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Summary 
In this paper, we propose a blind multisignature scheme 
based on an extension of the RSA cryptosystem (called the 
ERSA system). Taking advantage of the scheme, we then 
present a new multiauthority electronic election system, 
which can meet all of the following requirements: 
eligibility, collision free, vigorousness of authorities, 
accuracy, privacy, verifiability, robustness, fairness, and 
prevention of ticket-buying or extortion.  In addition, the 
computations among voters are independent without any 
global computation, so it is suitable for conducting a large-
scale general election. 
Key words: 
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Introduction 

The design of an efficient electronic election or voting 
system is one of the most significant research issues in 
modern and future Internet applications.  Compared with 
traditional election activities, electronic voting system is 
far more efficient and convenient.  However, it cannot be 
widely adopted unless the following security requirements 
are all satisfied. 
1. Eligibility: Only eligible voters can vote and each one 

can only vote once. 
2. Collision Free: Each legitimate voting ticket can be 

uniquely identified. 
3. Vigorousness of Authorities: No authority can add or 

subtract extra ballots to the final tally. 
4. Accuracy: Any authority cannot succeed in altering the 

voting strategy of any voter. 
5. Privacy: No one can determine for whom other voters 

vote. 
6. Verifiability: Any voter can verify that his/her own vote 

has been taken into account in the final tally.  Everyone 
can verify whether the tally published by each authority 
is identical or not. 

7. Robustness: No malicious voter or authority can disrupt 
the voting procedure. 

8. Fairness: The intermediate result of the election will not 
be leaked out. 

9. Prevent Ticket-Buying and Extortion: No voter can tell 
any third party what his voting strategy is. 

The concept of the electronic election was first introduced 
by Chaum [3]. 

Following Chaum’s proposal, a lot of solutions were 
subsequently put forward. However, in some of the 
suggested solutions, the computations of voters are not 
independent and if any voter stops following the protocol 
during the voting, the election is disrupted [5,23,29].  Also, 
each voter needs to perform a global computation, hence 
they are not suitable for large-scale elections [6,13,22].  In 
addition, most solutions contain only one authority.  The 
common drawbacks of a single authority electronic 
election system include: (1) malicious authority may add 
some extra ballots to the tally, (2) it is hard to prevent 
ticket-buying and extortion [9,12,16,17,21].  It is pointed 
out in [15,16,18] that the most effective way to cope with 
these drawbacks is to design a system consisting of more 
than one authority.  Although some multiauthority election 
systems have been suggested in the past few years [1,7,8], 
they are still not suitable for a general election because the 
intentions of voters are only expressed as “Yes” or “No”.  
Recently, based upon a blind threshold signature 
technique, Juang et al. [18] also proposed a multiauthority 
system in which the intention of a voter may be any one of 
more than two options.  Nevertheless, it still can not 
prevent the problem of ticket-buying and extortion. 

In this paper, we are concerned about the design of an 
efficient multiauthority election system.  Based upon an 
extension of the RSA cryptosystem, named ERSA system 
that proposed by Feng [10], we shall first propose a blind 
multisignature scheme.  Then, taking advantage of the 
proposed scheme and ERSA cryptosystem, we also 
present a new multiauthority electronic election system 
that can meet all security requirements listed above. 

The rest of this paper is organized as follows.  Section 2 
gives a brief review of the RSA and ERSA cryptosystems.  
Section 3 introduces our ERSA-based blind multisignature 
scheme.  Section 4 describes the protocol of our 
multiauthority electronic election system.  Section 5 
presents security analysis of our voting system.  Finally, 
conclusions and future research issues are given in Section 
6. 
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2. A Brief Review of RSA and ERSA 
Cryptosystems 

In the RSA cryptosystem [25], each user is required to 
obtain two large primes p and q, and a value d, relatively 
prime to ϕ (n), for n = p×q; and make public n and e, the 
inverse of d modulo ϕ (n).  A message m is encoded as an 

integer less than n, and the encrypted message is C≡ em  
(mod n), where (n, e) is the public key of the receiver.  To 
decrypt the ciphertext C, the receiver may use his private 
key d to compute dC (mod n).  Having dC ≡  edm ≡  

1(n)tm +ϕ ≡  m (mod n) by the Euler’s theorem [26], the 
plaintext is recovered. 

