

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

9

Manuscript received January 5, 2007

Manuscript revised January 25, 2007

Anthropometric Modeling of Faces from Range Scans

Yu Zhang† and Chew Lim Tan††,

†Department of Computer and Information Science, University of Pennsylvania, PA 19104-6389, USA
††School of Computing, National University of Singapore, 117543 Singapore

Summary
This paper presents new techniques for generating varied
realistic geometric models of human faces by synthesizing local
facial features according to anthropometric control parameters,
and for generating a full-head texture from a face image of the
scanned data for realistic rendering. We automatically register
3D face scans in a large database by deforming a generic head
mesh to fit each scanned face shape. Once we have a common
surface representation for each face scan, we form local feature
shape spaces by applying principal component analysis to the
data sets of facial feature shapes. We parameterize the example
models using face anthropometric measurements and predefine
the interpolation functions for the parameterized examples based
on radial basis functions. At runtime, the new face geometry is
generated at an interactive rate by evaluating the interpolation
functions with the input anthropometric parameter values. We
automatically generate a full-head texture from parameterized
texture of the face region. In particular, we address the creation
of individual textures for ears. Apart from the initial adjustment
of feature point positions, our method is fully automated.
Key words:
Face Modeling, Anthropometric Control, Interpolation, Texture
Mapping, 3D Scanned Data.

1. Introduction

Generation of realistic human face models is one of the
most interesting problems in computer graphics. Many
applications such as character animation for films and
advertisement, computer games, video teleconference,
user-interface agents and avatars require a large number of
different face geometries. However, creating diverse 3D
face models for these applications is a difficult and time-
consuming task, particularly if realism is desired.
 With a significant increase in the quality and
availability of 3D capture methods, a common approach
towards creating face models of real humans uses laser
range scanners to acquire both the face geometry and
texture simultaneously. Although the acquired face data is
highly accurate, unfortunately, substantial effort is needed
to process the noisy and incomplete data into a model
suitable for modeling or animation. In addition, each new
face must be found on a living subject. There is no simple
means of automatically modifying the face model to
different shapes as the user intends once it has been
generated. Another limitation of the 3D scanning

technology is that the complete head geometry cannot be
easily captured as the hair in dark color absorbs all of the
laser radiation. The top and back of the head are generally
not digitized unless the hair is artificially colored white,
but that destroys the texture. In most cases, only the face
region can be properly textured. There is no automatic
mechanism provided to generate a full-head texture from
the acquired face image for rendering the model towards a
“cloned” head.
 In this paper, we present new techniques for creating
varied realistic human face models subject to desired
shape parameters, and for generating a parameterized full-
head texture for rendering the model. The reported
psychophysical evidence [1] suggests that internal facial
features (e.g. eyes, nose, mouth and chin) are good for
discriminating faces. Thus, we synthesize face geometry
by perceiving the face as a set of feature regions. Such a
feature-based face synthesis allows us to generate more
diverse face geometries through different combinations of
the synthesized feature shapes. Our method takes as
examples 3D scanned face data to exploit the variations
presented in the real human faces. In order to establish
correspondences between face scans, we develop a two-
step model fitting method for the 3D registration problem,
where a generic head model is fitted to each example in a
global-to-local fashion. The obtained correspondence
enables the application of principal component analysis
(PCA) to exemplar shapes of each facial feature to build a
low dimensional shape space. We parameterize the
example models using the face anthropometric
measurements, and predefine the interpolation functions
for the example models based on radial basis functions. At
runtime, the interpolation functions are evaluated to
efficiently generate the appropriate feature shapes by
taking the anthropometric parameters as input. After
having performed a vertex-to-image binding for vertices
of the head mesh, we generate a cylindrical full-head
texture from the parameterized texture of the face region.
The individual ear textures are also created from a single
input image.
 The main contributions presented in this paper are:

• a feature-based face modeling method to
automatically synthesize 3D face shapes
according to anthropometric parameters. It
regulates the naturalness of synthesized faces by

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

10

exploiting the parameter-to-shape correlations
that are presented in the real human faces. It is
efficient in time complexity and performs at an
interactive rate.

• a technique that uses a frontal face image of the
scanned data to generate a full-head texture and
individual ear textures which add greatly to a
realistic personalized appearance of the face
model.

 This paper is organized as follows. Section 2 reviews
the previous work on face modelling and texturing.
Section 3 presents the face data we use. Section 4
describes the model fitting process. In Section 5, we
present our feature-based synthesis technique. Section 6
elaborates on the generation of a full-head texture and ear
textures. Experimental results are shown in Section 7.
Section 8 concludes by discussing future work.

2. Previous Work

Face modeling and animation has been an active area of
research in computer graphics since the early 1970's [2]
(see [3] for an excellent survey). Regarding modeling of
static face geometry in particular, several approaches have
been proposed. Parametric conformation models have
been invented very early [4-6]. The desire was to create an
encapsulated model that could generate a wide range of
faces based on a small set of input parameters. However,
the choice of the parameter set depends on the face mesh
topology and therefore the manual association of a group
of vertices to a specific parameter is required. Furthermore,
manual parameter tuning without constraints from real
human faces for generating a realistic face is difficult and
time-consuming.
 The image-based technique [7-12] utilizes an existing
3D face model and information from few pictures (or
video streams) for the reconstruction of both geometry and
texture. Although this kind of technique can provide
reconstructed face models easily, its drawbacks are the
inaccurate geometry reconstruction and inability to
generate new faces that have no image counterparts.
 Another avenue for creating accurate human face
models is 3D scanning technology [13-16]. However, the
result of the range scan is a model corresponding to a
single individual that tells us little about the space of face
shapes. Moreover, in the absence of a characterization of
this space, editing a face model in a way that yields a
realistic, novel face shape is not trivial.
 Decarlo et al. [17] constructed a range of face models
with realistic proportions using a variational constrained
optimization technique. However, because of the
sparseness of the constraints compared to the high
dimensionality of possible faces, realistic shape cannot be

