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Summary 
The denoising of a natural image corrupted by noise is a classical 
problem in image processing. In this paper, an efficient algorithm 
of image denoising based on multi-objective optimization in 
discrete wavelet transform (DWT) domain is proposed, which 
can achieve the Pareto optimal wavelet thresholds. First, the 
multiple objectives for image denoising are presented, then the 
relation between these objectives and the wavelet thresholds is 
analysed, finally the algorithm of adaptive multi-objective 
particle swarm optimization is introduced to optimize the 
wavelet thresholds. Experiments show that the Pareto optimal 
threshold-denoising algorithm is more effective than other 
algorithms, and can attain the Pareto optimal denoised image. 
Key words: 
Image denoising, multi-objective optimization, particle swarm 
optimization, discrete wavelet transform, thresholding function. 

1. Introduction 

Threshold selection is the critical issue in image denoising 
via wavelet shrinkage. Many powerful approaches have 
been investigated, and the most well-known thresholds 
include the universal threshold [1, 2], the adaptive 
threshold [3], and the Bayesian threshold [4], where 
Bayesian performs well most of the time. However, few 
approaches have made the threshold values optimal for the 
noisy images. In general, the thresholds are given or 
adaptively change based on the image contents, so it is 
fairly difficult to obtain the optimal denoised image. In 
fact, image denoising can be regarded as an optimization 
problem, and the optimal result can be acquired by 
searching the optimal thresholds. Therefore, the proper 
optimization objectives and search strategy are highly 
important. Shi [5] primarily explored the problem, and 
introduced the Nelder-Mead simplex method to search the 
optimal threshold of image denoising, the objective is 
PSNR (peak signal-to-noise ratio). However the method 
can’t meet the real demands.  

Actually the evaluation criteria of image quality can 
be used as the optimization objectives. However, these 
criteria are various, and the different criteria may be are 
compatible or incompatible with one another. The 
conventional solution is to change the multi-objective 
problem into a single objective problem using weighted 
linear method. However, the relation of the criteria is often 
nonlinear, and this method needs to know the weights of 

different criteria in advance. So it is highly necessary to 
introduce evolutionary multi-objective optimization 
methods based on Pareto theory [6] to search the optimal 
thresholds in order to realize the optimal image denoising. 
In this paper, adaptive multi-objective particle swarm 
optimization (AMOPSO) [7] is introduced and applied to 
optimize the wavelet thresholds of image denoising. 
Experiments show that the approach to image denoising 
based on AMOPSO is more successful. 

2. Wavelet Thresholding Function 

The wavelet thresholding procedure removes noise by 
thresholding only the wavelet coefficients of the detail 
subbands, while keeping the low resolution coefficients 
unaltered. There are four thresholds frequently used, i.e. a 
hard threshold, a soft threshold, a semi-soft threshold, and 
a nonlinear soft-like threshold. 

The hard-thresholding function keeps the input if it is 
larger than the threshold; otherwise, it is set to zero [1]. It 
is described as 

)|(|)(1 TwwIw >=η            (1) 
where w is a wavelet coefficient, T is the threshold, and 
I(x) is a function the result is one when x is true and zero 
vice versa. 

The soft-thresholding function (also called the 
shrinkage function) takes the argument and shrinks it 
toward zero by the threshold [2]. It is described as 

)|(|))sgn(()(2 TwITwww >−=η      (2) 
where sgn(x) is the sign of x. The soft-thresholding rule is 
chosen over hard-thresholding, for the soft-thresholding 
method yields more visually pleasant images over hard-
thresholding. 

The semi-soft thresholding function is a more general 
shrinkage function [8] and described as 
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where T2>T1>0. By choosing appropriate thresholds, the 
semi-soft shrinkage offers advantages over both hard 
thrinkage (uniformly small risk and less sensitivity to 
small perturbations in the data) and soft shrinkage (small 
bias and overall risk). 

Since the soft-thresholding functions are continuous 
with discontinuous derivative. However, the continuous 
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derivative or higher derivatives are often desired for 
optimization problems. The nonlinear soft-like 
thresholding function is constructed with continuous 
derivatives [9]. It is described as 
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where k is a positive integer. When k is near to +∞, the 
limit is just the commonly used soft-thresholding function. 
The nonlinear soft-like thresholding functions have better 
numerical properties. 