The security of the RSA system primarily relies on the 
computational infeasibility of factoring the used modulus 
n into a product of p and q [25].  Accordingly, to resist 
some factoring attacks, p and q must be chosen carefully 
as strong primes [14, 20].  Besides, in order to withstand a 
ciphertext attack given by Simmons and Norris [28], p and 
q must be as small as possible such that (p-1, q-1), 
denoting the greatest common divisor of p-1 and q-1 
(since p-1 and q-1 are both even, the minimum value for 
(p-1,q-1) is 2.) 

Nevertheless, the need to protect the secrecy of the 
factors of the used modulus n disable the direct adaptation 
of the RSA scheme to a group-oriented or distributed 
communication environment.  Since a group-oriented or 
distributed cryptosystem always involves many players, it 
is desirable to use a “universal” modulus for all players to 
simplify computing complexities.  In the RSA 
cryptosystem, however, if the modulus n is universal and 
if each player has to know the factoring of n to decide his 
secret key, there will be no secret among all internal 
members. 

To make RSA system more for the design of 
cryptosystems in a group-oriented or distributed 
communication environment, Feng [10] proposed an 
extension of the RSA system, called the ERSA 
cryptosystem.  Vectors >< r21 e,,e,e L  and 

>< r21 d,,d,d L  whose inner product satisfies 

L++ 2211 dede rrde+ 1≡  (mod ))n(ϕ  are used 
instead of e and d, as the encryption and decryption keys, 
respectively, where qpn ×=  is the same as that appears 
in the original RSA system.  It is seen that some 
previously suggested RSA variants with additive share 
keys [2,11,24] are in fact special cases of ERSA system. 
Also, when r=1, the ERSA system is just the same as the 
original RSA system. 

ERSA scheme can also achieve secure communication 
between two individuals.  The ciphertext for a message m 
is computed as a vector C= >< r21 c,,c,c L , where 

ie
i mc ≡  (mod n) and (n, >< r21 e,,e,e L ) is the 

public key of the receiver. The plaintext for C can be 
reconstructed by computing 

∏
=

r

1i

d
i

ic ≡ mmm rr2211ii dedede
r

1i

de ≡≡ +++

=
∏ L  (mod n).  

In this case, ERSA seems to have no superior over the 
original RSA system in terms of the encryption/decryption 
time and the size of the ciphertext is r times of that of an 
RSA system.  Nevertheless, since vector 
encryption/decryption keys are introduced, by distributing 

r21 d,,d,d L  to r individuals in a communication 
network as their secret keys or shared secret keys, the 
ERSA scheme is thus more adapted for the design of 
cryptosystem in a group-oriented or distributed 
communication environment than the original RSA system.  
Based on ERSA, Feng [10] has presented a generalized 
group-oriented cryptosystem.  Still based on ERSA, we 
shall propose a blind multisignature scheme later in this 
paper. 

The security of the ERSA system is almost the same as 
that of RSA system provided that all parameters p, q, n, 

r21 e,,e,e L  and r21 d,,d,d L  are properly determined.  
Similarly, to ensure that the factoring of qpn ×=  is 
intractable and to withstand some known ciphertext 
attacks, both p and q must be chosen as strong primes such 
that (p-1, q-1)=2.  However, unlike the original RSA 
system where there is only one public value e, the public 
values ei’s, ri1 ≤≤ , of the ERSA system must be 
chosen to let )e,e( ji >1 for ji ≠  to avoid direct 
derivation of a message m from a system of equations 
such as ie

i mc ≡  (mod n) and je
j mc ≡ (mod n) by the 

Euclidean algorithm. 
Accordingly, the essential problem concerning the 

ERSA system is that if there exists an efficient algorithm 
that can determine a set of proper parameters p, q, n, ie  

and id , ri1 ≤≤ , such that (1) both p and q are strong 

primes (2) (p-1, q-1)=2 and (3) )e,e( ji >1 for ji ≠  and 

1dedede rr2211 ≡+++ L  (mod ))n(ϕ .  Though it 
is not an easy fortification, an efficient algorithm for 
generating all proper ERSA parameters has already been 
given in [10]. The readers who are interested in this 
algorithm may refer to [10]. 
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3. An ERSA Based Blind Multisignature 
Scheme 

