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Summary 
Vulnerability analysis is the process of specifying, designing, and 
implementing a computer system without vulnerabilities, 
discovering unknown vulnerabilities, and detecting 
vulnerabilities’ possible exploits.  Some approaches to achieve 
such a process, integrate the concept of vulnerability into an 
access control model, and use ad hoc ideas to analyze them. 
Such approaches usually suffer from problems including weak 
modeling abilities and separation of authorized and 
unauthorized rules. To overcome such problems, we propose 
VGBPS as a new graph-based protection system with the main 
focus on vulnerabilities. Dealing with access rights, 
vulnerabilities, attributes, and relations similarly and using edge 
patterns to define rich types of rules, VGBPS adds the concept of 
vulnerability into a general access control model in a way that 
no extra effort is needed to handle vulnerabilities. In VGBPS, 
vulnerability analysis can be done by answering the safety 
problem. Considering safety problem more thoroughly, it is 
proven that safety problem, in the general form of VGBPS, is an 
NP-Complete problem. However, we introduce some simplified 
cases of the model, such as monotonically increasing systems 
and systems containing only permanent rules, in which the safety 
problem can be answered in polynomial time 
Keywords: 
Vulnerability Analysis, Protection System, Safety Problem, NP-
Completeness. 

1. Introduction. 

Vulnerabilities are those failures in software which 
may allow unauthorized access to attackers [1]. It is 
almost impossible to implement a software component 
with no bug or failure. Some approaches are required to 
deal with specifying, designing, and implementing a 
computer system without vulnerabilities, discovering 
unknown vulnerabilities, and detecting their possible 

exploits. This is usually referred to as vulnerability 
analysis. Most of the previous researches in the area of 
vulnerability analysis either focused on classification of 
vulnerabilities [2][3][4] or provided a model for 
vulnerability analysis [5][6][7][8].  
In [5], Ramakrishnan and Seker proposed a model based 
on Prolog and attempted to use new model checking 
approaches to identifying vulnerabilities. Proposing a new 
analyzing tool, Farmer and Spafford tried to analyze 
vulnerabilities and their interactions in UNIX [6]. In [9], 
Amman and Ritchey analyzed some network 
vulnerabilities using a model checking approach. Graph-
based techniques have also been used to design protection 
systems [5][7][8][9][10][11]. Polynomial time solutions to 
safety sub-problems were also proposed in some of them 
[7][10].  

The approaches partially suffer from 1) disability to 
decrease access rights, 2) limited categories of rules, 3) 
state explosion in model checker based ones, 4) separation 
of authorized and unauthorized rules, as well as some 
other deficiencies mentioned in the literature which are out 
of our interest. In this paper, we focus mainly on 
separation of authorized and unauthorized rules. An access 
right or privilege can be added to (or deleted from) a 
model through two categories of commands; those 
indicated by the access control model policy (which we 
call them authorized rules) and those derived from a 
vulnerability (to which we refer as unauthorized rules). 
Based on the authors’ knowledge, none of the existing 
models integrate these two categories together, while 
many exploit scenarios contain the both categories. 
Supporting such integration is one of our main 
contributions in this paper. 

Another important shortcoming in many of the 
existing models is the lack of rules checking for the 
absence of rights as pre-conditions. It is also impossible to 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006 
 

 

312 

define specific attributes or vulnerabilities for an entity in 
many of the models.  

Considering the tradeoff between expressiveness of a 
model and the complexity of the safety problem in it, 
designing a simple and general model is not an easy task. 
HRU is one of the first general models in which the safety 
problem is challenged [12]. According to [13], safety 
problem is the question of: “Given an initial configuration 
of a protection system, whether subject s can obtain access 
right r on an object o or not.” Other models such as SPM 
[14] and TAM [15] were also proposed. However, the 
safety problem is undecidable in all of the models.  

Investigations to solve the safety problem resulted in 
the appearance of some models such as Take-Grant (TG) 
[16]. TG was initially proposed by Jones et al. and was 
extended by the other researchers [10][17]. Frank and 
Bishop in [17] introduced the notion of cost in TG in order 
to find the shortest path toward the creation of an access 
right. Shahriari et al. in [10] extended TG and added some 
rules standing for the vulnerabilities exploitations. They 
used their model to analyze some network vulnerabilities.  

