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Summary 
This paper presents new techniques for generating varied 
realistic geometric models of human faces by synthesizing local 
facial features according to anthropometric control parameters, 
and for generating a full-head texture from a face image of the 
scanned data for realistic rendering. We automatically register 
3D face scans in a large database by deforming a generic head 
mesh to fit each scanned face shape. Once we have a common 
surface representation for each face scan, we form local feature 
shape spaces by applying principal component analysis to the 
data sets of facial feature shapes. We parameterize the example 
models using face anthropometric measurements and predefine 
the interpolation functions for the parameterized examples based 
on radial basis functions. At runtime, the new face geometry is 
generated at an interactive rate by evaluating the interpolation 
functions with the input anthropometric parameter values. We 
automatically generate a full-head texture from parameterized 
texture of the face region. In particular, we address the creation 
of individual textures for ears. Apart from the initial adjustment 
of feature point positions, our method is fully automated. 
Key words: 
Face Modeling, Anthropometric Control, Interpolation, Texture 
Mapping, 3D Scanned Data. 

1. Introduction 

Generation of realistic human face models is one of the 
most interesting problems in computer graphics. Many 
applications such as character animation for films and 
advertisement, computer games, video teleconference, 
user-interface agents and avatars require a large number of 
different face geometries. However, creating diverse 3D 
face models for these applications is a difficult and time-
consuming task, particularly if realism is desired.  
      With a significant increase in the quality and 
availability of 3D capture methods, a common approach 
towards creating face models of real humans uses laser 
range scanners to acquire both the face geometry and 
texture simultaneously. Although the acquired face data is 
highly accurate, unfortunately, substantial effort is needed 
to process the noisy and incomplete data into a model 
suitable for modeling or animation. In addition, each new 
face must be found on a living subject. There is no simple 
means of automatically modifying the face model to 
different shapes as the user intends once it has been 
generated. Another limitation of the 3D scanning 

technology is that the complete head geometry cannot be 
easily captured as the hair in dark color absorbs all of the 
laser radiation. The top and back of the head are generally 
not digitized unless the hair is artificially colored white, 
but that destroys the texture. In most cases, only the face 
region can be properly textured. There is no automatic 
mechanism provided to generate a full-head texture from 
the acquired face image for rendering the model towards a 
“cloned” head. 
      In this paper, we present new techniques for creating 
varied realistic human face models subject to desired 
shape parameters, and for generating a parameterized full-
head texture for rendering the model. The reported 
psychophysical evidence [1] suggests that internal facial 
features (e.g. eyes, nose, mouth and chin) are good for 
discriminating faces. Thus, we synthesize face geometry 
by perceiving the face as a set of feature regions. Such a 
feature-based face synthesis allows us to generate more 
diverse face geometries through different combinations of 
the synthesized feature shapes. Our method takes as 
examples 3D scanned face data to exploit the variations 
presented in the real human faces. In order to establish 
correspondences between face scans, we develop a two-
step model fitting method for the 3D registration problem, 
where a generic head model is fitted to each example in a 
global-to-local fashion. The obtained correspondence 
enables the application of principal component analysis 
(PCA) to exemplar shapes of each facial feature to build a 
low dimensional shape space. We parameterize the 
example models using the face anthropometric 
measurements, and predefine the interpolation functions 
for the example models based on radial basis functions. At 
runtime, the interpolation functions are evaluated to 
efficiently generate the appropriate feature shapes by 
taking the anthropometric parameters as input. After 
having performed a vertex-to-image binding for vertices 
of the head mesh, we generate a cylindrical full-head 
texture from the parameterized texture of the face region. 
The individual ear textures are also created from a single 
input image. 
      The main contributions presented in this paper are: 

• a feature-based face modeling method to 
automatically synthesize 3D face shapes 
according to anthropometric parameters. It 
regulates the naturalness of synthesized faces by 
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exploiting the parameter-to-shape correlations 
that are presented in the real human faces. It is 
efficient in time complexity and performs at an 
interactive rate. 

• a technique that uses a frontal face image of the 
scanned data to generate a full-head texture and 
individual ear textures which add greatly to a 
realistic personalized appearance of the face 
model. 

       This paper is organized as follows. Section 2 reviews 
the previous work on face modelling and texturing. 
Section 3 presents the face data we use. Section 4 
describes the model fitting process. In Section 5, we 
present our feature-based synthesis technique. Section 6 
elaborates on the generation of a full-head texture and ear 
textures. Experimental results are shown in Section 7. 
Section 8 concludes by discussing future work. 
 