obtained in the facial regions where no desirable
measurement has been specified as a constraint. Also, this
approach requires minutes of computation for the
optimization process to generate a new face.
 Vlasic et al. [18] used multi-linear face models to
study and synthesize variations in faces along several axes,
such as identity and expression. Blanz and Vetter [19]
used example database models from scanners and a linear
function that maps facial attributes (gender, weight and
expression) onto the 3D model. There are several key
differences from our work. First, they manually assign the
attribute values to face shape and texture and devise
attribute controls using linear regression. We
automatically compute the anthropometric measurements
for describing face shape and synthesize facial features by
learning a mapping between the measurement space and
shape space through scattered data interpolation. Second,
their morphable model is restricted to the face region. We
synthesize an individual texture map for texturing the full
head geometry. Third, they use a 3D variant of a gradient-
based optical flow algorithm to derive the point-to-point
correspondence. This approach will not work well for
faces of different races or in different illumination given
the inherent problem of using static textures. In contrast,
our robust method of determining correspondences does
not depend on the texture information.
 Texturing for face modeling is still an
underemphasized issue. Williams [20] generated and
registered a texture map from a peripheral photograph. A
more convenient way to create models of real persons uses
the textures acquired by laser scanners [13-16]. However,
the full head geometry can not be easily captured and
textured due to complex reflectance properties of hair.
Marschner et al. [21] described a technique that uses
several input photographs taken under controlled
illumination with known camera and light source locations
to generate an albedo texture map of the human face along
with the parameters of a BRDF. Creating face textures
from multiple, unregistered images has more flexibility
[9,12,22,23]. Depending on which images each vertex gets
its color from, the vertices of a triangle mesh are
partitioned into two types first. Then, colors in images are
resampled for the frontal vertices. It results in a smooth
and seamless joint between different images that map on
adjacent triangles of surfaces when combining images
together. Not requiring separate camera setups, we focus
on synthesizing a full-head texture from a reflectance
image acquired by a laser scanner which only captures
color of the face region.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

11

3. Face Data

We use the USF face database [24] that consists of
Cyberware scans of 186 human faces with a mixture of
race and age. Each subject is captured wearing a bathing
cap and with a neutral expression. The laser scans provide
face structure data which contains approximately 140k
surface points (see Fig. 1 (a)) and RGB-color values that
are stored in a 360×524 image with 8 bit per channel (see
Fig. 1 (b)). The image is registered against the range data
in the scanning process and can be used for texture-
mapping (see Fig. 1 (c)).

Fig. 1 Face data: (a) scanned face geometry; (b) acquired color image; (c)
texture-mapped face scan.

 We use a generic head model created with Autodesk
MayaTM. It is a wire-frame of numbered vertices in 3D
coordinate space (see Fig. 2 (a)). The generic model
consists of 6,092 vertices and 12,274 triangles, with finer
triangles over the highly curved and/or highly articulated
regions of the face, such as the eyes and mouth, while
larger triangles are used elsewhere, such as the cheeks and
forehead. Prescribed colors are added to each triangle to
form a smooth-shaded surface (see Fig. 2 (b) and (c)).

Fig. 2 Generic model: (a) wire-frame mesh; (b) and (c) smoothly-shaded
surface.

 Let each 3D face in the database be Fi (i =1,K ,M),
M=186. Since the number of vertices in Fi varies, we
resample all faces in the database so that they have the
same number of vertices all in mutual correspondence.
Feature points are identified to guide the resampling. In
our method, the feature points are identified semi-
automatically (see Fig. 3). A 2D feature mask consisting
of polylines groups 83 feature points that correspond to
the facial features such as the eyes, eyebrows, nose, mouth
and face outline. It is superimposed onto the front-view
face image obtained by orthographic projection of a

texture-mapped face scan. The facial features in this image
are detected by using the Active Shape Models [25] and
the 2D feature mask is fitted to the detected features
automatically. A little user interaction is utilized to tune
the feature point positions in the image plane due to slight
inaccuracy of the automatic facial feature detection. The
3D positions of feature points on the scanned surface are
then recovered by re-projection to the 3D space. In this
manner, we efficiently define a set of target feature points
in a face scan Fi as Ti ={ti,1,K , ti,n}, where n=83. Our
generic model G is already tagged with the corresponding
set of source feature points S={s1,K , sn} by default (see
Fig. 3 (e)).

Fig. 3 Semi-automatic feature point identification: (a) initial outline of
the feature template; (b) after automatic facial feature detection; (c) after
interactive user tuning; (d) and (e) feature points identified on the
scanned data and generic model, respectively.

