group rekeying 
protocols. 

2. Existing Work 

There are many group key management solutions to 
implement the group rekeying in secure multicast 
communication.  
 

2.1 Centralized Architecture 
 

A single GKC manages all the group members in the 
architecture developed by Wallnner [1]. The GKC 
generates and encrypts the group key separately for every 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December  2006 
 

 

212 

member of the group. When a member joins/leaves the 
group, the GKC rekeys the group key. The GKC encrypts 
and sends this new key to every member separately. This 
architecture is inefficient when the group size is too large. 
It suffers from one affects n phenomena.  

Hierarchical Key Graph Algorithm is another rekeying 
algorithm that does the group rekeying effectively. Here 
the group is viewed as a logical tree structure to reduce the 
overhead incurred at the group members during the 
join/leave operation. The GKC creates a rooted balanced 
tree that has as many leaf nodes as there are members. 
Each leaf node of the key tree is associated with a member 
of the group.   Each internal node represents a logical 
subgroup. The root node represents the group key. The 
existing key graph algorithms are Logical Key Hierarchy 
Graph (LKH), one way Function tree (OFT). 

Wong [11] suggests LKH algorithm for rekeying. It is 
an efficient rekeying method for large groups. It uses a 
hierarchical key tree. The GKC shares a separate unique 
secret key with each one of the members through unicast. 
GKC creates all internal node keys but sends only a subset 
of them to each member. Each member receives the keys 
of all the nodes in the path from that member to the root. 
The number of keys that each member holds is equal to 
log n, where n is the size of the group. When a member 
joins the group, the GKC needs to change every internal 
node key in the new member’s path to the root. When a 
member leaves the group, the GKC changes only the keys 
that the leaving member knows. 

  Waldovogel [9] proposed another key 
management scheme OFT. Wei-chi Ku [10] suggests an 
improved version of OFT for key establishments in large 
dynamic groups. OFT uses a logical key tree for rekeying 
with better leave rekeying compared to LKH. The GKC 
shares a separate unique secret key with each one of the 
members through unicast.  The GKC uses a one-way 
function ‘g’ to compute a blinded key corresponding to 
each key in the key tree. Each member receives the 
blinded keys of the sibling of the internal nodes in the path 
from that member to the root of the tree. Each internal 
node computes its key by applying a mixing function ‘f’ to 
the blinded keys of its children. When a member joins, the 
GKC sends log2n blinded keys to the new member. When 
a member leaves, the GKC needs to send as many blinded 
keys as the length of the path from the rekeyed node to the 
root.  

 

2.2 Decentralised Architectures 
 

IKAM, Iolus and Hydra are some of the decentalised 
group communication architectures. IKAM architecture 
according to Hardjono [3] divides the group into one 
domain and many areas. The domain consists of a number 
of administratively manageable areas. A group member 
resides within any one of these areas. Two important 
IKAM entities are the domain key distributor (DKD) and 
the area key distributor (AKD).  DKD is responsible for 
the key management at the domain level.  AKD is 
responsible for the key management at the area level. Each 
host in IKAM has three keys namely Traffic Encryption 
Key, Area Group Key and Member Private Key shared 
with its AKD. The maintenance of these different keys 
adds new complexity. 

Iolus proposed by Mittra  [5] splits a large group into 
smaller subgroups. The top level group is managed by a 
group security controller (GSC) who is responsible for the 
security of the entire group. Each subgroup is managed 
independently by a GSA (Group Security Agent).The 
membership change in any subgroup is located locally. 
The corresponding subgroup controller GSA does 
rekeying only in that subgroup when a member leaves or 
joins a subgroup. It does not affect the rest of the group. 
Hence it solves the 1 affects n issue. But it introduces data 
translation latency since every subgroup agent encrypts 
the incoming data stream with the key of the outgoing data 
stream whenever the data is sent between the subgroups. 