2. Previous Work  
 
Face modeling and animation has been an active area of 
research in computer graphics since the early 1970's [2] 
(see [3] for an excellent survey). Regarding modeling of 
static face geometry in particular, several approaches have 
been proposed. Parametric conformation models have 
been invented very early [4-6]. The desire was to create an 
encapsulated model that could generate a wide range of 
faces based on a small set of input parameters. However, 
the choice of the parameter set depends on the face mesh 
topology and therefore the manual association of a group 
of vertices to a specific parameter is required. Furthermore, 
manual parameter tuning without constraints from real 
human faces for generating a realistic face is difficult and 
time-consuming. 
        The image-based technique [7-12] utilizes an existing 
3D face model and information from few pictures (or 
video streams) for the reconstruction of both geometry and 
texture. Although this kind of technique can provide 
reconstructed face models easily, its drawbacks are the 
inaccurate geometry reconstruction and inability to 
generate new faces that have no image counterparts.  
         Another avenue for creating accurate human face 
models is 3D scanning technology [13-16]. However, the 
result of the range scan is a model corresponding to a 
single individual that tells us little about the space of face 
shapes. Moreover, in the absence of a characterization of 
this space, editing a face model in a way that yields a 
realistic, novel face shape is not trivial. 
       Decarlo et al. [17] constructed a range of face models 
with realistic proportions using a variational constrained 
optimization technique. However, because of the 
sparseness of the constraints compared to the high 
dimensionality of possible faces, realistic shape cannot be 

obtained in the facial regions where no desirable 
measurement has been specified as a constraint. Also, this 
approach requires minutes of computation for the 
optimization process to generate a new face.  
       Vlasic et al. [18] used multi-linear face models to 
study and synthesize variations in faces along several axes, 
such as identity and expression. Blanz and Vetter [19] 
used example database models from scanners and a linear 
function that maps facial attributes (gender, weight and 
expression) onto the 3D model. There are several key 
differences from our work. First, they manually assign the 
attribute values to face shape and texture and devise 
attribute controls using linear regression. We 
automatically compute the anthropometric measurements 
for describing face shape and synthesize facial features by 
learning a mapping between the measurement space and 
shape space through scattered data interpolation. Second, 
their morphable model is restricted to the face region. We 
synthesize an individual texture map for texturing the full 
head geometry. Third, they use a 3D variant of a gradient-
based optical flow algorithm to derive the point-to-point 
correspondence. This approach will not work well for 
faces of different races or in different illumination given 
the inherent problem of using static textures. In contrast, 
our robust method of determining correspondences does 
not depend on the texture information. 
       Texturing for face modeling is still an 
underemphasized issue. Williams [20] generated and 
registered a texture map from a peripheral photograph. A 
more convenient way to create models of real persons uses 
the textures acquired by laser scanners [13-16]. However, 
the full head geometry can not be easily captured and 
textured due to complex reflectance properties of hair. 
Marschner et al. [21] described a technique that uses 
several input photographs taken under controlled 
illumination with known camera and light source locations 
to generate an albedo texture map of the human face along 
with the parameters of a BRDF. Creating face textures 
from multiple, unregistered images has more flexibility 
[9,12,22,23]. Depending on which images each vertex gets 
its color from, the vertices of a triangle mesh are 
partitioned into two types first. Then, colors in images are 
resampled for the frontal vertices. It results in a smooth 
and seamless joint between different images that map on 
adjacent triangles of surfaces when combining images 
together. Not requiring separate camera setups, we focus 
on synthesizing a full-head texture from a reflectance 
image acquired by a laser scanner which only captures 
color of the face region. 
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3. Face Data 
 
We use the USF face database [24] that consists of 
Cyberware scans of 186 human faces with a mixture of 
race and age. Each subject is captured wearing a bathing 
cap and with a neutral expression. The laser scans provide 
face structure data which contains approximately 140k 
surface points (see Fig. 1 (a)) and RGB-color values that 
are stored in a 360×524 image with 8 bit per channel (see 
Fig. 1 (b)). The image is registered against the range data 
in the scanning process and can be used for texture-
mapping (see Fig. 1 (c)).  
 
 
 
 
 
 
 
  

Fig. 1  Face data: (a) scanned face geometry; (b) acquired color image; (c) 
texture-mapped face scan. 

          We use a generic head model created with Autodesk 
MayaTM. It is a wire-frame of numbered vertices in 3D 
coordinate space (see Fig. 2 (a)). The generic model 
consists of 6,092 vertices and 12,274 triangles, with finer 
triangles over the highly curved and/or highly articulated 
regions of the face, such as the eyes and mouth, while 
larger triangles are used elsewhere, such as the cheeks and 
forehead. Prescribed colors are added to each triangle to 
form a smooth-shaded surface (see Fig. 2 (b) and (c)).  
 
 
 
 
 
 
 

Fig. 2  Generic model: (a) wire-frame mesh; (b) and (c) smoothly-shaded 
surface. 