In this paper, we propose Vulnerability Graph-Based 
Protection System (VGBPS) which integrates concept of 
vulnerabilities into a general access control model. 
Vulnerability analysis in the model is achieved using the 
safety problem, considering both authorized and 
unauthorized rules. In other words, integration of the 
concept of vulnerabilities into the model helps 
investigation of their effects on leakage of access rights, 
through answering the safety problem. The model is aimed 
to deal with as much features of the real-world systems as 
possible, whilst the safety problem is solvable in a 
reasonable time. To provide the features in VGBPS, we 
use the same structure for access rights, vulnerabilities, 
attributes, and relations as well as the concept of edge 
patterns. The generality and flexibility of the definition of 
rules also help to provide the features. We prove that the 
safety problem in VGBPS is an NP-Complete problem. 
However, we show how the model can be simplified to 
some cases in which the safety problem is polynomially 
solvable. As an example, it is shown how to solve the 
safety problem in polynomial time for monotonically 
increasing systems.  

The rest of the paper is organized as follows. An 
overview of VGBPS and its formal description are 
presented in sections 2 and 3. The safety problem in 
VGBPS is discussed in section 4. In sections 5 and 6, two 
main applications of the model are proposed. Some 
polynomially solvable sub-problems of the safety problem 
are discussed in section 7. In section 8, we prove the NP-
completeness of the general problem. Potential of the 
model is discussed in section 9. Finally, section 10 
concludes the paper. 

2. An overview of VGBPS 

Most vulnerability analysis models considered access 
rights and vulnerabilities from different perspectives. The 
idea of combining vulnerabilities into an access control 
system was initially introduced in [10]. Such a new 
category of models attempts to define vulnerabilities and 
their consequences as some access propagation rules 
appended to the conventional access control rules. As a 
result, the models can easily discover and analyze 
potential attacks though both conventional access control 
rules as well as vulnerabilities related rules. However, 
inclusion of vulnerabilities into the access control model is 
not sufficient. The extended model should also be as 
general and simple as possible. It should be general in the 
sense that different aspects of security systems to be 
covered. Simplicity of the model is essential due to the 
requirement of solving the safety problem in a reasonable 
time. Satisfying all the mentioned objectives, we propose 
Vulnerability Graph-Based Protection System (); which is 
a graph-based protection system provisioning 
vulnerabilities.  

In order to support simplicity and expressiveness, 
several access control systems utilize graph as the basis of 
their models. VGBPS makes use of the graph as its basic 
modeling concept to represent all the system entities and 
their characteristics. Characteristics of entities include 
their attributes and vulnerabilities plus access rights and 
inter-entity relations. VGBPS models these characteristics 
using a simple labeling technique on the modeling graph 
edges. Access rights in VGBPS have the same meaning as 
in access control systems. Vulnerabilities in VGBPS 
indicate the association of some known vulnerabilities to 
some entities. Similar to attributes in ABAC [18], 
properties of entities such as age, type, and location are 
modeled as attributes in VGBPS. By relation, in VGBPS, 
we model interactions (such as the parent/child 
relationship) between pairs of entities. The structure 
represents the static view of the model which provides the 
possibility of modeling more complex systems and dealing 
similarly with the four abovementioned characteristics. 

To signify the dynamic view of VGBPS, it is required 
to define rules (commands). Each rule has some pre-
conditions and some post-conditions. Rules are formed as 
four sets of edge patterns. Informally, each edge pattern is 
a pattern indicating a set of edges in the model. Two of the 
edge patterns’ sets specify pre-conditions, introducing 
those edges whose existence/non-existence is compulsory 
in the modeling graph. The other two sets denote post-
conditions, indicating edges to be added to and deleted 
from the modeling graph.  

The proposed model aims to be a general and simple 
framework covering both vulnerability and access control 
concepts simultaneously. It primarily provides a basis for 
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analyzing the effects of vulnerabilities more easily. In the 
next sections, after providing a formal description of the 
model, the way of expressing some other access control 
system through VGBPS is presented. The main 
contribution of this paper is to express and model 
vulnerabilities and their effects using a general access 
control model as well as demonstrating the safety problem 
complexity in different cases. 