3. Criterion Establishment 

In our method of image denoising, the establishment of an 
evaluation criterion system is the basis of the optimization 
that determines the quality of the denoised image. In fact, 
the evaluation criteria of image denoising can be divided 
into two categories. One category reflects the image 
features, such as entropy and variance; the second reflects 
the relation of the fused image to the reference image, 
such as peak signal to noise ratio (PSNR) and structural 
similarity. 

Entropy is an criterion to evaluate the information 
quantity contained in an image. A noisy image always has 
high entropy. If the value of entropy becomes lower after 
denoising, it indicates that the performance of image 
denoising is improved. Entropy is defined as 

∑−=
i

ii ppH log                                    (5) 

where p={p0, p1, …, pL-1} is the probability distribution of 
each grey level, L is the total of levels. The maximum 
value of entropy in a grey-scale image is 

LFH log)( ≤                                          (6) 
If p1=p2=…=pn=1/L, the equality will hold. 

Standard deviation (SD) reflects the deviation of 
image grey contrast to the mean. The high the value of 
standard deviation is, the more dispersive the distribution 
of grey level is, and the stronger the noise is. The standard 
deviation of σ is defined as 
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where M and N are the numbers of the row and the column 
of the image respectively, μ is the mean value of the image 
grey. 
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The higher the value of PSNR (Peak Signal to Noise 
Ratio) is, and the lower the value of RMSE is, the better 
the fused image is. PSNR is defined as 

2
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PSNR =                             (9) 

where RMSE (root mean squared error) is defined as 
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Simulated the human vision system, structural 
similarity (SSIM) [10] is designed by modelling any 
image distortion as a combination of three factors: 
structure distortion, luminance distortion, and contrast 
distortion. It is defined as 
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where μF and μR are the mean intensity of the fused image 
F and the reference image R respectively, σF and σR are the 
standard deviation  of F and R, σFR is the covariance, C1, 
C2, and C3 are positive constant to avoid instability when 
denominators are very close to zero. In (11), the first 
component is the correlation coefficient of F and R. The 
second component measures how close the mean grey 
levels of F and R is, while the third measures the similarity 
between the contrasts of F and R. The higher the value of 
SSIM is, the more similar to R the F is. The dynamic 
range of SSIM is [-1, 1]. If two images are identical, the 
similarity is maximal and equals 1; while one is the 
negative of the other, SSIM equals -1. 

4. AMOPSO Algorithm 

Kennedy and Eberhart brought forward particle swarm 
optimization (PSO) inspired by the choreography of a bird 
flock in 1995 [11]. PSO possesses better optimization 
capacities and has shown a high convergence speed in 
both single objective optimization and multi-objective 
optimization [12]. In order to improve the performances of 
the algorithm, we presented a proposal, called “adaptive 
multi-objective particle swarm optimization algorithm” 
(AMOPSO) [7], in which a new crowding operator based 
on Manhattan distance is used to improve the distribution 
of nondominated solutions along the Pareto front and 
maintain the population diversity; an adaptive inertia 
weight and the adaptive mutation operator are introduced 
to improve the search capacities and avoid the earlier 
convergence; the uniform design [13] is used to obtain the 
optimal combination of the algorithm parameters. The 
algorithm has been successfully applied in multi-objective 
optimization problems.  

The algorithm of AMOPSO is the following: 
Step 1. Initialize the position of each particle: 

pop[i]=arbitrary, where i=1,…,NP, NP is the particle 
number; initialize the velocity of each particle: vel[i]=0; 
initialize the record of each particle: pbests[i]=pop[i]; 
evaluate each of the particles in the POP: fun[i, j], where 
j=1,…,NF, and NF is the objective number; and store the 
positions that represent nondominated particles in the 
repository of the REP according to the Pareto optimality. 
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Step 2. Update the velocity of each particle using the 
following expression. 

])[][(            
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where W is the adaptive inertia weight; c1 and c2 are the 
learning factors, rand1 and rand2 are random values in the 
range [0, 1]; pbests[i] is the best position that particle i has 
had; h is the index of the maximum crowding distance in 
the repository that implies the particle is located in the 
sparse region, as aims to maintain the population diversity; 
pop[i] is the current position of particle i. 