Hydra architecture of Rafaeli [7] consists of two 
hierarchical levels. Group members are in the bottom level 
and separated into subgroups. The top level is composed 
of Hydra servers who are subgroup managers. The 
multicast group known as the Hydra group agrees on a 
common group key. This hydra group is virtually divided 
into hydra server groups to distribute the agreed key to 
their respective subgroup members in the bottom level. 
However, hydra needs a long time to relay the whole 
group for every membership change.  

The decentralised group rekeying architecture solves 
this scalability issue by organizing the group as different 
subgroups with their own Traffic Encryption Key. It 
reduces the number of rekey update messages when a 
member joins or leaves. But it includes the data translation 
latency due to additional encryption and decryption of the 
messages when they are sent between subgroups. 

 

2.3 Adaptive Architecture 
 

Yacine Challal[12] introduces an adaptive solution 
SKAM which structures group members into clusters 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 
 

 

213

according to the application requirements. Each cluster is 
composed of a set of subgroups that share the same TEK. 
Each subgroup is managed by a SKAM agent. In clusters, 
the root agent is active and all internal agents are passive. 
Messages are decrypted and reencrypted only at the 
cluster’s root. The reformation of clusters is activated 
periodically. The time interval is selected arbitrarily 
without considering any standard parameters. 

This proposed adaptive hybrid architecture calculates 
the rekeying cost during each join/leave operation but not 
periodically. Hence it removes the time interval selection 
anomaly found in SKAM. SKAM uses 1 root- N leaves 
rekeying protocol which is inefficient in large groups. This 
work uses EOFT [6], an enhanced one way function tree 
protocol that developed by the authors. EOFT has good 
performance over other group rekeying protocols. 

3. Enhanced OFT 

3.1 Overview of EOFT 
 

This proposed work uses EOFT algorithm for group 
rekeying. EOFT [6] enhances the efficiency of OFT using 
the Chinese reminder theorem. It follows a hierarchical 
key graph for rekeying. This algorithm uses CRT tuple of 
smaller remainders instead of keys of larger bits. Any 
computation on keys is carried out in parallel on their 
corresponding CRT remainders. This algorithm reduces 
the computational overhead of a leave/join event 
compared to OFT. The GKC shares a pseudo function P, a 
random number M, an Arithmetic function A along with a 
separate unique secret key with each member through 
unicast. A pseudo function P can be a hash/mac function 
or simple transformation of bits depending on the security 
level required. The GKC generates a random number 
M=[mi] for finding mod mi reminder tuples corresponding 
to each key. Each member receives the CRT tuples of 
pseudo keys of the sibling of the internal nodes in the path 
from that member to the root of the tree. Each internal 
node’s key is computed by applying an arithmetic function 
R on its children’s pseudo key tuples. The arithmetic 
function R can be +/-/*/ a repeated combination of odd 
number of these three operations. But existing works use 
only hash for P and XOR for R.  

 

3.2 EOFT Member-Join Rekeying 
 

 When a member joins the group, the GKC creates a new 
node in the tree, so that the tree is balanced. Splitting the 
nearest leaf node from the root does the balancing of the 
tree. After accommodating the new member in the tree, 
the GKC shares a unique secret key, new R and M with 
the new member through unicast. The random number M 
is derived from the previous number by omitting any one 
of its factors. The new arithmetic operation R is a new 
combination of odd number of operators +, *, and -. The 
GKC just informs the new R and M through a multicast 
message encrypted with the old group key to the existing 
group members. Unlike in OFT and LKH, the GKC does 
not send any new internal node keys to the existing 
members in the join event. Hence EOFT reduces the join 
event communication overhead. The GKC multicasts a 
single rekeying message to the members during the join 
event. 
 

3.3 EOFT Member-Leave Rekeying 
 

 When a member leaves the group, the GKC 
reconstructs the tree as a balanced tree. If the departing 
member’s sibling is a leaf node, it gets associated with its 
parent node or it assumes the parent’s position on the tree. 
The GKC needs to rekey to maintain forward secrecy. 
Unlike in LKH, the GKC does not change all the pseudo 
keys that the departing member knows. Since the GKC 
does not use pseudo keys to encrypt any message, it does 
not change all the pseudo keys supplied to the departing 
member. For the sibling leaf node of the departing 
member, the GKC sends a new key encrypted with its old 
key. The GKC rekeys all the keys from rekeyed node’s 
position to the root. The GKC sends log2 n +1 messages 
during leave where n is the size of the group. 

