
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

311

Manuscript received December 5, 2006.
Manuscript revised December 25, 2006.

Vulnerability Analysis through a Graph-based Protection System

Mohammad Ebrahim Rafiei1, Rasool Jalili2
, Hamid Mousavi1.

Network Security Center, Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran*

* This research was partially supported by ITRC, # 500/8478

Summary
Vulnerability analysis is the process of specifying, designing, and
implementing a computer system without vulnerabilities,
discovering unknown vulnerabilities, and detecting
vulnerabilities’ possible exploits. Some approaches to achieve
such a process, integrate the concept of vulnerability into an
access control model, and use ad hoc ideas to analyze them.
Such approaches usually suffer from problems including weak
modeling abilities and separation of authorized and
unauthorized rules. To overcome such problems, we propose
VGBPS as a new graph-based protection system with the main
focus on vulnerabilities. Dealing with access rights,
vulnerabilities, attributes, and relations similarly and using edge
patterns to define rich types of rules, VGBPS adds the concept of
vulnerability into a general access control model in a way that
no extra effort is needed to handle vulnerabilities. In VGBPS,
vulnerability analysis can be done by answering the safety
problem. Considering safety problem more thoroughly, it is
proven that safety problem, in the general form of VGBPS, is an
NP-Complete problem. However, we introduce some simplified
cases of the model, such as monotonically increasing systems
and systems containing only permanent rules, in which the safety
problem can be answered in polynomial time
Keywords:
Vulnerability Analysis, Protection System, Safety Problem, NP-
Completeness.

1. Introduction.

Vulnerabilities are those failures in software which
may allow unauthorized access to attackers [1]. It is
almost impossible to implement a software component
with no bug or failure. Some approaches are required to
deal with specifying, designing, and implementing a
computer system without vulnerabilities, discovering
unknown vulnerabilities, and detecting their possible

exploits. This is usually referred to as vulnerability
analysis. Most of the previous researches in the area of
vulnerability analysis either focused on classification of
vulnerabilities [2][3][4] or provided a model for
vulnerability analysis [5][6][7][8].
In [5], Ramakrishnan and Seker proposed a model based
on Prolog and attempted to use new model checking
approaches to identifying vulnerabilities. Proposing a new
analyzing tool, Farmer and Spafford tried to analyze
vulnerabilities and their interactions in UNIX [6]. In [9],
Amman and Ritchey analyzed some network
vulnerabilities using a model checking approach. Graph-
based techniques have also been used to design protection
systems [5][7][8][9][10][11]. Polynomial time solutions to
safety sub-problems were also proposed in some of them
[7][10].

The approaches partially suffer from 1) disability to
decrease access rights, 2) limited categories of rules, 3)
state explosion in model checker based ones, 4) separation
of authorized and unauthorized rules, as well as some
other deficiencies mentioned in the literature which are out
of our interest. In this paper, we focus mainly on
separation of authorized and unauthorized rules. An access
right or privilege can be added to (or deleted from) a
model through two categories of commands; those
indicated by the access control model policy (which we
call them authorized rules) and those derived from a
vulnerability (to which we refer as unauthorized rules).
Based on the authors’ knowledge, none of the existing
models integrate these two categories together, while
many exploit scenarios contain the both categories.
Supporting such integration is one of our main
contributions in this paper.

Another important shortcoming in many of the
existing models is the lack of rules checking for the
absence of rights as pre-conditions. It is also impossible to

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

312

define specific attributes or vulnerabilities for an entity in
many of the models.

Considering the tradeoff between expressiveness of a
model and the complexity of the safety problem in it,
designing a simple and general model is not an easy task.
HRU is one of the first general models in which the safety
problem is challenged [12]. According to [13], safety
problem is the question of: “Given an initial configuration
of a protection system, whether subject s can obtain access
right r on an object o or not.” Other models such as SPM
[14] and TAM [15] were also proposed. However, the
safety problem is undecidable in all of the models.

Investigations to solve the safety problem resulted in
the appearance of some models such as Take-Grant (TG)
[16]. TG was initially proposed by Jones et al. and was
extended by the other researchers [10][17]. Frank and
Bishop in [17] introduced the notion of cost in TG in order
to find the shortest path toward the creation of an access
right. Shahriari et al. in [10] extended TG and added some
rules standing for the vulnerabilities exploitations. They
used their model to analyze some network vulnerabilities.