Step 3. Update the new positions of the particles adding 
the velocity produced from the previous step. 

][][][ ivelipopipop +=                      (13) 
Step 4. Maintain the particles within the search space in 

case they go beyond their boundaries (avoid generating 
solutions that do not lie in valid search space). 

Step 5. Adaptively mutate each of the particles in the 
POP at a probability of Pm. 

Step 6. Evaluate each of the particles in the POP. 
Step 7. Update the contents in the REP, and insert all 

the current nondominated positions into the repository. 
Step 8. Update the record of each particle. When the 

current position of the particle is better than the position 
contained in its memory, the latter is updated. 

][][ ipopipbests =         (14) 
Step 9. If the maximum cycle number is reached, stop 

the process and output the Pareto solutions; else go to Step 
2. 

5. The Pareto Optimal Wavelet Denoising 

Our Pareto optimal wavelet denoising method can be 
summarized as follows: 
1) Select the proper thresholding function for image 

denoising; and construct the objective functions, 
including entropy, SD, PSNR, and SSIM;  

2) Perform a 2D discrete wavelet transform for the noisy 
image to get the noisy wavelet coefficients in LL, LH, 
HL, and HH components; 

3) Optimize the thresholds of the thresholding function 
using AMOPSO; when the maximum cycle is reached, 
output the Pareto solutions in the repository; 
according to the preference, select the Pareto optimal 
thresholds;  

4) Threshold the coefficients in LH, HL, and HH 
components with the Pareto optimal thresholds, and 
get the modified new HL’, LH’, and HH’ components; 

5) Reconstruct the denoised image with LL, LH’, HL’, 
and HH’ components. 

6. Results 

We do some experiments to test the proposed thresholding 
algorithm. First, we analyze the relations between the 
standard deviation of the noise and evaluation criteria, so 
as to verify the criteria sound. The test image set includes 
Lena, Baboon, Couple, Elaine, and Man. Suppose that the 
standard deviation is no greater than 40. As shown in Fig. 
1, the noise-free images have the same variety curves with 
the strength of the Gaussian white noise, and these criteria 
can effectively evaluate the quality of a denoised image. 
So we select “Lena” to do the further experiments. 

Second, we analyze the relations between the wavelet 
threshold and evaluation criteria. In order to get general 
results, the soft-thresholding function is selected; the 
decomposition level is set to one. As shown in Fig.2, each 
criterion can reach its extremum at some threshold, while 
these thresholds are usually unequal. Thus, we must 
introduce the Pareto theory to optimize the threshold and 
balance the advantages of the conflicting criteria. 

Third, we do the experiments on the Pareto optimal 
wavelet threshold for image denoising with the reference 
image, where the number of objectives is four, and the 
standard deviation of the noise is known. The image Lena 
of size 512×512 is added Gaussian noise, the 
decomposition level is set to one. The principal objective 
is SSIM, then PSNR, SD, and Entropy. By the uniform 
design, the parameters of AMOPSO are as follow: the 
particle number of NP is 100; the maximum cycle number 
of Gmax is 100; the allowed maximum capacity of MEM is 
200; the mutation probability of Pm is 0.06. The results are 
shown in Table 1. It can be seen that the Pareto optimal 
nonlinear thresholding is the best denoising algorithm. 

Finally, we do the experiments on the Pareto optimal 
wavelet threshold for image denoising without the 
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Fig. 1 The relations between SD of the noise and evaluation criteria 
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reference image, where the number of objectives is two, 
the standard deviation of the noise is unknown. Thus, SD 
of the noise from the wavelet coefficients should be 
estimated. A common experimental estimator [1] is as 
follows 

6745.0/ˆ Madn =σ              (16) 
where Mad is the median of the absolute values of the 
wavelet coefficients. 

The principal objective is SD, then entropy. Finally, the 
denoised image is compared to the standard image, to get 
the values of PSNR and SSIM. The results are shown in  

 
Table 2. The same conclusion can be drawn, i.e. the 

nonlinear threshold can get the Pareto optimal objectives. 
 