4. Model Fitting

The problem of deriving full correspondence for all face
scans Fi can be stated as: resample the surface for all Fi
using G under the constraint that sj is mapped to ti,j. We
need to find a function 33:f ℜ→ℜ such that

 ,,1)(, njjjji K=+= ssft (1)

The goal is to construct a smooth interpolating function
that expresses the deformation of non-feature vertices of
the generic model in terms of the changes in the feature
points during deformation. Radial Basis Functions (RBFs)
are a popular means for interpolating scattered data for its
power to deal with irregular sets of data in multi-
dimensional space in approximating high dimensional
smooth surfaces [26]. In our case, the interpolant using
RBFs is a function that returns the displacement value for
each vertex of G that takes it from the original position to
its position in the target form. The displacements di,j=ti,j -sj
are known for the source feature points sj and target

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(d) (e)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

12

feature points ti,j. These displacements are utilized to
construct the interpolating function f(v) that returns the
displacement for each generic mesh vertex v:

)()(
1

∑
=

++=
n

j
jjj tMvs-vcvf φ (2)

where 3ℜ∈v is a vertex of G, 3ℜ∈jc are (unknown)

weights, Φ is the radial basis function which is a real
valued function on [0,1), ⋅ denotes the Euclidean norm,

33×ℜ∈M adds rotation, skew, and scaling, and 3ℜ∈t is a
translation component. The Φj are defined by the source
feature points. Popular choices for Φ include the thin-plate
spline)log()(2 rrr =φ , the Gaussian)exp()(2rr ρφ −= ,
the multi-quadric 22)(ρφ += rr , and the biharmonic

rr =)(φ . In our work, we use the multi-quadric function,
which places no restrictions on the locations of the feature
points. In this function, ρ is the locality parameter used to
control how the basis function is influenced by
neighboring feature points. It is determined as the
Euclidean distance to the nearest other feature point.
 Setting up a system of linear equations relating the
source and target feature points, the unknowns cj, M, and t
can be solved for simultaneously. The interpolation
conditions of Eq. 1 lead to a linear system of n equations:
 dstsf njjijjij ,,1)(,, K==−= (3)

To remove affine contributions from the weighted sum of
the basic functions, we include the additional constraints:

 ,0
1

∑
=

=
n

j
jc 0

1
∑
=

=
n

j
j

T
j sc (4)

The system of linear equations (Eq. 3 and 4) is solved
using an LU decomposition to obtain the unknown
parameters. Using the predefined interpolating function as
given in Eq. 2, we then calculate the displacement vectors
for all vertices of the generic model to generate the output
head model. Fig. 4 (a) shows the shape of the deformed
model after having interpolated the set of computed 3D
displacements at 83 feature points and applied them to the
generic model.
 As shown in Fig. 4 (a), the RBF-based deformation
roughly aligns facial features of the generic model to the
scanned data. We further improve the shape using a local
deformation which ensures that all the generic mesh
vertices are truly embedded in the scanned surface. The
local deformation is based on the closest points on the
surfaces of the generic model and the scanned data. The
vertices of the generic model are displaced towards their
closest positions on the surface of the scanned data. The
polygons of the scanned data are organized into a Binary
Space Partition tree in order to speed up the process of the
closest point identification. As each generic mesh vertex
samples a scanned data point, it takes the texture

coordinates of that point for texture mapping. Fig. 4 (b)
and (c) show the result of local deformation.

Fig. 4 Model fitting: (a) generic model after RBF-based deformation; (b)
after local deformation; (c) texture-mapped appearance.

5. Feature-Based Face Shape Synthesis

5.1 Forming Local Shape Spaces

To synthesize the shape of facial features, we form the
local shape spaces using PCA. The model fitting process
generates the necessary vertex-to-vertex correspondence
across 3D scans in the database, which is the prerequisite
of PCA. Since all face scans are in correspondence
through mapping onto the generic model, it is sufficient to
define the regions of facial features on the generic model.
We partition the generic mesh into four regions: eyes, nose,
mouth and chin. The segmentation is transferred to the
fitted generic meshes to generate individualized feature
shapes with correspondences (see Fig. 5). Note that in
order to isolate the shape variation from the position
variation, we normalize all face scans with respect to the
rigid rotation and translation of the face before fitting the
generic model. Thus, PCA can be performed directly on
the obtained data sets of feature shapes.

Fig. 5 Meshes of four facial features decomposed from the fitted generic
mesh shown in Fig. 4 (b).

 Given the set {F} of facial features, we obtain a
compact representation for the meshes of each facial
feature using PCA. Let {Fi}i=1,…,M be a set of meshes of
feature F, each mesh being associated to one of the M 3D
scans of the database. These meshes have the same
dimensions. They are represented as vectors that contain
the x, y, z coordinates of the nF vertices

F

FFF

n
nnni zyxzyxF 3

111),,,,,,(ℜ∈= K . Each mesh
of the feature can then be expressed as a linear
combination of M+1 meshes { F

jψ }j=0,…,M :

(a) (b) (c)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

13

∑
=

+=
M

j

F
j

F
j

F
i

iaF
1

0 ψψ (5)

where ,1
1

0 ∑
=

=
M

i
i

F F
M

ψ F
j

F
i

F
j Fa i ψψ ⋅−=)(0 (6)

The meshes F
jψ (1≤ j≤ M) are the eigenvectors of the

covariance matrix of the set {Fi -
F
0ψ }. They are sorted by

decreasing eigenvalue (λp ≥ λq, p<q) and represent the
principal components of the data set. By truncating the
expansion of Eq. 5 at j=kF we introduce an error whose
magnitude decreases when kF is increased. We choose the
kF such that ∑∑ ==

≥
M

j j
k

j j
F

11
λτλ , where τ defines the

proportion of the total shape variation (98% in our
experiments). Each mesh of a facial feature in the data set
can then be approximately described by the vector of the
coefficients a },,{ 1

i

F

ii F
k

FF aa K= . Each eigenvector F
jψ is

a new coordinate axis for our existing data; thus each
feature mesh can be restated as a point in the space
spanned by the PCA-yielded orthogonal mesh basis. We
call these axes eigenmeshes.