In this paper, we propose Vulnerability Graph-Based
Protection System (VGBPS) which integrates concept of
vulnerabilities into a general access control model.
Vulnerability analysis in the model is achieved using the
safety problem, considering both authorized and
unauthorized rules. In other words, integration of the
concept of vulnerabilities into the model helps
investigation of their effects on leakage of access rights,
through answering the safety problem. The model is aimed
to deal with as much features of the real-world systems as
possible, whilst the safety problem is solvable in a
reasonable time. To provide the features in VGBPS, we
use the same structure for access rights, vulnerabilities,
attributes, and relations as well as the concept of edge
patterns. The generality and flexibility of the definition of
rules also help to provide the features. We prove that the
safety problem in VGBPS is an NP-Complete problem.
However, we show how the model can be simplified to
some cases in which the safety problem is polynomially
solvable. As an example, it is shown how to solve the
safety problem in polynomial time for monotonically
increasing systems.

The rest of the paper is organized as follows. An
overview of VGBPS and its formal description are
presented in sections 2 and 3. The safety problem in
VGBPS is discussed in section 4. In sections 5 and 6, two
main applications of the model are proposed. Some
polynomially solvable sub-problems of the safety problem
are discussed in section 7. In section 8, we prove the NP-
completeness of the general problem. Potential of the
model is discussed in section 9. Finally, section 10
concludes the paper.

2. An overview of VGBPS

Most vulnerability analysis models considered access
rights and vulnerabilities from different perspectives. The
idea of combining vulnerabilities into an access control
system was initially introduced in [10]. Such a new
category of models attempts to define vulnerabilities and
their consequences as some access propagation rules
appended to the conventional access control rules. As a
result, the models can easily discover and analyze
potential attacks though both conventional access control
rules as well as vulnerabilities related rules. However,
inclusion of vulnerabilities into the access control model is
not sufficient. The extended model should also be as
general and simple as possible. It should be general in the
sense that different aspects of security systems to be
covered. Simplicity of the model is essential due to the
requirement of solving the safety problem in a reasonable
time. Satisfying all the mentioned objectives, we propose
Vulnerability Graph-Based Protection System (); which is
a graph-based protection system provisioning
vulnerabilities.

In order to support simplicity and expressiveness,
several access control systems utilize graph as the basis of
their models. VGBPS makes use of the graph as its basic
modeling concept to represent all the system entities and
their characteristics. Characteristics of entities include
their attributes and vulnerabilities plus access rights and
inter-entity relations. VGBPS models these characteristics
using a simple labeling technique on the modeling graph
edges. Access rights in VGBPS have the same meaning as
in access control systems. Vulnerabilities in VGBPS
indicate the association of some known vulnerabilities to
some entities. Similar to attributes in ABAC [18],
properties of entities such as age, type, and location are
modeled as attributes in VGBPS. By relation, in VGBPS,
we model interactions (such as the parent/child
relationship) between pairs of entities. The structure
represents the static view of the model which provides the
possibility of modeling more complex systems and dealing
similarly with the four abovementioned characteristics.

To signify the dynamic view of VGBPS, it is required
to define rules (commands). Each rule has some pre-
conditions and some post-conditions. Rules are formed as
four sets of edge patterns. Informally, each edge pattern is
a pattern indicating a set of edges in the model. Two of the
edge patterns’ sets specify pre-conditions, introducing
those edges whose existence/non-existence is compulsory
in the modeling graph. The other two sets denote post-
conditions, indicating edges to be added to and deleted
from the modeling graph.

The proposed model aims to be a general and simple
framework covering both vulnerability and access control
concepts simultaneously. It primarily provides a basis for

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

313

analyzing the effects of vulnerabilities more easily. In the
next sections, after providing a formal description of the
model, the way of expressing some other access control
system through VGBPS is presented. The main
contribution of this paper is to express and model
vulnerabilities and their effects using a general access
control model as well as demonstrating the safety problem
complexity in different cases.

3. VGBPS in Detail

A formal specification of VGBPS is provided in theis
section. VGBPS is defined as a tuple (G, R), where G is
the current modeling graph and R is the set of rules
indicating how G can be changed. The definition does not
include the safety problem, which is covered later in this
paper. The following subsections discuss the modeling
graph G and the rule set R respectively.

3.1. The Modeling Graph G:

Let Vall be all entities (vertices or nodes) in the system
and Eall be all potential edges. G(V, E) is the modeling
graph where V ⊆ Vall and E ⊆ Eall. For the sake of
simplicity, we define edges as a triple (v, u, l) in G, where
v and u are source and destination vertices (nodes) and l
denotes the edge’s associated label. The label set L
consists of four sets Lvul, Lattr, Lrgt, and Lrel, to demonstrate
vulnerabilities, attributes, access rights, and relations
respectively. In other words:

v, u∈Vall, l∈L, L = LvulU LattrU LrgtU Lrel

Using our definition of edges; vulnerabilities,
attributes, access rights, and relations can be dealt with
similarly. To depict that a node v has read access over u,
we can use the edge (v, u, read). To demonstrate a
vulnerability vul in node a, the loop edge (a, a, vul) can be
used. To assign an attribute attr to the node a, the loop
edge (a, a, attr) may be employed. Having a relation rel
between a and b, the edge (a, b, rel) can be used. Based on
the nature of vulnerabilities and attributes, Lvul and Lattr
should be used only in loop edges. Accordingly, the
following condition should be held:

∀ E = (v0, v1, l) | l∈LvulU Lattr→ v0 = v1

Having such a graph, we mainly focused on edges to

demonstrate all characteristics under study. In this graph,
nodes are created initially, and they will be remained
unchanged. There is no need to remove a node; instead we
can remove all its connected edges. We also assume that
there is no need to create new nodes. One can simulate
create command for nodes by considering some extra
nodes in the modeling graph with no edge and simply use

one of them instead of creating a new node. However, this
resulted in the creation of a limited number of nodes.

3.2. Commands in VGBPS

Edge pattern plays an important role in VGBPS rule
definition. An edge pattern is a triple (a, b, t), where a
and b belongs to the set of defined phrases called PV
(Pattern Variables), and t∈L. We refer to the set of all
possible edge patterns as EP. The most important concern
regarding edge patterns is to identify edges matching an
edge pattern.

Definition 1. We say edge e(v, u, l) matches edge
pattern ep(a, b, t); if and only if l and t be identical and if
a = b then v = u. In this case, we say a and b respectively
match v and u or vice versa. Formally:

match: EP×Eall→ {true, false}
match((a, b, t), (v, u, l)) = true ⇔ t = l∧ (a = b→ v = u)

For example, the edge pattern ep(a, b, r) matches all

edges labeled r, or ep(a, a, o) matches all loop edges
labeled o. An edge pattern is not individually useful in rule
definition; a set of edge patterns is required to be matched
with a set of edges.

Definition 2. Suppose that EPS is a subset of EP, (that
is EPS is a set of edge patterns). EPS matches with
Em⊆ Eall, if and only if:

EPSEm = ∧

)),(|E(| EPS m eepmatcheep ∈∃∈∀ ∧

))....(
)....(
)....((

),(
),(|E,,EPS,

2121

2121

2121

22

11m2121

beaebepaep
bebebepbep
aeaeaepaep

eepmatch
eepmatcheeepep

=→=
∧=→=
∧=→=

→∧
∈∈∀

where e.a and e.b are the first and the second items of
tuple e. We call Em a setmatch of EPS. The definition
implies that if any a∈PV matched with a vertex v in one
of the edge-match, it can not match with any other vertex.

Definition 3. Rule set R is the set of rules that each of
them is a tuple (EPe, EPn, EPa, EPd) where EPe, EPn, EPa,
EPd are all subsets of EP.

Informally, EPe and EPn are two sets of edge patterns
indicating which edges should exist/not exist in order that
the rule can be applied, and EPa and EPd respectively
represent new edges which will be added to and the edges
which will be removed from graph G after the rule
application.

Definition 4. Rule r(EPe, EPn, EPa, EPd) is applicable
if there exists a setmatch Em for EPS =
EPeUEPnUEPaUEPd where

matchededge(EPe, Em, EPS)⊆E ∧
matchededge(EPn, Em, EPS)⊆Eall \ E

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

314

Fig. 1. A simple IDS model: a) before applying the
IDS rule. b) after applying the IDS rule.

where matchededge(EPx, Ex, EPSx) returns the related
edges to edge patterns in EPx from found setmatch Ex for
EPSx. Rule r is also effective if:

matchededge(EPa, Em, EPS)⊆/ E ∨
matchededge(EPd, Em, EPS)⊆/ Eall \ E

Formally, applying an applicable rule r(EPe, EPn, EPa,

EPd)∈R in protection system PS(G, R) means to update
current modeling graph G to G’ as follows:

VG’ = VG,

EG’ = (EGU matchededge(EPa, Em,
EPS))\ matchededge(EPd, Em, EPS)

where Em is a setmatch for EPS = EPeU EPnU EPaU EPd.
The application of rule r on modeling graph G which
generate new modeling graph G’ is also shown with
G ra G’. We can show this using PS(G, R) ra PS(G’,
R), but we do not usually use this since the rule set R is
unchangeable.