The denoised images with different algorithms are 
shown in Fig. 3. Bayesian threshold is the best wavelet 
threshold, so the results from Bayesian thresholding are 
compared with our denoising results. It can be seen that 
the Pareto wavelet threshold for image denoising can 
achieve the better results, whether the reference image 
exists or not. Especially when the noise variance is 

Table 1: The criteria for different denoising algorithms  
with the reference noisy image 

Sigma=10 
Schemes Entropy SD PSNR SSIM
Universal 7.3875 45.3684 31.4152 0.9890
Adaptive 7.3875 45.3678 31.3877 0.9889
Bayesian 7.3891 45.3785 31.6701 0.9896

Hard 7.3892 45.4469 31.6568 0.9896
Soft 7.4020 45.4290 31.9041 0.9901

Semi-Soft 7.4021 45.4374 31.9048 0.9901

Pareto 
Optimal

Threshold
Nonlinear 7.4072 45.4354 31.9543 0.9902

Schemes Sigma=15 
Universal 7.4276 45.7320 29.2412 0.9819
Adaptive 7.4276 45.7319 29.2395 0.9819
Bayesian 7.4282 45.7592 29.2552 0.9820

Hard 7.4278 45.7463 29.2695 0.9820
Soft 7.4351 45.7618 29.3534 0.9824

Semi-Soft 7.4329 45.7605 29.3435 0.9824

Pareto 
Optimal

Threshold
Nonlinear 7.4422 45.7577 29.3932 0.9825

Schemes Sigma=20 
Universal 7.4651 46.0894 27.3061 0.9719
Adaptive 7.4651 46.0893 27.3060 0.9719
Bayesian 7.4652 46.0910 27.3076 0.9720

Hard 7.4652 46.0910 27.3076 0.9720
Soft 7.4687 46.1033 27.3243 0.9721

Semi-Soft 7.4664 46.0991 27.3178 0.9720

Pareto 
Optimal

Threshold
Nonlinear 7.4776 46.1019 27.3490 0.9722

 
Table 2: the criteria for different denoising algorithms  

without the reference noisy image 
Sigma=10 Evaluation Schemes Entropy SD PSNR SSIM 

Universal 7.3875 45.3680 31.3999 0.9889
Adaptive 7.3875 45.3678 31.3861 0.9889
Bayesian 7.3892 45.3740 31.6176 0.9895

Hard 7.3875 45.3678 31.3847 0.9889
Soft 7.3875 45.3678 31.3847 0.9889

Semi-Soft 7.3875 45.3678 31.3847 0.9889

Pareto 
Optimal 
Threshold

Nonlinear 7.3911 45.3624 31.6041 0.9894
Schemes Sigma=15 Evaluation 
Universal 7.4276 45.7320 29.2406 0.9819
Adaptive 7.4276 45.7319 29.2395 0.9819
Bayesian 7.4276 45.7319 29.2395 0.9819

Hard 7.4276 45.7319 29.2395 0.9819
Soft 7.4276 45.7319 29.2397 0.9819

Semi-Soft 7.4276 45.7319 29.2397 0.9819

Pareto 
Optimal 
Threshold

Nonlinear 7.4285 45.7286 29.2630 0.9820
Schemes Sigma=20 Evaluation 
Universal 7.4651 46.0894 27.3060 0.9719
Adaptive 7.4651 46.0893 27.3060 0.9719
Bayesian 7.4651 46.0894 27.3060 0.9719

Hard 7.4651 46.0894 27.3060 0.9719
Soft 7.4652 46.0894 27.3070 0.9720

Semi-Soft 7.4651 46.0894 27.3062 0.9719

Pareto 
Optimal 
Threshold

Nonlinear 7.4672 46.0886 27.3188 0.9720
 

  
(a) (b) (c) 

  
(d) (e) (f) 

Fig. 3 The denoised images: (a) Bayesian denoised result (σ=10); (b) 
Our result with the reference image (σ=10); (c) Our result without the 
reference image (σ=10); (d) Bayesian denoised result (σ=20); (e) Our 
result with the reference image (σ=20); (f) Our result without the 
reference image (σ=20) 
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Fig. 2 The relation between the wavelet threshold and evaluation criteria 
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unknown in advance, the Pareto optimal wavelet 
thresholding is reasonably superior. 

7. Conclusion 

We have demonstrated that evolutionary multi-objective 
optimization can be used for efficient image thresholding 
denoising. The performance can be improved further by 
exploiting the curvelet transform and other superior 
thresholding functions. 
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