5.2 Anthropometric Control Parameters

Although eigenmeshes represent the most salient
directions of the shape variation in the data set of a facial
feature, they bear little resemblance to the underlying
structure of biological forms. Face anthropometry
provides a set of meaningful measurements or shape
control parameters that allow the most complete control
over the shape of the face. Anthropometric study [27]
describes a widely used set of 132 measurements to
characterize the human face. The measurements are taken
between the landmarks defined in terms of visually-
identifiable or palpable features on the subject's face. Such
measurements use a total of 47 landmarks on the face.
Following the conventions laid out in [27], we have
chosen a subset of 38 landmarks for anthropometric
measurements (see Fig. 6 (a)).
 Facial measurements are categorized into five types.
As shown in Fig. 6 (b), ch-ch refers to the shortest
distance between the landmarks at the corners of the
mouth, n-sn refers to the axial distance between the
midpoint of the nasofrontal suture and junction between
the lower border of the nasal septum, al-prn refers to the
tangential distance measured on the face surface from the
most lateral point on the nasal ala to the nose tip, the angle
of inclination is exemplified by the inclination of the
upper lip sn-ls with respect to the vertical axis, and the
angle between locations is exemplified by the
labiomental angle (the angle at the lower lip).

Fig. 6 (a) Head geometry with anthropometric landmarks (green dots).
The landmark names are taken from [27]. (b) Anthropometric
measurements.

Table 1: Anthropometric measurements of the nose

 Supporting all 132 measurements is beyond the scope
of this work. Instead, we are only concerned with those
related to four facial features. As an example, Table 1 lists
the nasal measurements used in our work. The
anthropometric measurements are taken through all face
examples in the database to determine their locations in a
multi-dimensional measurement space. These locations are
then used to guide the feature shape synthesis process.

5.3 Feature Shape Synthesis

From the previous stage we obtain a set of examples of
each facial feature with measured shape characteristics,
each of them consisting of the same set of dimensions,
where every dimension is an anthropometric measurement.
As each measurement has a different average and variation,
it is prohibitive to define the measurement axis by directly
using the measurements unit. Instead, the example
measurements are normalized. Generally, we assume that
an example model Fi of feature F has mF dimensions,

(a)

(b)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

14

where each dimension is represented by a value in the
interval (0,1]. A value of 1 corresponds to the maximum
measurement value of the dimension. The measurements
of Fi can then be represented by the vector
]1,0(:],1[],,,[1 ∈∈∀= F

ijF
F
im

F
i

F
i qmjqq

F
Kq (7)

This is equivalent to projecting each example model Fi
into a measurement space spanned by the mF selected
anthropometric measurements. The location of each
example in the measurement space is q F

i .
 With the anthropometric shape control thus
parameterized, our goal is to generate a new deformation
of the face mesh by computing the corresponding
eigenmesh coefficients with control through the
anthropometric measurement parameters. Given an
arbitrary input measurement qF in the measurement space,
such controlled deformation should interpolate the
example models. To do this we interpolate the eigenmesh
coefficients of the example models. For the truncated set
of eigenmeshes of each facial feature, we need to solve for
the coefficients in the truncated basis (iF

ja in Eq. 5) which
give shapes closest to the example models. We solve such
an over constrained linear system using least squares to
get the best fit to the example models.
 Our feature shape synthesis problem is thus
transformed to a scattered data interpolation problem.
Again, the RBFs are employed in our shape interpolation
scheme. The interpolation is multi-dimensional. Consider
a ℜ→ℜ Fm mapping, the interpolated eigenmesh
coefficients ℜ∈⋅)(F

ja , 1≤j≤kF at an input measurement
vector qF Fmℜ∈ are computed as:

F

M

i

F
iij

FF
j kjRa ≤≤= ∑

=

1)()(
1

for qq γ (8)

where ℜ∈ijγ are the radial coefficients and M is the
number of example models. Let q F

i be the measurement
vector of an example model Fi. The radial basis function
Ri(q

F) is a multi-quadric function of the Euclidean
distance
between q F and q F

i in the measurement space:
 MiR i

F
i

FF
i ≤≤+−= 1)(22

for qqq ρ (9)

where ρi are the locality parameters used to control the
behaviour of the basis function:
 F

j
F
ijii qq −= ≠minρ Mji ,,1, K= (10)

The j-th eigenmesh coefficient of the i-th example model,

iF
ja , corresponds to the measurement vector of the i-th

example model, q F
i . Eq. 8 should be satisfied for q F

i and
iF

ja (1≤ i ≤M). Hence, by substituting q F
i and iF

ja for
q F and

F
ja respectively in Eq. 8, we have

F

M

i

F
iiij

F
i

F
j kjRa i ≤≤= ∑

=

1for)()(
1

qq γ (11)

Eq. 11 can be expressed in the matrix form
 RY=A (12)
where Y FkM ×ℜ∈ is the matrix of the unknown radial
coefficients γij, and R MM×ℜ∈ and A FkM ×ℜ∈ are the
matrices defined by the radial bases and eigenmesh
coefficients of the example models respectively, such that
Rij=Rj(q

F
i) and Aij= iF

ja . The radial coefficients γij are
obtained by solving this linear system using an LU
decomposition. We can then generate the eigenmesh
coefficients, hence the shape of the facial feature,
corresponding to the input measurement vector qF
according to Eq. 8.