3. VGBPS in Detail 

A formal specification of VGBPS is provided in theis 
section. VGBPS is defined as a tuple (G, R), where G is 
the current modeling graph and R is the set of rules 
indicating how G can be changed. The definition does not 
include the safety problem, which is covered later in this 
paper. The following subsections discuss the modeling 
graph G and the rule set R respectively.  
 
3.1. The Modeling Graph G: 

Let Vall be all entities (vertices or nodes) in the system 
and Eall be all potential edges. G(V, E) is the modeling 
graph where V ⊆ Vall and E ⊆ Eall. For the sake of 
simplicity, we define edges as a triple (v, u, l) in G, where 
v and u are source and destination vertices (nodes) and l 
denotes the edge’s associated label. The label set L 
consists of four sets Lvul, Lattr, Lrgt, and Lrel, to demonstrate 
vulnerabilities, attributes, access rights, and relations 
respectively. In other words: 

v, u∈Vall, l∈L, L = LvulU LattrU LrgtU Lrel 
 

Using our definition of edges; vulnerabilities, 
attributes, access rights, and relations can be dealt with 
similarly. To depict that a node v has read access over u, 
we can use the edge (v, u, read). To demonstrate a 
vulnerability vul in node a, the loop edge (a, a, vul) can be 
used. To assign an attribute attr to the node a, the loop 
edge (a, a, attr) may be employed. Having a relation rel 
between a and b, the edge (a, b, rel) can be used. Based on 
the nature of vulnerabilities and attributes, Lvul and Lattr 
should be used only in loop edges. Accordingly, the 
following condition should be held: 

∀ E = (v0, v1, l) | l∈LvulU Lattr→ v0 = v1 

 
Having such a graph, we mainly focused on edges to 

demonstrate all characteristics under study. In this graph, 
nodes are created initially, and they will be remained 
unchanged. There is no need to remove a node; instead we 
can remove all its connected edges. We also assume that 
there is no need to create new nodes. One can simulate 
create command for nodes by considering some extra 
nodes in the modeling graph with no edge and simply use 

one of them instead of creating a new node. However, this 
resulted in the creation of a limited number of nodes. 

 
3.2. Commands in VGBPS 

Edge pattern plays an important role in VGBPS rule 
definition. An edge pattern is a triple (a, b, t), where a 
and b belongs to the set of defined phrases called PV 
(Pattern Variables), and t∈L. We refer to the set of all 
possible edge patterns as EP. The most important concern 
regarding edge patterns is to identify edges matching an 
edge pattern.  

Definition 1. We say edge e(v, u, l) matches edge 
pattern ep(a, b, t); if and only if l and t be identical and if 
a = b then v = u. In this case, we say a and b respectively 
match v and u or vice versa. Formally: 

match: EP×Eall→ {true, false} 
match((a, b, t), (v, u, l)) = true ⇔ t = l∧ (a = b→ v = u)  

 
For example, the edge pattern ep(a, b, r) matches all 

edges labeled r, or ep(a, a, o) matches all loop edges 
labeled o. An edge pattern is not individually useful in rule 
definition; a set of edge patterns is required to be matched 
with a set of edges. 

Definition 2. Suppose that EPS is a subset of EP, (that 
is EPS is a set of edge patterns). EPS matches with 
Em⊆ Eall, if and only if: 

EPSEm = ∧  
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where e.a and e.b are the first and the second items of 
tuple e. We call Em a setmatch of EPS. The definition 
implies that if any a∈PV matched with a vertex v in one 
of the edge-match, it can not match with any other vertex. 

Definition 3. Rule set R is the set of rules that each of 
them is a tuple (EPe, EPn, EPa, EPd) where EPe, EPn, EPa, 
EPd are all subsets of EP. 

Informally, EPe and EPn are two sets of edge patterns 
indicating which edges should exist/not exist in order that 
the rule can be applied, and EPa and EPd respectively 
represent new edges which will be added to and the edges 
which will be removed from graph G after the rule 
application.  