The rule definition is more general than the one
proposed in [12] especially because of the existence of set
En. For example, consider a system running an Intrusion
Detection System (IDS) to monitor activities of some
entities. Also, assume that the attacker A can gain write
access to a given object if it is not being monitored by IDS.
As shown in Fig. 1, the system can be represented in our
model by a new vertex in the modeling graph in place of
the IDS alongside with its associated edges, labeled m, to
the nodes which it is monitoring. Adding the following
rule can show how an attacker may reach her goal:

r (∅, {(b, o, m)}, {(a, o, w)}, ∅)

The new rule implies that if the IDS (b) is not
monitoring (m) a specific object, called o, then the attacker
(a) can gain write (w) access to o. As you can see, VGBPS
can model this kind of exploits very easily, since many of
current model needs extra efforts to model it and some of
them are not even capable of modeling it. Note that too
many of such exploits can be addressed in the real world.

4. Safety Problem in VGBPS

Before defining the safety problem, we express the
concept of witness and the predicate can●share [19].

Definition 5. Having a protection system PS(G0, R), a
witness is a sequence of rules, r1, r2 … rn, (ri∈R, 1≤ i ≤ n)
which the first one is applicable to the current modeling
graph G0 and ri+1 is applicable to the resulted modeling
graph after application of first i rules in the sequence. That
is G0 1ra G1 2ra G2… nra Gn.

Definition 6. Let l be a label (l∈L) and, v and u be
two distinct vertices in the protection system PS(G, R).
The predicate can●share(v, u, l) is true in PS if and only if
there is a witness whose application to modeling graph G
generates a new graph containing the edge (u, v, l).

Definition 7. Having the protection system PS(G, R)
and a set of can●share predicates P, the Safety Problem is
the problem of finding a witness w whose application to
graph G violates (makes true) at least one of the predicates
included in P.

While there are other predicates which can be
included in P, they are not required to be considered
explicitly. This is due to the possibility of answering them
based on our answer to the basic predicate can●share. As
an example, we show how to answer the can●revoke
predicate using can●share. The predicate can●revoke can
be defined as follows.

Definition 8. Let v and u be two distinct vertices in
the modeling graph G0 of the protection system PS(G0, R)
and there is an edge between v and u labeled r∈L. The
predicate can●revoke(v, u, r) is true in PS if and only if
there is a witness whose application to G0 generates a new
graph containing no edge from v to u labeled r.

To answer this predicate, we can add following rule to
the set of rules R:

newrule(∅, {(a, b, r)}, {(a, b, r')}, ∅)

Provided that label r' has not been used in any other
rules or edges, can●share(v, u, r') will not be satisfied
without using the new rule, which involves non-existence
of an edge labeled r between v and u. Accordingly, the
predicates can●revoke(v, u, r) and can●share(v, u, r') can
be used interchangeably. Despite all of these, one may add
its own defined predicates to the security policy P.
Obviously in special cases of the model (for example
when EPn of all rules is empty), can●share may not be
able to describe the whole policy and it may be obligatory
to add some new predicate to P.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

315

5. Simulating other Protection Systems
To illustrate the expressiveness of VGBPS, it can be

shown that many of the existing models can be simulated
using our protection system. As an example, we show how
to simulate Take-Grant model [16][19] using our
protection system. Let Lattr = {sub, obj}, Lrgt = {t, g, r, w},
Lrel = Lvul = ∅, and PV = {a, b, c}; PS(G, R) simulates the
known Take-Grant model, where G is almost the same as
the Take-Grant graph model. The only difference is that in
G we use loop edges for nodes’ attributes (subject or
object). The rule set R includes the following rules:

• taker ({(a, b, t), (a, a, sub), (b, c, r)}, ∅, {(a, c, r)},
∅)

• grantr ({(b, a, g), (b, b, sub), (b, c, r)}, ∅, {(a, c,
r)}, ∅)

• remover ({(a, b, r), (a, a, sub)}, ∅, ∅, {(a, b, r)})

Similar to taker, we can also define taket, takew, and

takeg. Obviously, more complex models can also be
simulated similarly.

6. Using the Model for Vulnerability

Analysis
As already stated, the model facilitates an easier

vulnerability analysis by dealing with vulnerabilities
similar to access rights. For example, consider the SQL-
injection vulnerability, in which an application places
input directly into a SQL statement without filtering out its
dangerous characters properly. This may grant the users
some unprivileged access rights. Fig. 2 shows how we can
model this vulnerability in its simplest case. Briefly, the
SQL_inj attack says that if an application App, having
access to some part (tbi) of a database (DB,) has SQL_inj
vulnerability, then any user (A) having execute access on
App may gain the access to that part (tbi). This attack can
be shown as the following rule:

rSQL_inj ({(a, app, exec), (app, app, SQL_inj), (app, tb,
access), (tb, c, b), (c, c, DB)}, ∅, {(a, tb, access)}, ∅)

Fig. 2. a) The system before applying the rule rSQL_inj and
b) The system after application of the rule. The edge (tb, db,
b) indicates that node tb belongs to db, and (db, db, DB)
indicates that node db is a database.