 
The group key evaluation process of EOFT is illustrated 

in Fig 1. The algorithm required for each member to 
compute the group key is given in the following algorithm.  
 

3.4  Algorithm for Computing the Group Key using    
EOFT 

 
The steps involved in computing the group key , by a 

group member A are given below. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December  2006 
 

 

214 

 
Step 1:   The group member A receives its secret key Ka  
               through unicast registration from the GKC. 
Step2: The GKC sends Pseudo function P, Arithmetic 

function R and a random number M to all the 
members A, B, C, D, E, F, G, and H as  in Fig 1.   
Also it sends the pseudo key remainder tuples of 
the siblings of the internal nodes along the path 
from the member to the  root. They are [Kb’], 
[Kcd’], [Keh’]  for the member A. 

Step 3:  The group member A evaluates its pseudo key  
   [Ka’] as P (Ka) 
Step 4: The group member A evaluates [Kab] as 

 R ([Ka’], [Kb’]) and [Kab’] as PKab) 
Step 5: The group member A evaluates [Kad] as  

R ([Kab’], [Kcd’]) and [Kad’] as P (Kad) 
Step 6: The group member A evaluates [Kah] as 
    R ([Kad’], [Keh’]) which is the group key 

  
 Thus all the group members compute the group key 

using the above algorithm. 
 

3.5 Performance of EOFT 
 

We compare the performance of the EOFT with the 
other group key management schemes quantitatively. The 
measure of communication complexity depends on the 
number and size of the messages transmitted for key 
updates. EOFT reduces join rekeying communication 
complexity to simply one multicast message compared to 
all other group rekeying algorithms. The leave rekeying 
communication complexity is EOFT in just half that of 
LKH. 

 
 
 
 
 
 
 
 
 

 
 

         Kab=R(P(Ka),P(Kb))       and         Ka
’=P(Ka) 

A  receives          A  computes         

 A  receives Pseudo keys    

 
Fig. 1  EOFT Group Key Computation 

 

4.The Proposed Adaptive Hybrid architecture 
 In this proposed architecture, when a group is 

initiated, it behaves as a single group controlled by a 
single GKC. When a member wishes to join the group 
initially, it sends the request to the single GKC that is 
available. The GKC decides whether to continue as one 
subgroup or divide into two subgroups so that the 
rekeying overhead is less. Suppose the splitting cost is less, 
the GKC splits the group into two subgroups as parent and 
child. The current GKC manages the parent group. The 
half of the members who joined recently leaves the current 
group and joins the new subgroup. This proposed 
architecture activates one of the members of new subgroup 
as the GKC of the childgroup. Suppose the splitting cost is 
more, then the group continues to be in the same 
architecture and does rekeying. When a member leaves the 
group initially, rekeying is achieved with the existing 
single GKC architecture.  

   In the case of more than one subgroup, a 
member who wishes to join the group broadcasts a join 
request. The nearest subgroup’s GKC will reply at the 
earliest and proceed with the joining operation. When a 
member joins the subgroup Sj, the subgroup’s GKC 
calculates the rekeying cost in the group Sj as well as the 
rekeying cost to be incurred due to splitting. In the case of 
less splitting cost, Sj is divided into two subgroups Sj and 

BA C D E F G H

Kad Keh 

Kcd Kef Kgh 
Kab

Kb Kc Kd Ka Ke Kf Kg Kh 

KahKah 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 
 

 

215

Sk such that Sj is the parent of Sk. The half of the members 
who joined Sj recently leaves the current group and joins 
the new subgroup Sk. This proposed architecture activates 
one of the members of new subgroup Sk as the GKC of the 
subgroup Sk. 