The concept of blind signature scheme was introduced by 
Chaum in 1982 [4].  In a blind signature system, a signer 
shall have no idea of what he signs.  It means a signer 
must not be able to find a relationship between some 
blinded and unblinded parameters.  This property is 
usually referred as the unlinkability property.  Accordingly, 
blind signatures are widely used to construct anonymous 
electronic election schemes [9,12,15,16,18]. 

As we have pointed out earlier in this paper that the 
most effective method to prevent the authority of a single-
authority voting system being cheated is to develop a 
multiauthority voting system and an efficient blind 
multisignature is indispensable.  Accordingly, based on 
the concept of the ERSA cryptoscheme, we shall propose 
such a blind multisignature scheme in this section [16]. 

Suppose that there are r signers iA ’s, ri1 ≤≤ , a 
signature requester denoted as B, and a trusted key 
generating center (KGC).  Then, the generation and 
verification of our blind multisignature scheme can be 
described as follows. 

Key Generating Phase: 

1. The KGC generates a set of ERSA parameters 
including ,e,,e,e,n( r21 L  ,d,d 21 )d, rL  

satisfying α>),( ji ee  if ji ≠ , and 

1dedede rr2211 ≡+++ L  (mod ϕ (n)).  
(Note that according to the ERSA parameters 
generating algorithm given by Feng [10], α  is a 
prime satisfying 1≡α  (mod 4) and can be made 
arbitrarily large.) 

2. The KGC publishes n and distributes ie  and id  to 

each iA , ri1 ≤≤ , as his public and private keys, 
respectively. 

Blind Multisignature Generation Phase: 

Suppose B wants iA , ri1 ≤≤ , to sign a message m 

blindly, where m nZ∈ ={0,1,2,…,n-1}. 
1. B determines two large strong primes p and q such 

that it is computationally infeasible to factor the 
value of their product. 

2. For each ri1 ≤≤ , B computes mpR ie
i1 ≡  (mod 

n) and 1e
i2 mqR i −≡  (mod n), and sends 

( i1R , i2R ) to iA . 

3. Once receiving ( i1R , i2R ) from B, each iA , 

ri1 ≤≤ , computes id
i1i1 )R(w ≡  (mod n) and 

id
i2i2 )R(w ≡  (mod n) as his blind signature for m.  

Then he sends ( i1w , i2w ) back to B. 

4. After receiving all pairs ( i1w , i2w ) from iA , 

ri1 ≤≤ , B computes 1W , 2W  and T as : 

∏
=

≡
r

1i
i11 wW  (mod n), 

∏
=

≡
r

1i
i22 wW  (mod n), 

≡T 1
1Wp−  (mod n), 

where T is served as the blind multisignature of m 
from iA , ri1 ≤≤ , and )W,W( 21  is preserved 
for verifying the blind multisignature. 

Blind Multisignature Verification Phase:  

After obtaining the values of 21,WW  and T, B can make 

sure the validity of T by checking whether pqWW ≡21  
(mod n).  If it holds, the blind multisignature T is proved 
to be correct. 