As the example shows, modeling vulnerabilities and
also their possible effects do not need any new
consideration in the protection system. This way, many of
tasks related to vulnerability analysis can be done only by
answering the safety problem. For example, to find out
exploits of SQL-injection, it is enough to find out which
access rights can be added to the model using rSQL_inj
beside other existing rules of the system and this can easily
be done by answering some can●share predicates.

7. Polynomially Solvable Sub-Problems

In order to demonstrate the flexibility of VGBPS and
its capability to model special systems with less cost, we
provide some instances of the model in which safety
problem can be solved in polynomial time. Let’s call the
rules which can decrease edges from the modeling graph
in the protection system as decreasing rules. Initially, we
can divide decreasing rules into two main classes; the
rules which do not add new edges to the model, and those
which add new edges in addition to removing some other
edges. Later we will show that we can eliminate the
former rules in some cases.

Definition 9. Monotonically decreasing rules are rules
which may decrease edges, that is, EPa = ∅.

Most of DoS attacks [20] and also DDoS attacks are
clear examples of monotonically decreasing rules, which
may cause some services to be inaccessible, without
adding new access rights (edges) to the system. Similarly,
we can define monotonically increasing rules. We call
these two types of rules monotonic rules.

Definition 10. Simple rules are the rules in which
EPn= ∅.

In other words, applying a simple rule just involves
checking existence of some edges. Application of simple
rules take O(1) time, as the sets EPe, EPa, and EPd can
contain O(1) number of edge patterns. Recall that in its
general form, application of a rule may require the graph
not to include some edges. Most of the previously
proposed graph-based models are restricted to simple rules.
Whereas, there are some kinds of exploits in which we
have to be sure that some edges do not exist in the
modeling graph such as the IDS exploit example described
in section 3.

Theorem 1. In a protection system PS(G, R), the
predicate can●share can be answered in polynomial time,
if R contains only rules that are both simple and
monotonically increasing.

Proof. An algorithm like the one proposed by Frank
and Bishop in [17] can compute the closure of the
protection system as shown in Fig. 3. The closure is
informally a graph resulted form initial modeling graph G

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

316

after applying all possible rules. The proof of polynomial
time complexity of this algorithm is similar to theirs as
well. Thus, to answer can●share(v, u, r), we can check
whether the edge (v, u, r) exists in the closure or not. ▀

Corollary 1. In a protection system PS(G, R), the

predicate can●share can be answered in polynomial time,
if R contains only those rules which are both simple and
monotonic.

Monotonically decreasing rules can not cause new
edges to be added to the modeling graph, since the rules
are simple. Thus, we can simply eliminate all
monotonically decreasing rules and use the closure-based
algorithm described above to answer the predicate
can●share in polynomial time.

Corollary 2. In a similar way it can be shown that if
all defined rules were simple, then monotonically
decreasing rules could be removed from the protection
system. But this time, since some decreasing rules still
may exist in the model, we can not use the same closure-
based algorithm to answer the safety problem.

1. Let list F be initiated by the set of all

edge of the modeling graph PS.G
2. while (!isEmpty(F))
3. e = head (F)
4. Check for all applicable monotonically

increasing rules which e is involved in
5. foreach (resulting edge like f)
6. add f to PS.G
7. if (f has never been in F before)
8. Add f to F
9. Delete e from F
10.return PS

Fig. 3. Gen_Closure_4MIR: A polynomial time algorithm which
answers can●share predicate when the protection system
contains only simple and monotonically increasing rules.

Definition 11. An edge in a modeling graph is
permanent, if and only if its associated access right will
never be removed because of deletion of any other edges.

The definition implies that no matter whether the
conditions which have caused adding a permanent edge
still hold or not, it will continue to exist in the graph
permanently, unless it will be deleted by a rule. As an
example of this type of access right, suppose the attacker
A wants to use the passwords stored in a file f on a host in
its attack scenario. As soon as A achieves read access to f,
it has reached its goal. Even encrypting the password file f
later on, (which removes the read access of A,) will not
hide the achieved information from A, because A has
already read what it wanted. Thus, the read access is
permanent. Therefore, the only way to remove a
permanent edge is to delete it directly by a rule; in this
example, changing the password as an instant.

We will refer to edges which are not permanent as
impermanent edges. As an example, consider that an
attacker wants to use a service which needs authentication.
Suppose the attacker has acquired the information of an

account for the service. The attacker can use the service as
long as the promised account has not been disabled.
Therefore, the attacker's access to the service is
impermanent.

Definition 12. A rule is permanent if it generates only
permanent edges; otherwise it is impermanent.