Definition 4. Rule r(EPe, EPn, EPa, EPd) is applicable 
if there exists a setmatch Em for EPS = 
EPeUEPnUEPaUEPd where  

matchededge(EPe, Em, EPS)⊆E ∧   
matchededge(EPn, Em, EPS)⊆Eall \ E 
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Fig. 1. A simple IDS model: a) before applying the 
IDS rule. b) after applying the IDS rule. 

 
where matchededge(EPx, Ex, EPSx) returns the related 
edges to edge patterns in EPx from found setmatch Ex for 
EPSx. Rule r is also effective if: 

matchededge(EPa, Em, EPS)⊆/ E ∨   
matchededge(EPd, Em, EPS)⊆/ Eall \ E 

 
Formally, applying an applicable rule r(EPe, EPn, EPa, 

EPd)∈R in protection system PS(G, R) means to update 
current modeling graph G to G’ as follows: 

 
VG’ = VG,  

EG’ = (EGU matchededge(EPa, Em, 
EPS))\ matchededge(EPd, Em, EPS) 

 
where Em is a setmatch for EPS = EPeU EPnU EPaU EPd. 
The application of rule r on modeling graph G which 
generate new modeling graph G’ is also shown with 
G ra G’. We can show this using PS(G, R) ra PS(G’, 
R), but we do not usually use this since the rule set R is 
unchangeable. 

The rule definition is more general than the one 
proposed in [12] especially because of the existence of set 
En. For example, consider a system running an Intrusion 
Detection System (IDS) to monitor activities of some 
entities. Also, assume that the attacker A can gain write 
access to a given object if it is not being monitored by IDS. 
As shown in Fig. 1, the system can be represented in our 
model by a new vertex in the modeling graph in place of 
the IDS alongside with its associated edges, labeled m, to 
the nodes which it is monitoring. Adding the following 
rule can show how an attacker may reach her goal: 

r (∅, {(b, o, m)}, {(a, o, w)}, ∅) 
 

The new rule implies that if the IDS (b) is not 
monitoring (m) a specific object, called o, then the attacker 
(a) can gain write (w) access to o. As you can see, VGBPS 
can model this kind of exploits very easily, since many of 
current model needs extra efforts to model it and some of 
them are not even capable of modeling it. Note that too 
many of such exploits can be addressed in the real world. 

 

4. Safety Problem in VGBPS 

Before defining the safety problem, we express the 
concept of witness and the predicate can●share [19].  

Definition 5. Having a protection system PS(G0, R), a 
witness is a sequence of rules, r1, r2 … rn, (ri∈R, 1≤ i ≤ n) 
which the first one is applicable to the current modeling 
graph G0 and ri+1 is applicable to the resulted modeling 
graph after application of first i rules in the sequence. That 
is G0 1ra G1 2ra G2… nra Gn. 

Definition 6. Let l be a label (l∈L) and, v and u be 
two distinct vertices in the protection system PS(G, R). 
The predicate can●share(v, u, l) is true in PS if and only if 
there is a witness whose application to modeling graph G 
generates a new graph containing the edge (u, v, l). 

Definition 7. Having the protection system PS(G, R) 
and a set of can●share predicates P, the Safety Problem is 
the problem of finding a witness w whose application to 
graph G violates (makes true) at least one of the predicates 
included in P. 

While there are other predicates which can be 
included in P, they are not required to be considered 
explicitly.  This is due to the possibility of answering them 
based on our answer to the basic predicate can●share. As 
an example, we show how to answer the can●revoke 
predicate using can●share. The predicate can●revoke can 
be defined as follows. 

Definition 8. Let v and u be two distinct vertices in 
the modeling graph G0 of the protection system PS(G0, R) 
and there is an edge between v and u labeled r∈L. The 
predicate can●revoke(v, u, r) is true in PS if and only if 
there is a witness whose application to G0 generates a new 
graph containing no edge from v to u labeled r. 