When a member leaves the group, the corresponding 
subgroup’s GKC calculates the cost induced by rekeying 
in that subgroup and data translation latency for 
communication with its parent. It also calculates the cost 
of rekeying in the group formed by merging with its 
immediate parent.  When a member leaves from the 
subgroup Sk, its GKC calculates the rekeying cost within 
that subgroup Sk, and compares with the cost of merging 
Sk with its parent Sj. If the merging cost is less, the 
subgroup Sk is merged with the subgroup Sj and then a 
mutually accepted group key is computed. 

 
4.1 Stochastic Model Of Multicast Sessions 
 

This work creates sample multicast sessions to calculate 
the rekeying cost analytically during join/leave operation. 
Almeroth [1], [2] proved that the multicast sessions follow 
the Markov Model. The equation (1) gives the steady state 
probability  of a multicast communication Markov process 
model.  

,...,2,1,0,)!/)/(( )/( == − keKP k
k

μλμλ               (1) 
where λ  is the arrival  rate of members and service mean  
1/μ in that multicast group. The group membership time 
rate follows an exponential distribution. The arrival rate of 
the group members follows a Poisson process.  λ/μ is  the 
average number of group members at a time in a subgroup. 
ERM(λ) denotes the expected number of rekeying 
messages in a group S with λ  members. ERM_Jk and 
ERM_Lk denotes the average number of rekeying 
messages during join and leave procedure respectively. 
The expected number of rekeying messages in a group 
with λ members is given by the function in (2). 

       ))(_)(_()( ∑
∞

+=
o

kkk LERMJERMPERM λλλλ

         (2) 
Kin-Ching Chan [4] approximates the steady state 
probability  of a multicast communication Markov process 
model to an unit function as in (3). 

⎩
⎨
⎧ =

=−
otherwise

kif
K

   0
/       1

    ))/((
μλ

μλδ  

         (3) 
We calculate the average number of rekeying messages 

using the unit function given by  (3) as 

)).(_)(_()(

))(_)(_))(/(()(

// λλλλ

λλμλδλλ

μλμλ LERMJERMERM

LERMJERMKERM
o

kk

+=

+−= ∑
∞

         (4) 
 
4.2 Computation Of Rekeying Cost 
 
Every subgroup of this proposed work follows EOFT 

group rekeying scheme. The number of join and leave 
rekeying messages in EOFT are 

.1log)(_
1)(_

2/

/

+=

=

λλ

λ

μλ

μλ

LERM
JERM  

Therefore the expected number of rekeying messages in 
a group following EOFT given by (4) reduces to (5). 

  
)log2( )( 2λλλ +=ERM    

         (5) 
   The Rekeying cost in a subgroup is measured in terms 

of the number of rekeying messages generated during a 
join and leave. Equation (6) gives the rekeying cost in the 
subgroup Si with members λi  as 

gii tERMC R ∗= )(λ       (6) 
where tg is the average time taken to generate and send a 
rekey message. Equation (6) reduces to (7) by substituting 
ERM(λi), the expected number of rekeying messages in a 
group Si with λi members from (5).      

giii tC R ∗+= )log2( 2λλ       (7) 
   If a subgroup divides into two subgroups, the 

rekeying cost includes the rekeying cost in the new born 
child subgroup and the cost induced due to data translation 
between the parent and the child. Suppose the subgroup Si 
splits into Si with λi members and Sj with λj members, then 
split rekeying cost is   
   
 TL

jij CCC RS +=   (8) 
where CTL is the cost induced by the translation latency.   