         Let each 3D face in the database be Fi (i =1,K ,M), 
M=186. Since the number of vertices in Fi varies, we 
resample all faces in the database so that they have the 
same number of vertices all in mutual correspondence. 
Feature points are identified to guide the resampling. In 
our method, the feature points are identified semi-
automatically (see Fig. 3). A 2D feature mask consisting 
of polylines groups 83 feature points that correspond to 
the facial features such as the eyes, eyebrows, nose, mouth 
and face outline. It is superimposed onto the front-view 
face image obtained by orthographic projection of a 

texture-mapped face scan. The facial features in this image 
are detected by using the Active Shape Models [25] and 
the 2D feature mask is fitted to the detected features 
automatically. A little user interaction is utilized to tune 
the feature point positions in the image plane due to slight 
inaccuracy of the automatic facial feature detection. The 
3D positions of feature points on the scanned surface are 
then recovered by re-projection to the 3D space. In this 
manner, we efficiently define a set of target feature points 
in a face scan Fi as Ti ={ti,1,K , ti,n}, where n=83. Our 
generic model G is already tagged with the corresponding 
set of source feature points S={s1,K , sn} by default (see 
Fig. 3 (e)). 

 

 

 

 
 
 
 
 

Fig. 3  Semi-automatic feature point identification: (a) initial outline of 
the feature template; (b) after automatic facial feature detection; (c) after 
interactive user tuning; (d) and (e) feature points identified on the 
scanned data and generic model, respectively. 

4. Model Fitting 
 
The problem of deriving full correspondence for all face 
scans Fi can be stated as: resample the surface for all Fi 
using G under the constraint that sj is mapped to ti,j. We 
need to find a function 33:f ℜ→ℜ  such that 

 ,,1      )(, njjjji K=+= ssft          (1) 

The goal is to construct a smooth interpolating function 
that expresses the deformation of non-feature vertices of 
the generic model in terms of the changes in the feature 
points during deformation. Radial Basis Functions (RBFs) 
are a popular means for interpolating scattered data for its 
power to deal with irregular sets of data in multi-
dimensional space in approximating high dimensional 
smooth surfaces [26]. In our case, the interpolant using 
RBFs is a function that returns the displacement value for 
each vertex of G that takes it from the original position to 
its position in the target form. The displacements di,j=ti,j -sj 
are known for the source feature points sj and target 

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(d) (e) 
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feature points ti,j. These displacements are utilized to 
construct the interpolating function f(v) that returns the 
displacement for each generic mesh vertex v: 

      )()(
1

∑
=

++=
n

j
jjj tMvs-vcvf φ    (2) 

where 3ℜ∈v is a vertex of G, 3ℜ∈jc are (unknown) 

weights, Φ is the radial basis function which is a real 
valued function on [0,1), ⋅  denotes the Euclidean norm, 

33×ℜ∈M adds rotation, skew, and scaling, and 3ℜ∈t  is a 
translation component. The Φj are defined by the source 
feature points. Popular choices for Φ include the thin-plate 
spline )log()( 2 rrr =φ , the Gaussian )exp()( 2rr ρφ −= , 
the multi-quadric 22)( ρφ += rr , and the biharmonic 

rr =)(φ . In our work, we use the multi-quadric function, 
which places no restrictions on the locations of the feature 
points. In this function, ρ is the locality parameter used to 
control how the basis function is influenced by 
neighboring feature points. It is determined as the 
Euclidean distance to the nearest other feature point. 
        Setting up a system of linear equations relating the 
source and target feature points, the unknowns cj, M, and t 
can be solved for simultaneously. The interpolation 
conditions of Eq. 1 lead to a linear system of n equations: 
                    dstsf njjijjij ,,1)( ,, K==−=            (3) 

To remove affine contributions from the weighted sum of 
the basic functions, we include the additional constraints: 

              ,0
1

∑
=
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∑
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j
j

T
j sc                  (4) 

The system of linear equations (Eq. 3 and 4) is solved 
using an LU decomposition to obtain the unknown 
parameters. Using the predefined interpolating function as 
given in Eq. 2, we then calculate the displacement vectors 
for all vertices of the generic model to generate the output 
head model. Fig. 4 (a) shows the shape of the deformed 
model after having interpolated the set of computed 3D 
displacements at 83 feature points and applied them to the 
generic model. 
       As shown in Fig. 4 (a), the RBF-based deformation 
roughly aligns facial features of the generic model to the 
scanned data. We further improve the shape using a local 
deformation which ensures that all the generic mesh 
vertices are truly embedded in the scanned surface. The 
local deformation is based on the closest points on the 
surfaces of the generic model and the scanned data. The 
vertices of the generic model are displaced towards their 
closest positions on the surface of the scanned data. The 
polygons of the scanned data are organized into a Binary 
Space Partition tree in order to speed up the process of the 
closest point identification. As each generic mesh vertex 
samples a scanned data point, it takes the texture 

coordinates of that point for texture mapping. Fig. 4 (b) 
and (c) show the result of local deformation. 

   

Fig. 4  Model fitting: (a) generic model after RBF-based deformation; (b) 
after local deformation; (c) texture-mapped appearance. 