To answer this predicate, we can add following rule to 
the set of rules R: 

newrule(∅, {(a, b, r)}, {(a, b, r' )}, ∅) 
 

Provided that label r' has not been used in any other 
rules or edges, can●share(v, u, r') will not be satisfied 
without using the new rule, which involves non-existence 
of an edge labeled r between v and u. Accordingly, the 
predicates can●revoke(v, u, r) and can●share(v, u, r') can 
be used interchangeably. Despite all of these, one may add 
its own defined predicates to the security policy P. 
Obviously in special cases of the model (for example 
when EPn of all rules is empty), can●share may not be 
able to describe the whole policy and it may be obligatory 
to add some new predicate to P.  
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5. Simulating other Protection Systems 
To illustrate the expressiveness of VGBPS, it can be 

shown that many of the existing models can be simulated 
using our protection system. As an example, we show how 
to simulate Take-Grant model [16][19] using our 
protection system. Let Lattr = {sub, obj}, Lrgt = {t, g, r, w}, 
Lrel = Lvul = ∅, and PV = {a, b, c}; PS(G, R) simulates the 
known Take-Grant model, where G is almost the same as 
the Take-Grant graph model. The only difference is that in 
G we use loop edges for nodes’ attributes (subject or 
object).  The rule set R includes the following rules: 

• taker ({(a, b, t), (a, a, sub), (b, c, r)}, ∅, {(a, c, r)}, 
∅) 

• grantr ({(b, a, g), (b, b, sub), (b, c, r)}, ∅, {(a, c, 
r)}, ∅) 

• remover ({(a, b, r), (a, a, sub)}, ∅, ∅, {(a, b, r)})  
 
Similar to taker, we can also define taket, takew, and 

takeg. Obviously, more complex models can also be 
simulated similarly.  
 
6. Using the Model for Vulnerability 

Analysis 
As already stated, the model facilitates an easier 

vulnerability analysis by dealing with vulnerabilities 
similar to access rights. For example, consider the SQL-
injection vulnerability, in which an application places 
input directly into a SQL statement without filtering out its 
dangerous characters properly. This may grant the users 
some unprivileged access rights. Fig. 2 shows how we can 
model this vulnerability in its simplest case. Briefly, the 
SQL_inj attack says that if an application App, having 
access to some part (tbi) of a database (DB,) has SQL_inj 
vulnerability, then any user (A) having execute access on 
App may gain the access to that part (tbi). This attack can 
be shown as the following rule: 

rSQL_inj ({(a, app, exec), (app, app, SQL_inj), (app, tb, 
access), (tb, c, b), (c, c, DB)}, ∅, {(a, tb, access)}, ∅) 

 

 
 
Fig. 2. a) The system before applying the rule rSQL_inj and 
b) The system after application of the rule. The edge (tb, db, 
b) indicates that node tb belongs to db, and (db, db, DB) 
indicates that node db is a database. 

 

As the example shows, modeling vulnerabilities and 
also their possible effects do not need any new 
consideration in the protection system. This way, many of 
tasks related to vulnerability analysis can be done only by 
answering the safety problem. For example, to find out 
exploits of SQL-injection, it is enough to find out which 
access rights can be added to the model using rSQL_inj 
beside other existing rules of the system and this can easily 
be done by answering some can●share predicates.  

7. Polynomially Solvable Sub-Problems 

In order to demonstrate the flexibility of VGBPS and 
its capability to model special systems with less cost, we 
provide some instances of the model in which safety 
problem can be solved in polynomial time. Let’s call the 
rules which can decrease edges from the modeling graph 
in the protection system as decreasing rules. Initially, we 
can divide decreasing rules into two main classes; the 
rules which do not add new edges to the model, and those 
which add new edges in addition to removing some other 
edges. Later we will show that we can eliminate the 
former rules in some cases.  

Definition 9. Monotonically decreasing rules are rules 
which may decrease edges, that is, EPa = ∅. 

Most of DoS attacks [20] and also DDoS attacks are 
clear examples of monotonically decreasing rules, which 
may cause some services to be inaccessible, without 
adding new access rights (edges) to the system. Similarly, 
we can define monotonically increasing rules. We call 
these two types of rules monotonic rules. 

Definition 10. Simple rules are the rules in which 
EPn= ∅.  

In other words, applying a simple rule just involves 
checking existence of some edges. Application of simple 
rules take O(1) time, as the sets EPe, EPa, and EPd can 
contain O(1) number of edge patterns. Recall that in its 
general form, application of a rule may require the graph 
not to include some edges. Most of the previously 
proposed graph-based models are restricted to simple rules. 
Whereas, there are some kinds of exploits in which we 
have to be sure that some edges do not exist in the 
modeling graph such as the IDS exploit example described 
in section 3. 
 