  In data translation, the incoming message is decrypted 
and then encrypted with outgoing stream key. So it 
executes a symmetric key cryptographic algorithm like 
DES /IDEA twice.  tE denotes the time taken to encrypt a 
message of payload size 1KB using DES / IDEA. Then the 
translation cost CTL  is 

  E
TL tLC ∗∗= 2       (9) 

where L is the actual size of the payload in KB. 
 Hence substituting Cj

R from (7) and CTL from (9) , the 
split rekeying cost is  

.2)log2( 2 ggij
s

ji tLtC ∗∗+∗+= λλ   (10) 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December  2006 
 

 

216 

When a subgroup merges with its immediate parent 
subgroup, the rekeying cost includes the mutual key 
generation cost in the merged group. When the subgroup 
Si with λi members merges with the subgroup Sj with λj 
members, the merge rekeying cost is 

.R
jiij CC m

+=      (11) 

The resulting merged subgroup has members λi+ λj . 
Hence, the merge rekeying cost is 

.2 ))(log2( )( gjijiij tC m ∗+++= λλλλ  (12) 
 

5. Simulation Results 
 

The simulation of this work runs on Ns-2. This 
simulation has at the most 65 dynamic members at an 
instance. This simulation runs the application MFTP 
(Multicast File Transfer Protocol) that needs low 
synchronization between the source and destinations. We 
generate the multicast sessions according to the stochastic 
model described in the chapter V.  

The inter arrival time of the group members is 24 sec. 
The membership duration is 25 minutes. This simulation 
runs for one hour with joining phase, joining/leaving 
phase and leaving phase. The encryption algorithm used in 
this work is DES. We calculate the encryption time delay 
for every 1KB payload as 0.032ms using OPENSSL in 
UNIX environment. The simulation runs for payload of 
32KB as well as for 16KB. The time taken for data 
translation after splitting into two subgroups is 

032.02 ∗∗= LC TL where L is the size of the payload. 
The average time tg taken to generate and send a rekey 
message is 0.0412ms with respect to the generated 
topology.  

This simulation starts with a single GKC. As a member 
joins the group, the GKC calculates the splitting cost using 
(10). The pay load size is 32 KB. The performance of this 
adaptive architecture using EOFT is compared with Iolus, 
a decentalised architecture and the Centralized architecture. 
It splits the group to reduce the attenuation of 1 affects all 
phenomena if the splitting cost is less. Until t = 384 
seconds, the centralized architecture continues. Then, the 
GKC splits the group into two subgroups. The number of 
subgroups increases to three at t = 744 sec. At the end of 
the joining phase, the number of subgroups increases to 
seven. At t =1500 sec, the members start leaving the group. 
The GKC calculates the merging cost using (12) and tries 
to merge the subgroups to reduce the data translation 
latency. At t = 1872 sec a subgroup merges with its parent. 
The simulation draws out the graphs given in Fig. 2 and 

Fig. 3 at the end t = 3600 sec. The simulation runs for 16 
KB payload also. This simulation runs for one hour with 
joining phase, joining/leaving phase and leaving phase for 
the payload of 16 KB. 

 
 

 
Fig. 3 One Affects All Phenomena 

(Payload = 32 KB) 

Fig. 2 Comparison of Data Translation Latency 
(Payload = 32 KB) 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 
 

 

217

The performance of this adaptive architecture using 
EOFT is compared with Iolus (a decentalised architecture) 
and the Centralized architecture.   Fig 2 discusses the 
latency caused by the data translation due to the formation 
of subgroups in the three architectures with the payload 
size of 32 KB. The number of subgroups gives the number 
of times the reencryption is done while the data is sent 
between the subgroups. The data translation latency 
coincides with Iolus when the load is heavy but is lesser 
than Iolus in all other cases. Fig. 3 compares the 
attenuation of the one affects n phenomena of the above 
said three architectures with the payload size of 32 KB. It 
is measured by the number of members that gets affected 
during the rekey procedure.  It proves that this adaptive 
architecture possesses the efficiency that is very close to 
Iolus with respect to the one affects n phenomena. Fig. 4 
shows that the 1affects n attenuation is lesser in the 
proposed work even if the payload size is 16 KB, 
compared to Iolus and centralized architecture.  

 
 

Conclusion 
 

This work uses an adaptive group rekey architecture 
that does group rekeying efficiently using EOFT protocol. 
It starts with a centralized architecture. As the members 
join the group, it splits the group into more subgroups to 
solve the scalability issue. This architecture controls the 

number of subgroups by calculating the rekeying during 
the join or leave of a group member. According to the 
group dynamism, it allows the subgroups to merge or a 
subgroup to divide into two sub groups by comparing the 
cost of one affects n phenomena due to merging and cost 
of data translation latency due to splitting. It maintains a 
good balance between one affects n and data translation 
latency compared to the existing rekeying algorithms.  