Blindness Discussion and Security Analysis: 

Observe Step (3) of the signature generation phase to 
see if each iA , ri1 ≤≤ , computes i1w  and i2w  with 

his genuine private key id . Then in Step (4) we will have 
 

rrr ddddedede
r

i
i mpwW ++++++

=

≡≡∏ LL 212211

1
11

r21 dddmp +++≡ L  (mod n), 

and 

)ddd(dedede
r

1i
i22

r21rr2211 mqwW +++−+++

=

≡≡∏ LL

)ddd( r21mq +++−≡ L  (mod n), 
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for pp rr2211 dedede ≡+++ L  (mod n) and 

qq rr2211 dedede ≡+++ L  (mod n) according to the 
encryption/decryption principle of the ERSA cryptosystem.  
In this case, we also have, in Step (4), ≡T 1

1Wp−  
r21 dddm L++≡  (mod n).  Accordingly, if pqWW 21 ≡  

(mod n) holds, the blind multisignature T for the message 
m is indeed verified. 

The blindness of ≡T r21 dddm L++  (mod n) can be 
seen as follows.  Each iA , ri1 ≤≤ , is unable to see the 

value of the message m from i1R  or i2R  due to unknown 
of the values of the blinding factors p and q.  On the other 
hand, even if all iA ’s, ri1 ≤≤ , can cooperate to 

compute the values of 1W  and 2W , and obtain the value 

of p × q from computing 21WW  (mod n), they still 
cannot get the values of p or q.  This is because, in Step 
(1) of the signature generation phase, p and q are chosen 
as two strong primes by B such that it is computationally 
infeasible to factor the value of their product.  
Consequently, only when the signature requester B 
himself holds the blinding factors p and q can he verify, 
unblind, and obtain the valid blind multisignature T. 

The security of the above proposed scheme is based 
on the ERSA system which is guaranteed by the 
computational infeasibility of factoring the used modulus.  
An attacker is hard to forge a legitimate blind 
multisignature unless he knows the factoring of n. 

On the other hand, if some iA  applies a fake secret 

key to sign i1R  and i2R , pqWW 21 ≡  (mod n) cannot 
be correct and the blind multisignature will not be verified.  
Hence, no iA  can forge a legitimate individual blind 

signature for m.  It is also impossible for any iA  to sign 

m in i1R  and 1m −  in i2R  with a fake key while sign 
iep  in i1R  and ieq  in i2R  with his genuine key because 

he is unable to separate iep  and m from i1R ; and ieq  

and 1m −  from i2R .  Consequently, that all signers 
cooperatively forge a legitimate blind multisignature is 
hard to realize. 

In addition, after receiving the blind multisignature T 
for m, the signer cannot succeed to forge another 
legitimate blind multisignature pair ( m′ , T′ ) by 
computing m′ = ma ie  and T′ = aT, where a is any 

random integer.  Now, we have TT
r

1i
i ′≡′∏

=

 (mod n) 

where id
i )m(T ′≡′  (mod n), m)T(

r

1i

e
i

i ≠′∏
=

 (mod n).  

Accordingly, the singers can easily detect the forgery by 

checking together whether mT
r

1i

e
i

i ≡∏
=

 (mod n) holds or 

not. 
Consequently, given a message and blind 

multisignature pair (m,T), all signers Ai’s, ri1 ≤≤ , can 
cooperate to verify that T is indeed a blind multisignature 
of m by first computing iT idm≡ (mod n), ri1 ≤≤ , 

individually, and checking together whether TT
r

1i
i ≡∏

=

 

(mod n) and mT
r

1i

e
i

i ≡∏
=

 (mod n) are true.  However, 

due to the blindness of T, each iA  is unable to learn when 
and for whom T is produced. 

4. A New Multiauthority Electronic Election 
System 

In this section, based on the ERSA blind multisingnature 
scheme that we suggested in the last section and the ERSA 
cryptosystem suggested by Feng [10], we shall propose a 
new multiauthority electronic election system which will 
meet all security requirements mentioned in Section 1. 

4.1 Basic Assumptions 

The underlying assumptions of our protocol include: 
1. Every legitimate voter has his own RSA keys. 
2. Every authority has his own RSA keys. 
3. No two voters can stay in one voting booth at the 

same time, but only one.  
4. The KGC (key generating center) is trustworthy. 
5. All authorities will not conspire simultaneously; 

namely, there must exist at least one honest authority. 
6. Both the discrete logarithm problem and the 

factorization problem are computationally infeasible. 