5. Feature-Based Face Shape Synthesis 

5.1 Forming Local Shape Spaces 

To synthesize the shape of facial features, we form the 
local shape spaces using PCA. The model fitting process 
generates the necessary vertex-to-vertex correspondence 
across 3D scans in the database, which is the prerequisite 
of PCA. Since all face scans are in correspondence 
through mapping onto the generic model, it is sufficient to 
define the regions of facial features on the generic model. 
We partition the generic mesh into four regions: eyes, nose, 
mouth and chin. The segmentation is transferred to the 
fitted generic meshes to generate individualized feature 
shapes with correspondences (see Fig. 5). Note that in 
order to isolate the shape variation from the position 
variation, we normalize all face scans with respect to the 
rigid rotation and translation of the face before fitting the 
generic model. Thus, PCA can be performed directly on 
the obtained data sets of feature shapes. 

 

Fig. 5  Meshes of four facial features decomposed from the fitted generic 
mesh shown in Fig. 4 (b). 

       Given the set {F} of facial features, we obtain a 
compact representation for the meshes of each facial 
feature using PCA. Let {Fi}i=1,…,M be a set of meshes of 
feature F, each mesh being associated to one of the M 3D 
scans of the database. These meshes have the same 
dimensions. They are represented as vectors that contain 
the x, y, z coordinates of the nF vertices 

F

FFF

n
nnni zyxzyxF 3

111 ),,,,,,( ℜ∈= K . Each mesh 
of the feature can then be expressed as a linear 
combination of M+1 meshes { F

jψ }j=0,…,M : 

(a) (b) (c)
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The meshes F
jψ  (1≤ j≤ M) are the eigenvectors of the 

covariance matrix of the set {Fi -
F
0ψ }. They are sorted by 

decreasing eigenvalue (λp ≥ λq, p<q) and represent the 
principal components of the data set. By truncating the 
expansion of Eq. 5 at j=kF we introduce an error whose 
magnitude decreases when kF is increased. We choose the 
kF such that ∑∑ ==

≥
M

j j
k

j j
F

11
λτλ , where τ defines the 

proportion of the total shape variation (98% in our 
experiments). Each mesh of a facial feature in the data set 
can then be approximately described by the vector of the 
coefficients a },,{ 1

i

F

ii F
k

FF aa K= . Each eigenvector F
jψ is 

a new coordinate axis for our existing data; thus each  
feature mesh can be restated as a point in the space 
spanned by the PCA-yielded orthogonal mesh basis. We 
call these axes eigenmeshes. 

5.2 Anthropometric Control Parameters 

Although eigenmeshes represent the most salient 
directions of the shape variation in the data set of a facial 
feature, they bear little resemblance to the underlying 
structure of biological forms. Face anthropometry 
provides a set of meaningful measurements or shape 
control parameters that allow the most complete control 
over the shape of the face. Anthropometric study [27] 
describes a widely used set of 132 measurements to 
characterize the human face. The measurements are taken 
between the landmarks defined in terms of visually-
identifiable or palpable features on the subject's face. Such 
measurements use a total of 47 landmarks on the face. 
Following the conventions laid out in [27], we have 
chosen a subset of 38 landmarks for anthropometric 
measurements (see Fig. 6 (a)). 
       Facial measurements are categorized into five types. 
As shown in Fig. 6 (b), ch-ch refers to the shortest 
distance between the landmarks at the corners of the 
mouth, n-sn refers to the axial distance between the 
midpoint of the nasofrontal suture and junction between 
the lower border of the nasal septum, al-prn refers to the 
tangential distance measured on the face surface from the 
most lateral point on the nasal ala to the nose tip, the angle 
of inclination is exemplified by the inclination of the 
upper lip sn-ls with respect to the vertical axis, and the 
angle between locations is exemplified by the 
labiomental angle (the angle at the lower lip). 

   

Fig. 6  (a) Head geometry with anthropometric landmarks (green dots). 
The landmark names are taken from [27]. (b) Anthropometric 
measurements. 

Table 1: Anthropometric measurements of the nose  
 
 
 
 
 
 
 
       Supporting all 132 measurements is beyond the scope 
of this work. Instead, we are only concerned with those 
related to four facial features. As an example, Table 1 lists 
the nasal measurements used in our work. The 
anthropometric measurements are taken through all face 
examples in the database to determine their locations in a 
multi-dimensional measurement space. These locations are 
then used to guide the feature shape synthesis process. 

5.3 Feature Shape Synthesis 

From the previous stage we obtain a set of examples of 
each facial feature with measured shape characteristics, 
each of them consisting of the same set of dimensions, 
where every dimension is an anthropometric measurement. 
As each measurement has a different average and variation, 
it is prohibitive to define the measurement axis by directly 
using the measurements unit. Instead, the example 
measurements are normalized. Generally, we assume that 
an example model Fi of feature F has mF dimensions, 

(a)

(b)
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where each dimension is represented by a value in the 
interval (0,1]. A value of 1 corresponds to the maximum 
measurement value of the dimension. The measurements 
of Fi can then be represented by the vector 
     ]1,0(:],1[],,,[ 1 ∈∈∀= F

ijF
F
im

F
i

F
i qmjqq

F
Kq      (7) 