5.4 Subregion Shape Blending

After the shape interpolation procedure, the surrounding
facial areas should be blended with the deformed facial
features to generate a seamlessly smooth face mesh. The
position of a vertex vi in the feature region F after
deformation is v '

i
. Let V denote the set of vertices of the

head mesh. For smooth blending, positions of the subset
FF VVV \= of vertices of V that are not inside the feature

regions should be updated with deformation of the facial
features. For each vertex vj FV∈ , the vertex in each feature
region that exerts influence on it, v F

ki
, is the one of

minimal distance to it. Note that the distance is measured
offline in the original undeformed generic mesh. For each
vertex vj FV∈ , the displacement vector for its
corresponding closest feature vertex v F

ki
 is used to update

its position in shape blending. The displacement is
weighted by an exponential fall-off function according to
the distance between vj and v F

ki
:

 ∑
Γ∈

−−−+=
F

F
k

F
k

F
kjjj iii

vvvvvv '')1exp(
β

 (13)

where Γ is the set of facial features and β controls the size
of the region influenced by the blending. We set β to 1/10
of the diagonal length of the bounding box of the head
model. Fig. 7 shows the effect of our shape blending
scheme utilized in synthesizing the nose shape.

Fig. 7 Left: Without shape blending, the obvious geometric
discontinuities around the border of the nose impair visual realism of the
synthesis. Right: Using our approach, geometries of the feature region
and surrounding area are smoothly blended at their boundary.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

15

6. Texturing A Head

6.1 Mesh Parameterization

Our head skin texture is generated from the acquired color
image shown in Fig. 1 (b). One of our goals is to readily
generate 2D texture metamorphosis for head morphing. In
general, morphing between two images requires pair-wise
correspondences between image features. In our case,
however, correspondences between the two textures are
implicit in the texture coordinates of the two associated
face meshes. Since every face generated from one generic
model has a similar characteristic for texture coordinates,
we can produce the shape-free face texture images by
constructing a parameterization of the 3D generic mesh
over a 2D image plane.
 Given the vertex-wise correspondence between a
fitted generic head mesh and the original undeformed
generic mesh, it is trivial to transfer a texture image
between them. Each vertex on the original generic mesh
simply takes the texture coordinates of its corresponding
vertex on the fitted mesh for texture mapping (see Fig. 8
(a) and (b)).

Fig. 8 (a) Fitted generic model with texture mapping. (b) Texture
transferred to the original undeformed generic model. (c) Texture mesh
parameterization. (d) Cylindrical texture image.

 We parameterize the 3D generic head mesh over a 2D
domain [0,1]2 by implementing a cylindrical projection.
The projection results in a cylindrical texture mesh (see
Fig. 8 (c)). Each vertex of the 2D cylindrical texture mesh
has cylindrical coordinates with corresponding longitude
(0-360 degrees) along the u-axis and vertical height along
the v-axis. The resulting (u, v) coordinates map to a
suitable aspect and resolution image (800×500 in our
experiment). We also map the original generic mesh
rendered with the transferred texture to the image plane
using the same cylindrical projection. The result is a

800×500 cylindrical texture image in which each pixel
value represents the surface color of the texture-mapped
face surface in cylindrical coordinates (see Fig. 8 (d)). The
generic head mesh can be textured by this cylindrical
texture image using normalized 2D cylindrical coordinates
as the texture coordinates.

6.2 Synthesizing A Full-Head Skin Texture

After having created the 2D texture mesh in the mesh
parameterization step, we perform a vertex-to-image
binding for all vertices of the 3D head mesh. This step is
carried out by taking into account removal of undesired
textures of cap and dark hair. A vertex on the generic
mesh is bound to the input image, if it samples the
scanned surface and takes valid texture coordinates of the
sampling point in the model fitting procedure. Removal of
cap and hair textures is done by unbinding the vertices
with a color too dissimilar to the color of the forehead. We
compute the average color and standard deviation of the
vertices in the forehead and unbind those vertices that are
at least η times the standard deviation away from the
average. The parameter η should be chosen within [1.5,3],
as it empirically proved to remove the problematic (cap
and hair) textures. Fig. 9 shows the remaining texture with
2D mesh parameterization and its vertex binding
visualized with color coding.

 Fig.
9 (a) The resulting cylindrical texture image after cap and hair textures
have been removed automatically. (b) Color-coded triangles of the texture
mesh: each red triangle has all of its vertices bound to the input color
image; blue triangles have at lease one bound vertex and one unbound
vertex; the vertices of green triangles are all unbound.

 Let ∆=(v1,v2,v3) denote a triangle of the face mesh
and)~,~,~(~

321 vvvΔ be the corresponding triangle in the texture
mesh. For each triangle ∆, one of the following situations
might occur (see Fig. 9 (b)):

1. There is a texture patch of the input image that
can be mapped to ∆ (red triangles).

(a)

(b)

(a) (b)

(c) (d)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

16

2. Only one or two vertices of ∆ are bound to the
input image (blue triangles).

3. No vertex of ∆ is bound to the input image (green
triangles).

 In the first case, we rasterize Δ~ in texture space. For
each texel Ti, we color it with the color of the image pixel
Pi that corresponds to Ti. In the second case, we color
vertices of Δ~ that are bound to the input image with the
colors of the corresponding pixels as in the first case. For
each unbound vertex jv~ , we check the vertices in its one-
ring neighbours that are colored by being bound to the
input image. jv~ is then colored by summing up the
weighted colors of all the colored vertices iv~ around it.