REFERENCES   
[1] K. Almeroth and M. Ammar,  “Collecting and Modelling the 

join/leave behaviour of multicast group members in the Mbone”,  in 
proceedings of Symposium on High Performance Distributed 
Computing, Aug 1996, pp. 209-220.  

[2] K. Almeroth and M. Ammar, “Multicast group behaviour in the 
internet’s multicast backbone (Mbone)”, IEEE Communications 
Magazine, volume 35, number 6, June 1997, pp. 124-129. 

[3] T. Hardjono, B. Cain and I. Monga, “Intra Domain Group Key 
Management Protocol”, draft-ielf-ipsec-infragkm-02.txt, IETF, Feb 
2000. 

[4] Kin-Ching Chan and S. H. Gary Chan, “Distributed Servers 
Approach for Large-Scale Secure Multicast”, IEEE Journal On 
Selected Areas in Communications, volume 20, number 8, October 
2002,  pp. 1500- 1510. 

[5] S. Mittra, “Iolus: A framework for scalable secure multicasting”, in 
Proceedings of the ACM SIGCOMM, Vol. 27, 4, Sept. 1997, pp. 
277-288. 

[6] B. Parvatha Varthini and S. Valli, “EOFT: An Enhanced one way 
Function Tree rekey Protocol based on Chinese Remainder 
Theorem.”, in Proceedings ISCIS05 Istanbul, Turkey, Lecture Notes 
in Computer Science, Vol. 3733, October 2005, pp. 33-44. 

[7] Rafaeli and D. Hutchison, “Hydra: A distributed group key 
management”, in proceedings of the 11th IEEE International 
WETICE Enterprise Security Workshop, June 2002, pp. 62-67. 

[8] D. Wallnner, E. Harder, and R. Agee, “Key Management for 
Multicast: Issues and Architecture”, RFC 2627, June 1999.             

[9] M. Waldvogel, G. Caronni, D. Sun, N. Weiler and B. Plattner, ”The    
VersaKey framework: Versatile group key management”, IEEE 
Journal. Selected. Areas in      Communications     Special Issue on 
Middleware Aug. 1999, pp. 1614–1631.  

[10] Wei-Chi Ku and Shuai-Min Chen, “An Improved Key Management  
Scheme for Large Dynamic Groups Using One-Way Function 
Trees”, Proceedings of ICPPW’03, oct.2003, pp. 391-396. 

[11] C.K. Wong, M. G. Gouda, and S. Lam, “Secure group 
communications using key graphs”, IEEE/ACM Transactions on 
Networks., Feb. 2000, pp. 16–30.  

[12] Yacine Challal, Hatem Bettahar and Abdelmadjid Bouabdallah, 
“SAKM: A Scalable and Adaptive Key Management Approach for 
Multicast Communications”, ACM SIGCOMM Computer 
Communications Review, Volume 34, Number 2: April 2004, pp. 
55-70. 

 
 
 
 
 
 
 
 
 
 

Fig. 4 One Affects All Phenomena 
(Payload = 16 KB) 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December  2006 
 

 

218 

 
Parvathavarthini B. received M.Sc and  
M.Phil degree in  1988  and  1989         
respectively. She received M.B.A and M.E         
degree in 1998 and 1999 respectively. She         
is working as Professor in the department of         
Master of Computer Applications, St.        
Joseph’s College of Engineering. Her 
research includes Computer Networks, 
Security, multimedia applications and 
Graphics.  
 
           
           
Valli S. received the B.E, M.E and      
Dr.Eng degrees in 1990, 1991 and 2001 
respectively. She is working as Assistant 
Professor in the Department of Computer 
Science, Anna University. Her research 
interest includes software engineering, 
networks, parallel computing and object 
oriented systems.                                                                                                                                                            

 

 

 