This is equivalent to projecting each example model Fi 
into a measurement space spanned by the mF selected 
anthropometric measurements. The location of each 
example in the measurement space is q F

i . 
       With the anthropometric shape control thus 
parameterized, our goal is to generate a new deformation 
of the face mesh by computing the corresponding 
eigenmesh coefficients with control through the 
anthropometric measurement parameters. Given an 
arbitrary input measurement qF in the measurement space, 
such controlled deformation should interpolate the 
example models. To do this we interpolate the eigenmesh 
coefficients of the example models. For the truncated set 
of eigenmeshes of each facial feature, we need to solve for 
the coefficients in the truncated basis ( iF

ja  in Eq. 5) which 
give shapes closest to the example models. We solve such 
an over constrained linear system using least squares to 
get the best fit to the example models. 
      Our feature shape synthesis problem is thus 
transformed to a scattered data interpolation problem. 
Again, the RBFs are employed in our shape interpolation 
scheme. The interpolation is multi-dimensional. Consider 
a ℜ→ℜ Fm mapping, the interpolated eigenmesh 
coefficients ℜ∈⋅)(F

ja , 1≤j≤kF  at an input measurement 
vector qF Fmℜ∈  are computed as: 
 

 
F

M

i

F
iij

FF
j kjRa ≤≤= ∑

=

1)()(
1

for       qq γ   (8) 
 
where ℜ∈ijγ  are the radial coefficients and M is the 
number of example models. Let q F

i  be the measurement 
vector of an example model Fi. The radial basis function 
Ri(q

F) is a multi-quadric function of the Euclidean 
distance  
between q F  and q F

i  in the measurement space: 
     MiR i

F
i

FF
i ≤≤+−= 1)( 22

for       qqq ρ  (9) 
 
where ρi are the locality parameters used to control the 
behaviour of the basis function: 
     F

j
F
ijii qq −= ≠minρ          Mji ,,1, K=           (10) 

 
The j-th eigenmesh coefficient of the i-th example model, 

iF
ja , corresponds to the measurement vector of the i-th 

example model, q F
i . Eq. 8 should be satisfied for q F

i  and 
iF

ja (1≤ i ≤M). Hence, by substituting q F
i  and iF

ja for 
q F  and 

F
ja respectively in Eq. 8, we have 

 
       

F

M

i

F
iiij

F
i

F
j kjRa i ≤≤= ∑

=

1for       )()(
1
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Eq. 11 can be expressed in the matrix form 
         RY=A  (12)  
where Y FkM ×ℜ∈  is the matrix of the unknown radial 
coefficients γij, and R MM×ℜ∈ and A FkM ×ℜ∈  are the 
matrices defined by the radial bases and eigenmesh 
coefficients of the example models respectively, such that 
Rij=Rj(q

F
i ) and Aij= iF

ja . The radial coefficients γij are 
obtained by solving this linear system using an LU 
decomposition. We can then generate the eigenmesh 
coefficients, hence the shape of the facial feature, 
corresponding to the input measurement vector qF 
according to Eq. 8. 

5.4 Subregion Shape Blending 

After the shape interpolation procedure, the surrounding 
facial areas should be blended with the deformed facial 
features to generate a seamlessly smooth face mesh. The 
position of a vertex vi in the feature region F after 
deformation is v '

i
. Let V denote the set of vertices of the 

head mesh. For smooth blending, positions of the subset 
FF VVV \=  of vertices of V that are not inside the feature 

regions should be updated with deformation of the facial 
features. For each vertex vj FV∈ , the vertex in each feature 
region that exerts influence on it, v F

ki
, is the one of 

minimal distance to it. Note that the distance is measured 
offline in the original undeformed generic mesh. For each 
vertex vj FV∈ , the displacement vector for its 
corresponding closest feature vertex v F

ki
 is used to update 

its position in shape blending. The displacement is 
weighted by an exponential fall-off function according to 
the distance between vj and v F

ki
: 

     ∑
Γ∈

−−−+=
F

F
k

F
k

F
kjjj iii

vvvvvv '' )1exp(
β

         (13) 
 
where Γ is the set of facial features and β controls the size 
of the region influenced by the blending. We set β to 1/10 
of the diagonal length of the bounding box of the head 
model. Fig. 7 shows the effect of our shape blending 
scheme utilized in synthesizing the nose shape. 

                 

Fig. 7  Left: Without shape blending, the obvious geometric 
discontinuities around the border of the nose impair visual realism of the 
synthesis. Right: Using our approach, geometries of the feature region 
and surrounding area are smoothly blended at their boundary. 
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6. Texturing A Head 

6.1 Mesh Parameterization 

Our head skin texture is generated from the acquired color 
image shown in Fig. 1 (b). One of our goals is to readily 
generate 2D texture metamorphosis for head morphing. In 
general, morphing between two images requires pair-wise 
correspondences between image features. In our case, 
however, correspondences between the two textures are 
implicit in the texture coordinates of the two associated 
face meshes. Since every face generated from one generic 
model has a similar characteristic for texture coordinates, 
we can produce the shape-free face texture images by 
constructing a parameterization of the 3D generic mesh 
over a 2D image plane. 
       Given the vertex-wise correspondence between a 
fitted generic head mesh and the original undeformed 
generic mesh, it is trivial to transfer a texture image 
between them. Each vertex on the original generic mesh 
simply takes the texture coordinates of its corresponding 
vertex on the fitted mesh for texture mapping (see Fig. 8 
(a) and (b)). 