∑

∑

=

=

⋅

⋅
=

n

i
i

n

i i
i

j

d
d

C
d
d

C

1
max

1
max

)
2

cos(

)~()
2

cos(
)~(

π

π v
v (14)

where)~(vC is the color of the vertex v~ , n is the number of
colored neighbouring vertices, di is the length of the edge
linking between vi and vj in the original 3D generic mesh,
and dmax is the maximal edge length in the generic mesh.
The weight term measures the normalized distance
between two vertices, and favors the vertices that are
much closer to the considered vertex. The texels of the
rasterization of Δ~ can be grouped into two sets: Tt and Tc.
Textured texel set Tt represents the set of texels that have a
corresponding pixel in the input image. We thus color this
set of texels with their corresponding pixel colors. If a
texel Ti has no corresponding pixel, it is categorized into
the colored texel set Tc. We determine its barycentric
coordinates (ζi, κi, τi) with respect to Δ~ and compute the
corresponding color C(Ti) by interpolating the vertex
colors of Δ~ :
)~()~()~()(321 vvv CCCTC iiii τκς ++= (15)
 We address the coloring problem in the last case in
two stages: First, we iteratively assign an interpolated
color to each unbound vertex. We then perform the color
interpolation scheme for the remaining triangles of Δ~ that
have not been colored. The first step iteratively loops over
all unbound and uncolored vertices of the 2D texture mesh.
For each unbound vertex v~ , we check if the vertices in the
one-ring around v~ are colored (either by being bound to
the input image or by having an interpolated color). If this
is true, we assign to v~ the weighted sum of colors of all
the colored vertices around it using Eq. 14, otherwise we
continue with the next unbound vertex. We repeat this
procedure until there are no further vertex updates. After
this step, the first round of vertices connecting to the
vertices in case 2 has been colored. Next, we start the
same procedure iteratively. At each iteration we color new
round of vertices adjacent to the round of vertices colored
in the last iteration. Upon termination of this loop, all

vertices of the texture mesh are either bound or colored
and the remaining triangles of Δ~ can be colored using the
interpolation scheme (Eq. 15) from the second case. Fig.
10 shows the generated full-head texture.

Fig. 10 Synthesized cylindrical full-head texture.

6.3 Texturing Ears

The ears have an intricate geometry with many folds and
fail to project without overlap on a cylinder. Nevertheless,
it is possible to quickly generate the texture from the input
image where the ears are clearly visible.

 Fig. 11 (a) and (b) Positions of the feature points in the input 2D
image and 3D generic model. (c) Ear feature points. Blue ones are used
for the global alignment. (d) Bounding box around an ear. (e) Projected
reference ear meshes with feature points.

 We use a deformation technique based on feature
points to warp the reference ear model to an individual ear
model for extracting ear textures. We use the input image
that contains the individual ears as the target model (see
Fig. 1 (b)). We interactively identify a set of fourteen
feature points for each ear in the input image, see Fig. 11
(a). As illustrated in Fig. 11 (b), our generic model is
tagged with the same feature points by default. To
segment ears, we predefine a bounding box enclosing each
ear of the generic mesh (see Fig. 11 (d)). Before fitting the
reference ears to the target shape, we need to transform
positions of the reference ear model into the coordinate
system of the target ear image. The segmented ears are

(a) (b) (c)

(d) (e)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

17

transformed and projected into the 2D image plane of the
target ear image (see Fig. 11 (e)). For the target feature
points in the input image, they can be easily detected and
their image positions are calculated.
 Given two sets of N corresponding feature points pi in
the projected reference ear mesh E and feature points p ∗

i
in the target 2D ear shape E*, we fit E to E* in two steps:
global alignment and local adaptation. We use five
features points for the global alignment (see Fig. 11 (c)).
The center of E, pc, is defined as the midpoint between p5
and pm which is the midpoint between p1 and p9. The
center of E*, p*c, is calculated in the same way. Let an
arbitrary vertex x 2ℜ∈ of E move to its new position
x' 2ℜ∈ , S 22×ℜ∈ be the scaling matrix, R 22×ℜ∈ be the
rotation matrix, and T 2ℜ∈ be the translation vector. Eq.
16 computes the transformation for global alignment:
 Tp-xSRx +=)(' c (16)
Five parameters must be estimated, the in-plane rotation
angle θ, two scaling factors (su and sv) and two translation
components (tu and tv) along the u and v texture coordinate
axes. θ is estimated as the angle between vectors 72PP
and ∗∗

72 PP . The scaling factors are estimated as:

72

*
7

PP

PP

PP

PP

−

−
=

−

−
=

∗∗∗
2

m
5

m
5 , vu ss (17)

The translation vector is estimated by matching the model
center of E with that of E*. The same transformation is
applied to the feature points pi to get their new positions
p'i. Fig. 12 (a) shows the global alignment results.
 In the local adaptation we construct a smooth
interpolation function that gives the displacements
between the original point positions and the new adapted
positions for every vertex of the transformed reference ear
mesh E '. Let wi be the sum of weights from all feature
points contributed to a ear mesh vertex x'i, and lij be the
distance between the vertex x'i and a feature point p'j. Eq.
18 computes the displacement applied to x'i:

 μ

l

j

N

j i

iji
ij

e
)(Nw

lw −

=
∑ −

−
= Px Δ

1
Δ

1
i (18)

where jPΔ is the displacement of feature point p'j:

 '
jjjΔ PPP −= ∗ , ∑

=

=
N

j
iji lw

1

 (19)

The decay factor μ is determined by the ear size. We set it
to 1/20 of the diagonal length of the bounding box of the
reference ear model.
 After fitting the ear, texture coordinates for all
vertices of the reference ear mesh are obtained by
normalizing the final vertex positions to the domain [0, 1]2.
Fig. 12 (b) shows the local adaptation results. In the final
head rendering, the ear parts are texture-mapped in a
separate process using the input image shown in Fig. 1 (b).

Fig. 12 (a) Globally aligned reference ear meshes with smooth shading
and texture mapping. Red and green dots represent the transformed
source feature points and detected target feature points, respectively. (b)
After the local adaptation.