4.2 The Protocol 

There are four participants in our system, i.e., a key 

generating center (KGC), r authorities ( iA , ri1 ≤≤ ), 
voters and a set of voting booths.  The key generating 
center (KGC) is responsible for generating the system 
parameters for all authorities, while the authorities are 
responsible for checking the identity of each voter, issuing 
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blind voting tags to legitimate voters, collecting, opening, 
counting and publishing the votes.  The aid of voting 
booths is indispensable.  Although it is very convenient 
for a voter to register and vote electronically from 
anywhere, it cannot prevent ticket buying and extortion.  
The reason is that the buyer has to get involved in the 
voting process to see how the voter votes [15,18].  
Accordingly, in order to prevent ticket buying and 
extortion thoroughly, voting booths are necessary.  The 
voting protocol of our system consists of four phases 
described exhaustively as follows. 

4.3 The Voting Protocol 

The details of voting protocol of our multiauthority 
electronic election system will be given as follows. 
Phase 0 (Initialization Phase) 
1.   The key generating center (KGC) selects and publishes 

a large prime P such that P-1 has at least one large 
prime factor, and a fixed primitive root g in the field 
GF(P). 

2. The KGC generates a set of ERSA parameters 

( AN ,
,e,,e,e

r21 AAA L
 r21 AAA d,,d,d L

) and 

distributes each pair of iAe
 and iAd

, ri1 ≤≤ , to the 

i-th authority iA  as his ERSA public key and private 
key, respectively.  

3. Each iA , ri1 ≤≤ , selects a secret random integer 

PA Zx
i
∈

 and publishes the value 
iA

i

x
A gy ≡

(mod 
P). 

4. Each iA , ri1 ≤≤ , publishes the list of legitimate 
voters. 

Phase 1 (Registration Phase) 
In this phase, each voter should identify himself to each 
authority that he is a real legal voter and has not cast his 
vote yet.  At the same time, he should apply the ERSA 
blind multisignature technique to get a blind voting tag 
from each authority.  The detailed procedure can be 
described as follows. 
Step 1: [V’s term] 
1. Voter V determines two strong primes p and q such that 

it is computationally infeasible to factor the value of 
their product. 

2. (2.1) V selects a secret integer vm  in ANZ
. 

(2.2) For each ri1 ≤≤ , V computes the blinded 

message ≡i1R v
e mp iA

 (mod AN ) and 

≡i2R 1
v

e mq iA −

 (mod AN ), where iAe
 is the ERSA 

public key of iA . 
3. (3.1) For each ri1 ≤≤ , V computes the signature 

≡iS vID(
∥ i1R

∥

*
vd

i2 )R  (mod 
*
vn ), where vID  

is the identification number and (
*
vn ,

*
vd ) is V’s RSA 

secret key. 

(3.2) V sends vID(
∥ iS ∥t) to each authority iA , 

ri1 ≤≤ , where t denotes a timestamp and ∥ 
denotes the concatenation of bit-strings. 
(Note that in order to prevent the messages from being 

maliciously tampered, V sends iS  instead of vID(
∥

i1R ∥ )R i2 in Step (3.2).  However, we shall assume 

A
*
v Nn >  to avoid the reblocking problem 

[19,25,27].) 

Step 2: [ iA ’s, term, ri1 ≤≤ ] 

1.   Receiving V’s registration request, each authority iA , 
ri1 ≤≤ , has to validate V’s digital signature and 

checks his database to see if V has not registered yet. 