Theorem 1. In a protection system PS(G, R), the 
predicate can●share can be answered in polynomial time, 
if R contains only rules that are both simple and 
monotonically increasing. 

Proof. An algorithm like the one proposed by Frank 
and Bishop in [17] can compute the closure of the 
protection system as shown in Fig. 3. The closure is 
informally a graph resulted form initial modeling graph G 
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after applying all possible rules. The proof of polynomial 
time complexity of this algorithm is similar to theirs as 
well. Thus, to answer can●share(v, u, r), we can check 
whether the edge (v, u, r) exists in the closure or not. ▀ 

 
Corollary 1. In a protection system PS(G, R), the 

predicate can●share can be answered in polynomial time, 
if R contains only those rules which are both simple and 
monotonic. 

Monotonically decreasing rules can not cause new 
edges to be added to the modeling graph, since the rules 
are simple. Thus, we can simply eliminate all 
monotonically decreasing rules and use the closure-based 
algorithm described above to answer the predicate 
can●share in polynomial time.  

Corollary 2. In a similar way it can be shown that if 
all defined rules were simple, then monotonically 
decreasing rules could be removed from the protection 
system. But this time, since some decreasing rules still 
may exist in the model, we can not use the same closure-
based algorithm to answer the safety problem. 
 
1. Let list F be initiated by the set of all 

edge of the modeling graph PS.G 
2. while (!isEmpty(F)) 
3.   e = head (F) 
4.  Check for all applicable monotonically     

increasing rules which e is involved in 
5.   foreach (resulting edge like f)  
6.    add f to PS.G 
7.      if (f has never been in F before) 
8.        Add f to F 
9.     Delete e from F 
10.return PS 

Fig. 3. Gen_Closure_4MIR: A polynomial time algorithm which 
answers can●share predicate when the protection system 
contains only simple and monotonically increasing rules. 

Definition 11. An edge in a modeling graph is 
permanent, if and only if its associated access right will 
never be removed because of deletion of any other edges. 

The definition implies that no matter whether the 
conditions which have caused adding a permanent edge 
still hold or not, it will continue to exist in the graph 
permanently, unless it will be deleted by a rule. As an 
example of this type of access right, suppose the attacker 
A wants to use the passwords stored in a file f on a host in 
its attack scenario. As soon as A achieves read access to f, 
it has reached its goal. Even encrypting the password file f 
later on, (which removes the read access of A,) will not 
hide the achieved information from A, because A has 
already read what it wanted. Thus, the read access is 
permanent. Therefore, the only way to remove a 
permanent edge is to delete it directly by a rule; in this 
example, changing the password as an instant.  

We will refer to edges which are not permanent as 
impermanent edges. As an example, consider that an 
attacker wants to use a service which needs authentication. 
Suppose the attacker has acquired the information of an 

account for the service. The attacker can use the service as 
long as the promised account has not been disabled. 
Therefore, the attacker's access to the service is 
impermanent. 

Definition 12. A rule is permanent if it generates only 
permanent edges; otherwise it is impermanent. 

In the case of impermanent rules, if the preconditions 
of a previously applied rule dose not hold any more, in 
addition to removing the edges generated by that rule, 
those edges which has removed because of that rule 
should be added again to the modeling graph. Next 
theorem deals with an interesting property of the systems 
which use only permanent and simple rules: 

 
Theorem 2. Let PS(G, R) be a protection system in 

which all initial edges are permanent and only the 
permanent and simple rules are allowed. In such a system, 
the predicate can●share can be answered in polynomial 
time. 

Proof. The main idea is to construct the closure of the 
modeling graph using a conflict graph. The conflict graph 
has one vertex in association with every possible edge in 
the modeling graph and is initially empty. We say that two 
edges in the closure have conflict (according to the 
conflict graph) if and only if there is a directed path 
between their related vertices in the conflict graph. The 
rule rl(EPe, ∅, EPa, EPd) is applicable according to the 
conflict graph if and only if the setmatch found for EPe 
contains non-conflicting edges according to the conflict 
graph.  