   
Fig. 8 (a) Fitted generic model with texture mapping. (b) Texture 
transferred to the original undeformed generic model. (c) Texture mesh  
parameterization. (d) Cylindrical texture image. 

       We parameterize the 3D generic head mesh over a 2D 
domain [0,1]2 by implementing a cylindrical projection. 
The projection results in a cylindrical texture mesh (see 
Fig. 8 (c)). Each vertex of the 2D cylindrical texture mesh 
has cylindrical coordinates with corresponding longitude  
(0-360 degrees) along the u-axis and vertical height along 
the v-axis. The resulting (u, v) coordinates map to a 
suitable aspect and resolution image (800×500 in our 
experiment). We also map the original generic mesh 
rendered with the transferred texture to the image plane 
using the same cylindrical projection. The result is a 

800×500 cylindrical texture image in which each pixel 
value represents the surface color of the texture-mapped 
face surface in cylindrical coordinates (see Fig. 8 (d)). The 
generic head mesh can be textured by this cylindrical 
texture image using normalized 2D cylindrical coordinates 
as the texture coordinates. 

6.2 Synthesizing A Full-Head Skin Texture 

After having created the 2D texture mesh in the mesh 
parameterization step, we perform a vertex-to-image 
binding for all vertices of the 3D head mesh. This step is 
carried out by taking into account removal of undesired 
textures of cap and dark hair. A vertex on the generic 
mesh is bound to the input image, if it samples the 
scanned surface and takes valid texture coordinates of the 
sampling point in the model fitting procedure. Removal of 
cap and hair textures is done by unbinding the vertices 
with a color too dissimilar to the color of the forehead. We 
compute the average color and standard deviation of the 
vertices in the forehead and unbind those vertices that are 
at least η times the standard deviation away from the 
average. The parameter η should be chosen within [1.5,3], 
as it empirically proved to remove the problematic (cap 
and hair) textures. Fig. 9 shows the remaining texture with 
2D mesh parameterization and its vertex binding 
visualized with color coding.     

                   Fig. 
9 (a) The resulting cylindrical texture image after cap and hair textures 
have been removed automatically. (b) Color-coded triangles of the texture 
mesh: each red triangle has all of its vertices bound to the input color 
image; blue triangles have at lease one bound vertex and one unbound 
vertex; the vertices of green triangles are all unbound.     

       Let ∆=(v1,v2,v3) denote a triangle of the face mesh 
and )~,~,~(~

321 vvvΔ be the corresponding triangle in the texture 
mesh. For each triangle ∆, one of the following situations 
might occur (see Fig. 9 (b)): 

1. There is a texture patch of the input image that 
can be mapped to ∆ (red triangles). 

(a)

(b)

(a) (b) 

(c) (d) 
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2. Only one or two vertices of ∆ are bound to the 
input image (blue triangles). 

3. No vertex of ∆ is bound to the input image (green 
triangles). 

      In the first case, we rasterize Δ~  in texture space. For 
each texel Ti, we color it with the color of the image pixel 
Pi that corresponds to Ti. In the second case, we color 
vertices of Δ~  that are bound to the input image with the 
colors of the corresponding pixels as in the first case. For 
each unbound vertex jv~ , we check the vertices in its one-
ring neighbours that are colored by being bound to the 
input image. jv~  is then colored by summing up the 
weighted colors of all the colored vertices iv~  around it. 
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where )~(vC is the color of the vertex v~ , n is the number of 
colored neighbouring vertices, di is the length of the edge 
linking between vi and vj in the original 3D generic mesh, 
and dmax is the maximal edge length in the generic mesh. 
The weight term measures the normalized distance 
between two vertices, and favors the vertices that are 
much closer to the considered vertex. The texels of the 
rasterization of Δ~  can be grouped into two sets: Tt and Tc. 
Textured texel set Tt represents the set of texels that have a 
corresponding pixel in the input image. We thus color this 
set of texels with their corresponding pixel colors. If a 
texel Ti has no corresponding pixel, it is categorized into 
the colored texel set Tc. We determine its barycentric 
coordinates (ζi, κi, τi) with respect to Δ~  and compute the 
corresponding color C(Ti) by interpolating the vertex 
colors of Δ~ : 
   )~()~()~()( 321 vvv CCCTC iiii τκς ++=  (15) 
       We address the coloring problem in the last case in 
two stages: First, we iteratively assign an interpolated 
color to each unbound vertex. We then perform the color 
interpolation scheme for the remaining triangles of Δ~  that 
have not been colored. The first step iteratively loops over 
all unbound and uncolored vertices of the 2D texture mesh. 
For each unbound vertex v~ , we check if the vertices in the 
one-ring around v~  are colored (either by being bound to 
the input image or by having an interpolated color). If this 
is true, we assign to v~  the weighted sum of colors of all 
the colored vertices around it using Eq. 14, otherwise we 
continue with the next unbound vertex. We repeat this 
procedure until there are no further vertex updates. After 
this step, the first round of vertices connecting to the 
vertices in case 2 has been colored. Next, we start the 
same procedure iteratively. At each iteration we color new 
round of vertices adjacent to the round of vertices colored 
in the last iteration. Upon termination of this loop, all 

vertices of the texture mesh are either bound or colored 
and the remaining triangles of Δ~  can be colored using the 
interpolation scheme (Eq. 15) from the second case. Fig. 
10 shows the generated full-head texture. 
 