2.   If  1. holds, iA  records V’s registration, uses his 

ERSA private key iAd
 to sign i1R  and i2R  blindly 

as ≡i1w iAd
i1 )R( iAiAiA d

v
de mp≡

 (mod AN ) and 

≡i2w iAd
i2 )R(  

iAiAiA d
v

de mq −≡
 (mod AN ), 

respectively , then sends them back to V. 
Step 3: [V’s term] 

1.  After getting i1w  and i2w  from iA , ri1 ≤≤ , V 
computes 

           
∏
=

≡
r

1i
i11 wW

 (mod AN ), 

           
∏
=

≡
r

1i
i22 wW

 (mod AN ),  

      and   1
1

v WpT −≡
 (mod AN ).  

2.  V checks whether pqWW 21 ≡  (mod AN ) holds. If 

it holds, V accepts vT  as the blind multisignature of 

vm . And ( vm , vT ) is preserved as V’s legitimate 
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blind voting tag, which will be served as a permission 
of casting in the voting phase. 

Phase 2 (Voting and Verifying Phase) 
Once the voter V obtains the valid blind voting tag 

)T,m( vv  from the authorities, he constructs and casts his 
voting tickets to each authority. 
Step 1: [V’s term] 

1.     V determines his voting strategy denoted as vZ . 

2.     (2.1) V determines an ERSA modulus vN . 

(2.2) V selects a secret integer Pv Zx ∈  and 
computes  

       
vx

v gy ≡  (mod P) and 
v

i

x
Ai yd ≡

 (mod P), 

such that ji dd ≠
 for i≠ j and ( id , )N( vϕ ) = 1 for 

ri1 ≤≤ . 
3.  Applying the algorithm given by Feng [10], V 

determines a set of integers 
,,e,e

21 vv L
rve

satisfying 
)e,e(

ji vv >α  if ji ≠ , 
where α  is a large prime of the form α ≡ 1 (mod 4), 

and 2v1v dede
21

+ ++L  
1de rvr

≡
 (mod 

)N( vϕ ). 

4.  V encrypts the voting strategy vZ  into r pieces 
ive

vi ZC ≡  (mod vN ), ri1 ≤≤ . 
5.   For each ri1 ≤≤ , V constructs a voting ticket for 

iA  as 

        vi m(U =
∥ vT

∥ iC
∥ ive

∥ vN
∥ vy

∥ vθ ∥

vθ′ ∥t ) ,  

        where vθ  and vθ′  are two selected random integers 
between 1 and the minimum value of 

{
*
Ai

n
| ri1 ≤≤ }, where 

*
Ai

n
 is an RSA modulus 

for iA . 
6.    For each ri1 ≤≤ , V encrypts each voting ticket 

iU  into  

        
*

iAe
ii UU ≡′  (mod 

*
Ai

n
), 

      and sends it to iA , where (
*
Ai

n
,

*
Ai

e
) is the RSA 

public key of iA . 

(Note that the purpose of encrypting iU  into iU′  is to 
prevent a malicious attacker to forge a legitimate 
voting ticket from intercepting the blind voting tag 

)T,m( vv .  Consequently, we have to set 

A
*
A Nn

i
>

, 
Pn*

Ai
>

 and v
*
A Nn

i
>

 to avoid the 
possible reblocking problem [19,25,27].) 

Step 2: [ iA ’s, term, ri1 ≤≤ ] 
It is seen that each voting ticket casted out by V is 
untraceable and does not reveal any information about V 
while each authority can still ensure the authenticity of the 
received voting ticket.  The authenticating process is as 
follows. 

1.  After receiving the voting ticket iU′ , each iA  

decrypts it by his own RSA secret key 
*
Ai

d
 and checks 

whether the blind voting tag ( vm , vT ) has been used 
before to avoid double voting.  All voting tickets that 
contain the same blind voting tag will be published and 
not be accepted by any authority. 

2. Each iA , ri1 ≤≤ , checks the validity of ( vm , vT ) 
through the following procedure. 

(2.1) Each iA  computes 
iAd

vi mT ≡  (mod AN ) and 

broadcasts it to other jA
s, rj1 ≤≤  and ij ≠ . 

(2.2) Each iA  checks whether 
v

r

1i
i TT ≡∏

=  (mod 

AN ) and 
v

r

1i

e
i mT iA ≡∏

=  (mod AN ).  If both are 

correct , then the validity of ( vm , vT ) has been 
confirmed. 