Initially the closure is identical to the graph G. In each 
step of the algorithm, we will apply an applicable rule 
according to the conflict graph and update two graphs 
(closure and conflict graphs) as follows; Let rl(EPe, ∅, EPa, 
EPd) be the selected rule. To apply rl the edges produced 
by EPa will be added to the closure and all their conflicts 
will be removed from the conflict graph (that is, for each 
edge e produced by EPa, we will remove all the edges 
outgoing from e's related vertex in the conflict graph). The 
edges included in EPd , if there is any, will not be removed 
from the closure; instead we will add directed edges from 
EPd's associated vertices in the conflict graph to those of 
EPa.  

This step is repeated until there is no applicable rule 
according to the conflict graph. Thus, if there is an edge 
from vertex v to vertex u labeled r in the computed closure, 
the answer to the predicate can●share(v, u, r) will be yes. 
Obviously, the algorithm is polynomial because in each 
step at least one edge will be added to the closure. Note 
that there is no need to consider monotonically decreasing 
rules according to corollary 2. Since the closure contains 
polynomial number of edges and each step of the 
algorithm needs polynomial time, the time complexity of 
the algorithm will be polynomial too. 
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8. NP-Completeness Results 

To show the NP-Completeness of the general problem, 
we use reduction from 3-SAT [21]. 3-SAT is a special 
case of Boolean satisfiability (SAT) problem. SAT is the 
first established NP-complete problem [22] and all typical 
NP-Complete problems can be directly reduced to it.  

Basically, SAT problem is either to find a satisfying 
truth assignment of all variables or to prove there is no 
satisfying assignment for a given Boolean formula 
(usually in Conjunctive Normal Form (CNF).) 3-SAT is a 
special case of SAT in which each clause has exactly three 
literals.  

Theorem 3.  The safety problem in the protection 
system PS = (G, R) is NP-complete if the initial edges and 
rules are not necessarily permanent.  

Proof. The safety problem can be interpreted as 
finding a witness which makes one or more predicates in P 
true. Therefore, it is clear that if we have a witness, it is 
possible to verify whether the witness violates security 
policy or not in polynomial time. That is, the problem is in 
NP. Note that since a witness includes only different rules 
it size is polynomial. To prove NP-Completeness, we use 
reduction from 3-SAT. Letϕ be an instance of 3-SAT 
problem. We construct protection system PS(G, R) such 
thatϕ is satisfiable if and only if there exists a witness in 
PS which violates at least one of the predicates included in 
P. 

Corresponding to each clause Ci inϕ ,G has a node Ci. 
There are three vertices yi, xi and x i in G, corresponding 
to each literal xi in 3-SAT problem. Graph G also contains 
two other vertices T and T’. T has a specific type called m 
which is shown by a loop labeled m on it. For each literal 
xi, we add directed edges from yi to both xi and x i labeled 
r. If the ith clause contains xj ( x j), we will put a directed 
edge from Ci to xj ( x j) labeled s and true, and another 
directed edge to x j (xj) labeled false. For each i, there is 
an edge from yi to T labeled notok. This means that yet we 
do not know whether xi has consistent values in all of its 
occurrences. The initial graph which is constructed from a 
sample 3-SAT problem is shown in Fig. 4. 

The rule set R contains 5 rules: 
1.  If the clause c contains the literal x (a variable or 

its negation), we will assign the true value to x 
and false to its negation: 
r1 ({(c, x, s), (y, x, r), (y, x’, r), (c, x, false)}, ∅, 

{(c, x, true), (c, x’, false)}, {(c, x, false),  
(c, x’, true)}) 

 
2. If the clause c contains literals x1 and x2 in which 

both have the true value, we can assign the false 
value to one of them and true value to its 
negation: 

r2 ({(c, x1, s), (y, x1, r), (y, x’1, r), (c, x1, true), 
(c, x2, s), (c, x2, true)}, 

∅, 
{(c, x1, false), (c, x’1, true)}, 
{(c, x1, true), (c, x’1, false)}) 

 
3.  If the literal x has got true value in all clauses 

which contain x, a new edge can be added to the 
modeling graph G from y to T labeled ok, where 
y is the vertex having an edge to x labeled r:  

r3 ({(y, x, r)}, {(a, x, false)},  
{(y, T, ok)}, {(y, T, notok)}) 

 
4. Similar to the previous rule for x’s false value: 

 r4 ({(y, x, r)}, {(a, x, true)},  
{(y, T, ok)}, {(y, T, notok)}) 

 
5.  If all literal get consistent values in their related 

clauses, a new edge can be added from T to T’ 
labeled ok which shows that ϕ  is satisfiable (m 
is the type of node T): 

r5 ({(T, T, m)}, {(a, T, notok)}, 
{(T, T’, ok)}, ∅) 

 
It is not so hard to show that if there is a satisfying 

truth assignment forϕ , there will be a witness in SP which 
violates the predicate can●share(T, T’, ok) and vice versa.