7. Results

The final texture-mapped head is shown in Fig. 13, where
the texture image shown in Fig. 10 is applied to the
adapted generic head model shown in Fig. 4 (a). The
scanned data in Fig. 1 has a nice shape, but dose not have
good shape and texture for the top and back of the head.
Through our method using deformation and texture
synthesis with the generic model, it has texture on these
parts, which makes full rotation of a head. We have used
our system to generate full-head textures for subjects
whose face scans are in our database. Female and male in
different races with different skin color attributes are
reconstructed and textured, as shown in Fig. 14. Rendering
of a head model is performed in real-time using OpenGL
hardware (about 120 fps on a 2.4 GHz PC with an ATI
FireGL X1 graphics board).

Fig. 13 Different views of the head model rendered with the generated
full-head texture.

 Our method establishes the necessary mapping between
different face scans through a generic model which
enables us to morph between any two reconstructed
models. Together with the geometry morphing, we blend
the textures. The generated full-head textures possess the
correspondence, enabling 2D texture metamorphosis. Fig.
15 shows a dynamic morphing between different models.
 In our method, the only interactive step is the initial
tuning of the 2D feature mask. This process takes about 2

(a)

(b)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

18

minutes. The automated method is then executed to
generate a full-head texture image. The RBF calculation
and warping of the generic model take about 2 seconds on
a 2.4 GHz Pentium 4. With a data set of 140k points, the
local deformation process runs for about 14 seconds.
Computing a parameterization of the generic mesh
(approx. 12k triangles) takes about 0.2 seconds. The
texture synthesis process performs 30 iterations in approx.
one minute. Ear fitting process runs for 0.8 seconds to fit
two ears. Given the scanned data, the whole process of
creating a full-head texture takes about 4 minutes.

Table 2: Number of eigenmeshes and anthropometric control parameters
used for face shape synthesis

 For each facial feature, the original full set of 186
eigenmeshes is reduced to a small set which explains 98%
of the shape variation in the database. Table 2 shows the
number of eigenmeshes and number of input
anthropometric controls used for our face shape synthesis.
The user can select the facial feature to work on using a
windows GUI (see Fig. 16). Using a mouse he can modify
the position of a set of sliders, each one related to one
anthropometric control of a facial feature. The
anthropometric parameter values are chosen within [0,1]
to generate realistic face shapes.

Fig. 16 GUI of our system.

 Fig. 17 shows a number of synthesized facial shapes
on the average model which is the average shape of
reconstructed 186 head models and textured with the mean
cylindrical full-head texture image. A wide range of
variations are exhibited across the generated faces; clear
differences are found in the width of the nose alar wings,
the straightness of the nose bridge, the inclination of the
nose tip, the roundness of eyes, the distance between
eyebrows and eyes, the thickness of mouth lips, the shape
of the lip line, the sharpness of the chin, etc. Note that it is

not necessary to begin with the average model. We can
start with any face model of a specific person and edit
various aspects of its shape. The editing focuses on the
characteristics of the face interesting to the user while
preserving the identity of the subject. Fig. 18 illustrates
face editing results on the models of two individuals for
various user-intended characteristics. At runtime, our
scheme spends about 0.08 seconds in generating a new
face shape upon receiving the input anthropometric
parameters, corresponding to a rate of 12 fps.

8. Conclusion

We have presented new techniques for creating
photorealistic 3D head models rendered with a full-head
texture, and for generating natural looking face shapes by
synthesizing facial features according to anthropometric
parameters. We make use of the scanned face data of real
people, which provides the best available resource to
regulate the naturalness of modelled faces. In order to
establish correspondence among scanned data, we use a
two-step model fitting approach to conform a generic head
mesh to the particular geometry of the subject's face. We
transform the obtained data sets of facial feature shapes
into vector space representations by applying the PCA.
Using the PCA coefficients as a compact shape
representation, we approach the shape synthesis problem
by forming scattered data interpolation functions that are
devoted to the generation of desired shape by taking the
anthropometric parameters as input. At runtime, the
interpolation functions are evaluated at the input
parameter values to produce new face shapes at an
interactive rate. We automatically generate a full-head
texture from parameterized texture of the face region. In
particular, we address the creation of individual ear
textures. We have demonstrated personalized head models
rendered with the generated textures and various realistic
face shapes generated through anthropometric controls.
 We envisage several further developments from our
current results. We would like to incorporate more face
examples into the existing database, including more
diversity of age and race. In order to generate more
realistic faces, we would also like to increase the number
of facial features to choose from. The possible candidates
are the cheeks, forehead and upper jaw. Moreover, we
plan to extend our framework on synthesizing local
textures of facial features. As anthropometric
measurements are often correlated, we plan to improve the
shape control by using the facial proportion statistics [28]
to model the correlations between measurements. Finally,
automatic reconstruction of hair texture from images is
one of the future challenges.

 Eyes Nose Mouth Chin
Number of eigenmeshes

used for shape synthesis
 23 26 20 18

Number of anthropometric

control parameters
 13 20 12 7

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

19

References
[1] A. Young and D. Hay, Configurational Information in Face

Perception, Experimental Psychology Society, 1986.
[2] F. I. Parke, “Computer generated animation of faces,”

Master's thesis, University of Utah, Salt Lake City, 1972.
[3] F. I. Parke and K. Waters, Computer Facial Animation, AK

Peters, Wellesley, MA, 1996.

 [4] S. DiPaola, “Extending the range of facial types,” Journal of

Visualization and Computer Animation, vol.2, pp.129-131,
1991.

[5] F. I. Parke, “Parameterized models for facial animation,”
IEEE Computer Graphics and Application, vol.2, pp.61-68,
1982.

Fig. 18 Feature-based face editing on the models of two individuals. The original model is shown in the first image of each example.

Fig. 14 Examples of texture-mapped head models of various people.