Phase 3 (Counting and Publication Phase) 
       After the deadline of vote casting, all authorities start 
to decipher V’s voting strategy cooperatively with the 
ERSA group-oriented decryption technique [10].  The 
details are as follows. 

Step 1: [ iA ’s, term, ri1 ≤≤ ] 

1. Each iA , ri1 ≤≤ , computes 
iAx

vi yd ≡  (mod P), 
id

ii CB ≡  (mod vN ), 
iA

j

x
Aij yk ≡

 (mod P), rj1 ≤≤  and ij ≠ , 
)B(EG ikij ij

=
, rj1 ≤≤  and ij ≠ , 
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      and sends ijG
 to other jA

s, rj1 ≤≤  and ij ≠ , 

where ijkE
 is an encryption operation using the secret 

key ijk
. 

2.  (2.1) On receiving all ijG
, rj1 ≤≤  and ij ≠ , each 

iA  computes jB )G(D ijkij
=

 and retrieves V’s 

voting strategy as 
∏
=

≡
r

1j
jvi BZ

 (mod vN ). 

(2.2) Each iA , ri1 ≤≤ , checks whether 
ive

viZ = iC  

(mod vN ).  If it holds, iA  accepts viZ  as V’s voting 

strategy vZ . 
      Otherwise, it may indicate that there exists at least one 

maliciously cheating authority.  We will discuss this 
case later in Section 5. 

3.  Each iA , ri1 ≤≤ , publishes the value viZ  as the 
voting strategy of V. 

5. Security Analysis 

In this section, we are going to prove that our voting 
system can satisfy all the security requirements including 
eligibility, accuracy, privacy, verifiability, robustness, 
fairness and prevention of ticket-buying and extortion as 
follows. 
Theorem 1(Eligibility): Only eligible voters can vote and 
can vote only once. 
Proof.  The eligibility of voter V is checked by each 
authority in Step 2-(1) of Phase 1.  Meanwhile, multiple 
registrations from the same voter can also be checked and 
prohibited by Step 2-(1) of Phase 1.  Then, double voting 
(voting with the same blind voting tag) is checked and 
prohibited in Step 2-(1) of Phase 2. 
Theorem 2(Collision Free): Each legitimate voting ticket 
can be uniquely identified. 

Proof.  It is required that each vm  be of the form 
3r

21v rrm ⋅≡  (mod AN ) in Step 1-(2.1) of Phase 1, 

where ,r1 2r  and 3r  are random numbers in ANZ
, it is 

quite unlikely that two distinct voters have the same blind 
voting tag.  Therefore, each legitimate voting ticket can be 
uniquely identified. 
Theorem 3(Vigorousness of Authorities): No authority can 
add or subtract extra ballots to/from the final tally. 
Proof. Under the assumption that authorities do not 
conspire simultaneously, one can easily prevent any 

malicious authority from adding or substracting extra 
ballots to/from the final tally.  A simple method is to 
check in Step 1-(3) of Phase 3 and see whether the tally 
published by each authority is identical or not. 
Theorem 4(Accuracy):  No authority can alter the voting 
strategy of any voter. 
Proof.  Suppose that in Step 1-(1) of Phase 3, the authority 

iA  is malicious and uses a false key iAx′
 to compute 

iAx
vi yd ′≡′

 (mod P), 
id

ii CB ′≡′  (mod vN
) and send 

ijG′ )B(E ikij
′=

 to other authorities to try altering the 
voter V’s genuine voting strategy.  In this situation, the 
cheating can be detected by the verification in Step 1-(2.2) 
of Phase 3.  Once it happens, the authorities have to 

publish one of the values { vθ , vθ′ } that are involved in 

the voting ticket of V.  When seeing his vθ  (or vθ′ ) on 
the announcement, V has to prove that he is the owner of 