In the case of impermanent rules, if the preconditions
of a previously applied rule dose not hold any more, in
addition to removing the edges generated by that rule,
those edges which has removed because of that rule
should be added again to the modeling graph. Next
theorem deals with an interesting property of the systems
which use only permanent and simple rules:

Theorem 2. Let PS(G, R) be a protection system in

which all initial edges are permanent and only the
permanent and simple rules are allowed. In such a system,
the predicate can●share can be answered in polynomial
time.

Proof. The main idea is to construct the closure of the
modeling graph using a conflict graph. The conflict graph
has one vertex in association with every possible edge in
the modeling graph and is initially empty. We say that two
edges in the closure have conflict (according to the
conflict graph) if and only if there is a directed path
between their related vertices in the conflict graph. The
rule rl(EPe, ∅, EPa, EPd) is applicable according to the
conflict graph if and only if the setmatch found for EPe
contains non-conflicting edges according to the conflict
graph.

Initially the closure is identical to the graph G. In each
step of the algorithm, we will apply an applicable rule
according to the conflict graph and update two graphs
(closure and conflict graphs) as follows; Let rl(EPe, ∅, EPa,
EPd) be the selected rule. To apply rl the edges produced
by EPa will be added to the closure and all their conflicts
will be removed from the conflict graph (that is, for each
edge e produced by EPa, we will remove all the edges
outgoing from e's related vertex in the conflict graph). The
edges included in EPd , if there is any, will not be removed
from the closure; instead we will add directed edges from
EPd's associated vertices in the conflict graph to those of
EPa.

This step is repeated until there is no applicable rule
according to the conflict graph. Thus, if there is an edge
from vertex v to vertex u labeled r in the computed closure,
the answer to the predicate can●share(v, u, r) will be yes.
Obviously, the algorithm is polynomial because in each
step at least one edge will be added to the closure. Note
that there is no need to consider monotonically decreasing
rules according to corollary 2. Since the closure contains
polynomial number of edges and each step of the
algorithm needs polynomial time, the time complexity of
the algorithm will be polynomial too.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

317

8. NP-Completeness Results

To show the NP-Completeness of the general problem,
we use reduction from 3-SAT [21]. 3-SAT is a special
case of Boolean satisfiability (SAT) problem. SAT is the
first established NP-complete problem [22] and all typical
NP-Complete problems can be directly reduced to it.

Basically, SAT problem is either to find a satisfying
truth assignment of all variables or to prove there is no
satisfying assignment for a given Boolean formula
(usually in Conjunctive Normal Form (CNF).) 3-SAT is a
special case of SAT in which each clause has exactly three
literals.

Theorem 3. The safety problem in the protection
system PS = (G, R) is NP-complete if the initial edges and
rules are not necessarily permanent.

Proof. The safety problem can be interpreted as
finding a witness which makes one or more predicates in P
true. Therefore, it is clear that if we have a witness, it is
possible to verify whether the witness violates security
policy or not in polynomial time. That is, the problem is in
NP. Note that since a witness includes only different rules
it size is polynomial. To prove NP-Completeness, we use
reduction from 3-SAT. Letϕ be an instance of 3-SAT
problem. We construct protection system PS(G, R) such
thatϕ is satisfiable if and only if there exists a witness in
PS which violates at least one of the predicates included in
P.

Corresponding to each clause Ci inϕ ,G has a node Ci.
There are three vertices yi, xi and x i in G, corresponding
to each literal xi in 3-SAT problem. Graph G also contains
two other vertices T and T’. T has a specific type called m
which is shown by a loop labeled m on it. For each literal
xi, we add directed edges from yi to both xi and x i labeled
r. If the ith clause contains xj (x j), we will put a directed
edge from Ci to xj (x j) labeled s and true, and another
directed edge to x j (xj) labeled false. For each i, there is
an edge from yi to T labeled notok. This means that yet we
do not know whether xi has consistent values in all of its
occurrences. The initial graph which is constructed from a
sample 3-SAT problem is shown in Fig. 4.

The rule set R contains 5 rules:
1. If the clause c contains the literal x (a variable or

its negation), we will assign the true value to x
and false to its negation:
r1 ({(c, x, s), (y, x, r), (y, x’, r), (c, x, false)}, ∅,

{(c, x, true), (c, x’, false)}, {(c, x, false),
(c, x’, true)})

2. If the clause c contains literals x1 and x2 in which

both have the true value, we can assign the false
value to one of them and true value to its
negation:

r2 ({(c, x1, s), (y, x1, r), (y, x’1, r), (c, x1, true),
(c, x2, s), (c, x2, true)},

∅,
{(c, x1, false), (c, x’1, true)},
{(c, x1, true), (c, x’1, false)})