Fig. 17 Automatically generated face models by synthesizing the shapes of four facial features on the average model (outlined) according to
the input anthropometric parameters.

Fig. 15 Dynamic morphing between different texture-mapped head models (circled).

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

20

[6] M. Patel and P. Willis, “FACES: the facial animation,
construction and editing system,” Proc. Eurographics'91,
pp.33-45, 1991.

[7] T. Akimoto, Y. Suenaga and R. S. Wallace, “Automatic
creation of 3D facial models," IEEE Computer Graphics
and Application, vol.13, pp.16-22, 1993.

[8] H. H. S. Ip and L. Yin, “Constructing a 3D individualized
head model from two orthogonal views,” The Visual
Computer, vol.12, pp.254-266, 1996.

[9] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski and D. H.
Salesin, “Synthesizing realistic facial expressions from
photographs,” Proc. SIGGRAPH'98, pp.75-84, 1998.

[10] Z. Liu, Z. Zhang, C. Jacobs and M. Cohen, “Rapid
modeling of animated faces from video,” Journal of
Visualization and Computer Animation, vol.12, pp.227-
240, 2001.

[11] C. Kuo, R. Huang and T. Lin, “3-D facial model estimation
from single front-view facial image,” IEEE Trans. on
Circuits and Systems for Video Technology, vol.12,
pp.183-192, 2002.

[12] I. K. Park, H. Zhang, V. Vezhnevets and H. K. Choh,
“Image-based photorealistic 3D face modeling,” Proc.
IEEE Automatic Face and Gesture Recognition, pp. 49-54,
2004.

[13] R. Enciso, J. Li, D. Fidaleo, T-Y. Kim, J-Y. Noh and U.
Neumann, “Synthesis of 3D faces,” International
Workshop on Digital and Computational Video, pp.146-
151, 1999.

[14] Y. Lee, D. Terzopoulos and K. Waters, “Realistic modeling
for facial animation,” Proc. SIGGRAPH'95, pp.55-62,
1995.

[15] K. Kahler, J. Haber, H. Yamauchi and H. P. Seidel, “Head
shop: Generating animated head models with anatomical
structure,” Proc. ACM SIGGRAPH Symp. on Comput.
Anim., pp.55-64, 2002.

[16] Y. Zhang, E. C. Prakash and E. Sung, “Constructing a
realistic face model of an individual for expression
animation,” International Journal of Information
Technology, vol.8, pp.10-25, 2002.

[17] D. DeCarlo, D. Metaxas and M. Stone, “An anthropometric
face model using variational techniques,” Proc.
SIGGRAPH'98, pp.67-74, 1998.

[18] D. Vlasic, M. Brand, H. Pfister and J. Popovic, “Face
transfer with multilinear models,” Proc. SIGGRAPH'05,
pp.426-433, 2005.

[19] V. Blanz and T. Vetter, “A morphable model for the
synthesis of 3D faces,” Proc. SIGGRAPH'99, pp. 187-194,
1999.

[20] L. Williams, “Performance-driven facial animation,” Proc.
SIGGRAPH'90, pp.235-242, 1990.

[21] S. Marschner, B. Guenter and S. Raghupathy, “Modeling
and rendering for realistic facial animation,” Proc. 11th
EG Workshop on Rendering, pp.231-242, 2000.

[22] C. Rocchini, P. Cignoni, C. Montani and R. Scopigno,
“Acquiring, stitching and blending diffuse appearance
attributes on 3D models,” The Visual Computer, vol.18,
pp.186-204, 2002.

[23] X. Li and H. Zha, “Realistic human head modeling with
multi-view hairstyle reconstruction,” Proc. 5th
International Conference on 3D Digital Imaging and
Modeling, pp. 432-438, 2005.

[24] USF DARPA HumanID 3D Face Database, Courtesy of
Prof. Sudeep Sarkar, Univ. of South Florida, Tampa, FL.

[25] T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham,
“Active shape models: Their training and applications,”
Computer Vision and Image Understanding, vol.16, pp.38-
59, 1995.

[26] M. J. D. Powell, “Radial basis functions for multivariate
interpolation: A review,” in Algorithms for Approximation,
J. C. Mason and M. G. Cox, Eds. Clarendon Press, 1987.

[27] L. G. Farkas, Anthropometry of the Head and Face, Raven
Press, 1994.

[28] L. G. Farkas, Anthropometric Facial Proportions in
Medicine, Thomas Books, 1987.

Yu Zhang received the BE and ME
degrees from Northwestern
Polytechnical Univ., Xi’an, China,
in 1997 and 1999, respectively. He
received the PhD degree from
Nanyang Technological Univ.,
Singapore, in 2004. From 2003 to
2005, he was a research fellow in the
School of Computing, National Univ.
of Singapore. In 2005, he worked as

a research scientist at the Genex Technologies, Inc., U.S.A. He
has been a postdoctoral researcher in the Computer and
Information Science Department at Univ. of Pennsylvania since
2006. His research interests are in the areas of computer graphics,
computer animation, physically-based modeling, visualization,
and virtual reality. He is a member of IEEE Computer Society
and ACM SIGGRAPH.

Chew Lim Tan received the
BS (Hons) degree in 1971 from the
Univ. of Singapore, the MS degree
in 1973 from the Univ. of Surrey,
UK, and the PhD degree in 1986
from the Univ. of Virginia, U.S.A.
He is an Associate Professor in the
Department of Computer Science,
School of Computing, National
Univ. of Singapore. His research
interests include document image

and text processing, neural networks and genetic programming.
He is an associate editor of Pattern Recognition and the current
President of the Pattern Recognition and Machine Intelligence
Association (PREMIA) in Singapore.