the voting ticket by sending vθ′  (or vθ ) to the authorities 
without revealing his real identity.  Then, V has to send 
some extra information, according to the cheater detection 
and fake shadow key correction procedures of the ERSA 
cryptosystem suggested in Feng [10], to help detecting the 
malicious authority (cheater) and correcting the fake 

shadow key id′ .  As a result, V’s original voting strategy 
can finally be recovered. 
Theorem 5(Privacy): No one can determine for whom 
others voted. 
Proof.  It is impossible that two voters can stay in one 
voting booth at the same time, so no one (including a 
ticket-buyer) can get to know how others vote.  In addition, 
the legitimacy of a vote comes from the valid blind voting 
tag.  Due to the blindness preserved by the ERSA based 
blind multisignature scheme, even the authorities do not 
know to whom a blind voting tag belongs.  The blind 
voting tags and the voting tickets thereafter have been sent 
to each authority anonymously.  There is no way to trace 
them back to the originated voters.  Hence, the privacy of 
the voters is preserved. 
Theorem 6(Verifiability): Any voter can verify whether 
his own vote has been taken into account in the final tally.  
And everyone can verify whether the tally published by 
each authority is identical or not. 
Proof.  Under the assumption that all authorities do not 
conspire simultaneously, any voter can simply perform 
Step 1-(3) of Phase 3 to check whether the tally published 
by each authority is identical or not, and thus see if his 
own vote has been counted in the final tally. 
Theorem 7(Robustness): Not any malicious voter or 
authority can disrupt the voting procedure. 
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Proof.  According to the blindness discussion and security 
analysis of Section 3, it is for a malicious voter or 
authority to forge a legitimate blind multisignature unless 

he knows the factoring of AN .  That is, it is impossible 
for a voter or authority to cast more than one legitimate 
vote.  In addition, because of unknown of the voters’ RSA 
private keys, any authority is unable to make false 
registrations for the voters who do not register in the 
registration phase  Further, the ERSA-based blind 
multisignature is used to distribute the power of a single 
authority to several persons, so that voters can abstain 
from voting after their registrations. 
Theorem 8(Fairness): The intermediate result of the 
election will not be leaked out. 
Proof.  Without all other authorities’ cooperation, no 
single authority can open a legal vote on his own.  
However, if all authorities conspire to open a vote before 
the deadline of vote casting, the fairness property will be 
violated.  Since this contradicts to our assumption, the 
fairness can be preserved. 
Theorem 9(Prevent Ticket-Buying and Extortion): Any 
voter cannot prove to any third party what his voting 
strategy is. 
Proof.  Since the publication of each authority does not 
reveal any relationship between a voter and his vote, and 
any voter can verify that his own vote has been taken into 
account in the final tally by just checking whether the tally 
published by each authority is identical or not. 
Accordingly, any voter has no evidence to show anyone 
else whom he voted to.  

6. Conclusions 

It has been pointed out that the most effective way to 
prevent the authority of a single authority voting system 
from being cheated is to develop a multiauthority voting 
system.  However, due to the lack of an efficient blind 
multisignature scheme, so far there still has no efficient 
multiauthority voting system.  In this paper, based on an 
extension of the RSA cryptosystem (called the ERSA 
system), we first proposed an efficient blind 
multisignature scheme.  Taking advantage of this blind 
multisignature scheme, we also developed a new 
multiauthority electronic election system.  Having been 
proved with experiments, our voting system can meet all 
security requirements of being a soundly electronic 
election system. Significantly, we have solved the vital 
problem of cheating by the authority and the problem of 
ticket–buying, which inherently exist in most single-
authority electronic voting systems suggested previously. 
In addition, our system has a number of practical 
properties, including (1) voters can abstain from voting 
after the registration phase. (2) The computations among 

voters are independent without the need of any global 
computation, so the system is suitable for conducting 
large-scale general elections. (3) Voters can determine the 
encryption /decryption keys of votes themselves. 
Especially, property (3) significantly prevents any voter 
from maliciously accusing the authorities of having altered 
his voting strategy.  
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