3. If the literal x has got true value in all clauses

which contain x, a new edge can be added to the
modeling graph G from y to T labeled ok, where
y is the vertex having an edge to x labeled r:

r3 ({(y, x, r)}, {(a, x, false)},
{(y, T, ok)}, {(y, T, notok)})

4. Similar to the previous rule for x’s false value:

 r4 ({(y, x, r)}, {(a, x, true)},
{(y, T, ok)}, {(y, T, notok)})

5. If all literal get consistent values in their related

clauses, a new edge can be added from T to T’
labeled ok which shows that ϕ is satisfiable (m
is the type of node T):

r5 ({(T, T, m)}, {(a, T, notok)},
{(T, T’, ok)}, ∅)

It is not so hard to show that if there is a satisfying

truth assignment forϕ , there will be a witness in SP which
violates the predicate can●share(T, T’, ok) and vice versa.

9. Discussion

As already mentioned, VGBPS is an appropriate
framework for vulnerability analysis. The rules
(commands) in this model can basically be considered in
two categories; ordinary access propagation rules just like
rules in access control models and vulnerability related
rules. The latter one checks for the existence of a
vulnerability in its pre-condition. The way, we defined
general rules, make it possible to define many other forms
of rules too. Having both forms of rules, we can study the
effect of vulnerabilities in access propagation much more
easily. For example, we can simply use an edge created
from a vulnerability rule as the pre-condition of an access
propagation rule or vice versa. This is simply what we can
not have in many other vulnerability analysis models.

Additionally, VGBPS considers the non-existence of
a right as pre-condition of rules too, which many famous
protection systems such as HRU, TAM, and TG do not
support it. This type of rules is especially important in
modeling SoD (Separation of Duty). We also consider the
decreasing rules in VGBPS, which is necessary in
modeling DoS and DDoS attacks. Most of vulnerability
analysis techniques do not consider this concept.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

318

Combining decreasing rules with increasing ones, we can
model some complex events such as changing group of a
user easily.

Adding concepts such as nodes attributes, their
relations, and of course their vulnerabilities make it
possible to express those behaviors of real systems which
are important in vulnerability analysis with no trouble.
This was not provided in early models like HRU and TG,
but they are advancing in new models such as TAM and
ABAC. Moreover, we tried to express this kind of features
uniformly. This makes the vulnerability analysis easier,
since we can deal with different concepts in the same way.
Using the concept of edge-pattern also helps with this
uniformity.

Because of dealing with the concept of vulnerabilities
just like attributes and access rights, the task of
vulnerability analysis will highly be depend on the safety
problem. In other words, many of tasks in vulnerability
analysis can be done only by answering the safety problem.
Thus, we examine different variation of the safety problem
deeply in this paper.

Another important application of VGBPS may be in
vulnerability analysis based on other models. For example,
one may want to add SQL injection vulnerability to TG
and analyze it. Through the paper, we showed how to
simulate other models with VGBPS. This way, we can just
simulate TG with VGBPS and add the SQL injection to
selected nodes in the new model and add its related rules.
This way, the new model can easily be used in
vulnerability analysis.

10. Conclusions and Future Work

In this paper, we proposed VGBPS which is a new
graph-based protection system with the main focus on
vulnerability analysis. Dealing with different concepts
such as access rights, vulnerabilities, relations, and
attributes similarly, as well as the edge-pattern concept
and general type of rules are of the most important
features of VGBPS. We also showed how VGBPS can
simulate some other models, and how it can contribute in
vulnerability analysis more easily.

As the safety problem is widely used for vulnerability
analysis in VGBPS, it gets more importance. Although we
showed that the safety problem in its general form in
VGBPS is NP-Complete, there are still cases in which the
safety problem can be answered in polynomial time. We
introduced ideas of simple, permanent, and monotonically
decreasing rules alongside with some simplified sub-
problems of the safety problem. We illustrated how the
monotonically decreasing rules can be eliminated when a
system contains only simple rules. We also proved that the
safety problem can be answered polynomialy in a system

which is restricted to rules which are both permanent and
simple.

Investigating more polynomialy solvable problems
can be considered as an interesting future work. Especially,
relevant problems to impermanent rules are worthy of
considering more thoroughly. Using the system to model
vulnerabilities and trying to analyze them are of other
future works. We are especially interested to compare the
effects of vulnerabilities while being located in different
nodes of the system or while interacting with each others.

References

[1] M. Bishop, “Computer Security: The Art and Science,”
Addison-Wesley, 2003.

[2] M. Bishop, “Vulnerabilities Analysis,” Proceedings of
Recent Advances in Intrusion Detection, pp. 125–136,
1999.