9. Discussion  

As already mentioned, VGBPS is an appropriate 
framework for vulnerability analysis. The rules 
(commands) in this model can basically be considered in 
two categories; ordinary access propagation rules just like 
rules in access control models and vulnerability related 
rules. The latter one checks for the existence of a 
vulnerability in its pre-condition. The way, we defined 
general rules, make it possible to define many other forms 
of rules too. Having both forms of rules, we can study the 
effect of vulnerabilities in access propagation much more 
easily. For example, we can simply use an edge created 
from a vulnerability rule as the pre-condition of an access 
propagation rule or vice versa. This is simply what we can 
not have in many other vulnerability analysis models. 

Additionally, VGBPS considers the non-existence of 
a right as pre-condition of rules too, which many famous 
protection systems such as HRU, TAM, and TG do not 
support it. This type of rules is especially important in 
modeling SoD (Separation of Duty). We also consider the 
decreasing rules in VGBPS, which is necessary in 
modeling DoS and DDoS attacks. Most of vulnerability 
analysis techniques do not consider this concept. 
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Combining decreasing rules with increasing ones, we can 
model some complex events such as changing group of a 
user easily.  

Adding concepts such as nodes attributes, their 
relations, and of course their vulnerabilities make it 
possible to express those behaviors of real systems which 
are important in vulnerability analysis with no trouble. 
This was not provided in early models like HRU and TG, 
but they are advancing in new models such as TAM and 
ABAC. Moreover, we tried to express this kind of features 
uniformly. This makes the vulnerability analysis easier, 
since we can deal with different concepts in the same way. 
Using the concept of edge-pattern also helps with this 
uniformity. 

Because of dealing with the concept of vulnerabilities 
just like attributes and access rights, the task of 
vulnerability analysis will highly be depend on the safety 
problem. In other words, many of tasks in vulnerability 
analysis can be done only by answering the safety problem. 
Thus, we examine different variation of the safety problem 
deeply in this paper.  

Another important application of VGBPS may be in 
vulnerability analysis based on other models. For example, 
one may want to add SQL injection vulnerability to TG 
and analyze it. Through the paper, we showed how to 
simulate other models with VGBPS. This way, we can just 
simulate TG with VGBPS and add the SQL injection to 
selected nodes in the new model and add its related rules. 
This way, the new model can easily be used in 
vulnerability analysis.  

10. Conclusions and Future Work 

In this paper, we proposed VGBPS which is a new 
graph-based protection system with the main focus on 
vulnerability analysis. Dealing with different concepts 
such as access rights, vulnerabilities, relations, and 
attributes similarly, as well as the edge-pattern concept 
and general type of rules are of the most important 
features of VGBPS. We also showed how VGBPS can 
simulate some other models, and how it can contribute in 
vulnerability analysis more easily. 

As the safety problem is widely used for vulnerability 
analysis in VGBPS, it gets more importance. Although we 
showed that the safety problem in its general form in 
VGBPS is NP-Complete, there are still cases in which the 
safety problem can be answered in polynomial time. We 
introduced ideas of simple, permanent, and monotonically 
decreasing rules alongside with some simplified sub-
problems of the safety problem. We illustrated how the 
monotonically decreasing rules can be eliminated when a 
system contains only simple rules. We also proved that the 
safety problem can be answered polynomialy in a system 

which is restricted to rules which are both permanent and 
simple. 

Investigating more polynomialy solvable problems 
can be considered as an interesting future work. Especially, 
relevant problems to impermanent rules are worthy of 
considering more thoroughly. Using the system to model 
vulnerabilities and trying to analyze them are of other 
future works. We are especially interested to compare the 
effects of vulnerabilities while being located in different 
nodes of the system or while interacting with each others. 
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