 
 
 
 
 

 

Fig. 10 Synthesized cylindrical full-head texture. 

6.3 Texturing Ears 
 
The ears have an intricate geometry with many folds and 
fail to project without overlap on a cylinder. Nevertheless, 
it is possible to quickly generate the texture from the input 
image where the ears are clearly visible. 

       Fig. 11 (a) and (b) Positions of the feature points in the input 2D 
image and 3D generic model. (c) Ear feature points. Blue ones are used 
for the global alignment. (d) Bounding box around an ear. (e) Projected 
reference ear meshes with feature points. 

       We use a deformation technique based on feature 
points to warp the reference ear model to an individual ear 
model for extracting ear textures. We use the input image 
that contains the individual ears as the target model (see 
Fig. 1 (b)). We interactively identify a set of fourteen 
feature points for each ear in the input image, see Fig. 11 
(a). As illustrated in Fig. 11 (b), our generic model is 
tagged with the same feature points by default. To 
segment ears, we predefine a bounding box enclosing each 
ear of the generic mesh (see Fig. 11 (d)). Before fitting the 
reference ears to the target shape, we need to transform 
positions of the reference ear model into the coordinate 
system of the target ear image. The segmented ears are 

(a) (b) (c)

(d) (e) 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007 

 

17

 

transformed and projected into the 2D image plane of the 
target ear image (see Fig. 11 (e)). For the target feature 
points in the input image, they can be easily detected and 
their image positions are calculated. 
       Given two sets of N corresponding feature points pi in 
the projected reference ear mesh E and feature points p ∗

i  
in the target 2D ear shape E*, we fit E to E* in two steps: 
global alignment and local adaptation. We use five 
features points for the global alignment (see Fig. 11 (c)). 
The center of E, pc, is defined as the midpoint between p5 
and pm which is the midpoint between p1 and p9. The 
center of E*, p*c, is calculated in the same way. Let an 
arbitrary vertex x 2ℜ∈ of E move to its new position 
x' 2ℜ∈ , S 22×ℜ∈ be the scaling matrix, R 22×ℜ∈  be the 
rotation matrix, and T 2ℜ∈  be the translation vector. Eq. 
16 computes the transformation for global alignment: 
   Tp-xSRx += )(' c   (16) 
Five parameters must be estimated, the in-plane rotation 
angle θ, two scaling factors (su and sv) and two translation 
components (tu and tv) along the u and v texture coordinate 
axes. θ is estimated as the angle between vectors 72PP  
and ∗∗

72 PP . The scaling factors are estimated as: 
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The translation vector is estimated by matching the model 
center of E with that of E*. The same transformation is 
applied to the feature points pi to get their new positions 
p'i. Fig. 12 (a) shows the global alignment results. 
       In the local adaptation we construct a smooth 
interpolation function that gives the displacements 
between the original point positions and the new adapted 
positions for every vertex of the transformed reference ear 
mesh E '. Let wi be the sum of weights from all feature 
points contributed to a ear mesh vertex x'i, and lij be the 
distance between the vertex x'i and a feature point p'j. Eq. 
18 computes the displacement applied to x'i: 
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where jPΔ is the displacement of feature point p'j: 

         '
jjjΔ PPP −= ∗ ,        ∑

=

=
N

j
iji lw

1

                    (19) 

The decay factor μ is determined by the ear size. We set it 
to 1/20 of the diagonal length of the bounding box of the 
reference ear model. 
       After fitting the ear, texture coordinates for all 
vertices of the reference ear mesh are obtained by 
normalizing the final vertex positions to the domain [0, 1]2. 
Fig. 12 (b) shows the local adaptation results. In the final 
head rendering, the ear parts are texture-mapped in a 
separate process using the input image shown in Fig. 1 (b). 

         

Fig. 12 (a) Globally aligned reference ear meshes with smooth shading 
and texture mapping. Red and green dots represent the transformed 
source feature points and detected target feature points, respectively. (b) 
After the local adaptation.   

7. Results 
 
The final texture-mapped head is shown in Fig. 13, where 
the texture image shown in Fig. 10 is applied to the 
adapted generic head model shown in Fig. 4 (a). The 
scanned data in Fig. 1 has a nice shape, but dose not have 
good shape and texture for the top and back of the head. 
Through our method using deformation and texture 
synthesis with the generic model, it has texture on these 
parts, which makes full rotation of a head. We have used 
our system to generate full-head textures for subjects 
whose face scans are in our database. Female and male in 
different races with different skin color attributes are 
reconstructed and textured, as shown in Fig. 14. Rendering 
of a head model is performed in real-time using OpenGL 
hardware (about 120 fps on a 2.4 GHz PC with an ATI 
FireGL X1 graphics board).        