[3] T. Aslam, I. Krsul, and E. H. Spafford, “Use of A
Taxonomy of Security Faults,” Proceedings of the 19th
National Information Systems Security Conference, pp.
551–560, 1996.

[4] R. Abbott, et al., “Security Analysis and Enhancements of
Computer Operating Systems,” Technical Report NBSIR
76–1041, ICET, National Bureau of Standards,
Washington, DC 20234, 1976.

[5] C. Ramakrishnan and R. Sekar, “Model-based
Vulnerability Analysis of Computer Systems,”
Proceedings of the 2nd International Workshop on
Verification, Model Checking, and Abstract Interpretation,
1998.

[6] D. Farmer and E.H. Spafford, “The Cops Security Checker
System”, Technical Report CSDTR-993, Purdue
University, 1991.

[7] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable,
Graph-based Network Vulnerability Analysis,”
Proceedings of the 9th ACM Conference on Computer and
Communications Security, Washington, 2002.

[8] D. Zerkle and K. Levitt, “NetKuang - A Multi-host
Conjuration Vulnerability Checker,” Proceedings of 6th
USENIX Security Symposium, San Jose, California, pp.
195-204, 1996.

[9] R.W. Ritchey and P. Ammann, “Using Model Checking to
Analyze Network Vulnerabilities,” Proceedings of the
2000 IEEE Symposium on Security and Privacy, pp. 156-
165, Oakland, 2000.

[10] H.R. Shahriari, R. Sadoddin, R. Jalili, R. Zakeri, and A.R.
Omidian, “Network Vulnerability Analysis through
Vulnerability Take-Grant Model (VTG),” Proceedings of
the 7th International Conference on Information and
Communications Security (ICICS’05), 2005.

[11] C. Phillips and L. Swiler, “A Graph-based System for
Network-Vulnerability Analysis,” Proceedings of the New
Security Paradigms Workshop, pp. 71-79, Charlottesville,
VA, 1998.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

319

[12] M.A. Harrison, W.L. Ruzzo, and J.D. Ullman, “Protection
in Operating Systems,” Communications of the ACM,
19(8), pp. 461–471, August 1976.

[13] J.S. Shapiro, “The Practical Application of a Decidable
Access Control Model”, Technical Report SRL-2003-04,
John Hopkins University, 2003.

[14] R. Sandhu, “The Schematic Protection Model: Its
Definition and Analysis for Acyclic Attenuating
Schemes,” Journal of the ACM, 35 (2), pp. 404–432, 1988.

[15] R. Sandhu, “The Typed Access Matrix Model,” IEEE
Symposium on Security and Privacy, pages 122-136, 1992.

[16] A.K. Jones, R.J. Lipton, and L. Snyder, “A Linear Time
Algorithm for Deciding Security,” Proceedings of the 17th
Annual FOCS Conference, pp. 33-41, Houston, 1976.

[17] J. Frank and M. Bishop, “Extending the Take-Grant
Protection System,” Technical Report, 1996.

[18] X. Zhang, Y Li, and D. Nalla, “An Attribute Based Access
Control Matrix Model,” Proceedings of the 2005 ACM
symposium on Applied computing, 2005.

[19] M. Bishop, “Conspiracy and Information Flow in the
Take-Grant Protection Model,” Journal of Computer
Security, vol. 4(4), pp. 331-360, 1996.

[20] A.R. Sharafat and M.S. Fallah, “A Framework for the
Analysis of Denial of Service Attacks,” The Computer
Journal, Oxford University Press, Vol. 47, No. 2, pp 147-
162, 2004.

[21] M.R. Garey, and D.S. Johnson, “Computers and
Intractability: A Guide to the Theory of NP-
Completeness,” W.H. Freeman, New York, USA, 1979.

[22] S.A. Cook, “The Complexity of Theorem Proving
Procedures,” Proceedings of the 3rd Annual ACM
Symposium on the Theory of Computing, New York, pp.
151-158, 1971.

Mohammad Ebrahim Rafiei received his
B.Sc. degree in Software Engineering from
University of Tehran, Iran in 2004. He is
currently an M.Sc. student in Sharif
University of Technology, Tehran, Iran. His
research interests are Access Control models
and Vulnerability Analysis.

Rasool Jalili received his PhD in Computer
Science from The University of Sydney,
Australia in 1995. He joined the Department
of Computer Engineering, Sharif University
of Technology, Tehran, Iran, as an assistant
professor. His research interests are
Distributed Systems and Information
Security.

Hamid Mousavi received his B.Sc. degree in
Software Engineering from University of
Tehran, Iran in 2004. He is currently an M.Sc.
student in Sharif University of Technology,
Tehran, Iran. His research interests are
Security Models, Web Search Engines, and
Internet Measurements.