Fig. 13 Different views of the head model rendered with the generated 
full-head texture. 

     Our method establishes the necessary mapping between 
different face scans through a generic model which 
enables us to morph between any two reconstructed 
models. Together with the geometry morphing, we blend 
the textures. The generated full-head textures possess the 
correspondence, enabling 2D texture metamorphosis. Fig. 
15 shows a dynamic morphing between different models. 
       In our method, the only interactive step is the initial 
tuning of the 2D feature mask. This process takes about 2 

(a) 

(b) 
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minutes. The automated method is then executed to 
generate a full-head texture image. The RBF calculation 
and warping of the generic model take about 2 seconds on 
a 2.4 GHz Pentium 4. With a data set of 140k points, the 
local deformation process runs for about 14 seconds. 
Computing a parameterization of the generic mesh 
(approx. 12k triangles) takes about 0.2 seconds. The 
texture synthesis process performs 30 iterations in approx. 
one minute. Ear fitting process runs for 0.8 seconds to fit 
two ears. Given the scanned data, the whole process of 
creating a full-head texture takes about 4 minutes. 

Table 2: Number of eigenmeshes and anthropometric control parameters 
used for face shape synthesis 

        
       For each facial feature, the original full set of 186 
eigenmeshes is reduced to a small set which explains 98% 
of the shape variation in the database. Table 2 shows the 
number of eigenmeshes and number of input 
anthropometric controls used for our face shape synthesis. 
The user can select the facial feature to work on using a 
windows GUI (see Fig. 16). Using a mouse he can modify 
the position of a set of sliders, each one related to one 
anthropometric control of a facial feature. The 
anthropometric parameter values are chosen within [0,1] 
to generate realistic face shapes. 
 
 
 
 
 
 
 
 

 

Fig. 16 GUI of our system. 

       Fig. 17 shows a number of synthesized facial shapes 
on the average model which is the average shape of 
reconstructed 186 head models and textured with the mean 
cylindrical full-head texture image. A wide range of 
variations are exhibited across the generated faces; clear 
differences are found in the width of the nose alar wings, 
the straightness of the nose bridge, the inclination of the 
nose tip, the roundness of eyes, the distance between 
eyebrows and eyes, the thickness of mouth lips, the shape 
of the lip line, the sharpness of the chin, etc. Note that it is 

not necessary to begin with the average model. We can 
start with any face model of a specific person and edit 
various aspects of its shape. The editing focuses on the 
characteristics of the face interesting to the user while 
preserving the identity of the subject. Fig. 18 illustrates 
face editing results on the models of two individuals for 
various user-intended characteristics. At runtime, our 
scheme spends about 0.08 seconds in generating a new 
face shape upon receiving the input anthropometric 
parameters, corresponding to a rate of 12 fps. 
 
8. Conclusion 
 
We have presented new techniques for creating 
photorealistic 3D head models rendered with a full-head 
texture, and for generating natural looking face shapes by 
synthesizing facial features according to anthropometric 
parameters. We make use of the scanned face data of real 
people, which provides the best available resource to 
regulate the naturalness of modelled faces. In order to 
establish correspondence among scanned data, we use a 
two-step model fitting approach to conform a generic head 
mesh to the particular geometry of the subject's face. We 
transform the obtained data sets of facial feature shapes 
into vector space representations by applying the PCA. 
Using the PCA coefficients as a compact shape 
representation, we approach the shape synthesis problem 
by forming scattered data interpolation functions that are 
devoted to the generation of desired shape by taking the 
anthropometric parameters as input. At runtime, the 
interpolation functions are evaluated at the input 
parameter values to produce new face shapes at an 
interactive rate. We automatically generate a full-head 
texture from parameterized texture of the face region. In 
particular, we address the creation of individual ear 
textures. We have demonstrated personalized head models 
rendered with the generated textures and various realistic 
face shapes generated through anthropometric controls.  
       We envisage several further developments from our 
current results. We would like to incorporate more face 
examples into the existing database, including more 
diversity of age and race. In order to generate more 
realistic faces, we would also like to increase the number 
of facial features to choose from. The possible candidates 
are the cheeks, forehead and upper jaw. Moreover, we 
plan to extend our framework on synthesizing local 
textures of facial features. As anthropometric 
measurements are often correlated, we plan to improve the 
shape control by using the facial proportion statistics [28] 
to model the correlations between measurements. Finally, 
automatic       reconstruction of hair texture from images is 
one of the future challenges. 
 

    Eyes       Nose       Mouth     Chin   
Number of eigenmeshes 

used for shape synthesis 
      23            26             20          18 

Number of anthropometric 

control parameters 
      13            20             12           7 
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