
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

35

* corresponding author Computer Center, MIT Campus
Anna University Chrome pet Chennai-600044, Tamilnadu
India

Implementation of hybrid software architecture for
Artificial Intelligence System

B.Vinayagasundaram∗ and S.K.Srivatsa

Computer Center, MIT Campus Anna University Chrome pet Chennai-600044, Tamilnadu India

Summary

An intelligent system should have the ability to process
complex information. This information processing is not
possible as whole in principle. We need some form of partial
computational strategy, which is flexible that can adapt to
changes in the environment and requirements. This paper
introduces software architecture for specification and
verification of Artificial Intelligence system incorporating
conceptual and formal framework. The focus is based on
reusable components. The architecture consists of four
components; Task specification layer, Problem solver layer,
domain layer and an adapter layer. These four components are
hierarchically organized in a layered fashion. In this
architecture, the overall structure is decomposed into sub
components, in a layered way such that adding new layer
without changing the existing layers can change the behavior of
the system. Hence, an AI system can be built in an evolutionary
way by combining and adapting several reusable components
with out changing the existing functionality of the system. The
paper is organized in to two parts. The first part of the paper
summarizes the various AI architectures proposed in the
literature. The second part of the paper addresses the hybrid
layered software architecture for Artificial Intelligence system.
Based on the proposed layered architecture, various text
categorization methods are implemented in the problem solver
layer and the performance is also discussed.

Key words: Artificial Intelligence, software architecture,
Reusability, Software engineering.

1. Introduction

 The definition for Intelligence according to Hideyuki
Nakashima is:

 “Intelligence is the ability to process information
in a properly complex environment in a partial way;
nevertheless this partial processing mechanism yields
maximally successful behavior.” Even though AI is a sub
field of information processing, there are some important
differences, in information processing complete
processing is a must, whereas in Artificial intelligence
processing in most cases complete processing is not
possible [1]. The illustrations for the above is, in
information processing, the algorithm for searching a
data must be complete, but in AI processing complex

heuristics are used to reduce the search and in some
cases the best options may be missed occasionally.
Hence the AI systems should be architected in such a
way not only for adaptations to new functionalities and
environment but also to process complex information in
partial way.

2. Software Architecture and its roles:

Software architecture of a system describes the structure,
organization of components/modules and their
interactions not only to satisfy the systems’ functional
and non-functional requirements but also provide
conceptual integrity to the overall system structure.
Software architecture concerns with the structure of large
software intensive systems. [2] The architectural view is
an abstract view that separates the details of
implementation, algorithm and data representation and
concentrates on behavioral aspects and interaction
among the various components. In other words, the
software architecture of the system provides an abstract
description of the system by exposing certain properties
and hiding others.[3] Hence the software architecture
plays an important function with respect to following
aspects in the development of large software intensive
systems.

(i) Understandability: It helps to understand
the large system by the appropriate level of
abstraction. It also exposes the high-level
design constraints, thereby providing way
for making architectural decision.

(ii) Reusability: Architectural designs support

the reuse of large components and provide
frameworks into which components can be
integrated.

(iii) Construction: An architectural description

provides a blue print for the development of
the system indicating the major components
and the relationship among them.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

36

(iv) Evolution: The architectural description of
the system separates the functionality from
implementation, thereby permitting to
manage the concerns regarding
performance, reusability and prototyping in
an easy way.

(v) Analysis: The architectural description

provides a new attribute for analyzing the
system with respect to quality, performance,
dependency etc,. Moreover analysis of
architectures built with different styles can
also be made to arrive at good architectural
design decisions.

(vi) Management: Successful development of

software addressing specific application
depends on critical selection, analysis and
evaluation of software architecture.

 Artificial Intelligence systems are large and
complex. The more powerful way of structuring the
complexity lies in architecting the system. Hence an
efficient method is needed to structure and handle
the complexity of these systems. A good architecture
of the system will not only satisfy the functional
requirements but also the key non-functional
requirements of the system such as performance,
reliability, portability, maintainability etc,.

3. Architectures for Artificial Intelligence
Systems

The architecture of a system describes its module
capabilities and how these modules operate together
as a whole. The Artificial Intelligence systems can
be broadly classified into reactive systems,
deliberative systems and interacting systems. Over
the past, numerous architectures have been proposed
in the literature for these systems addressing the
important features of these systems. Reactive
systems are built according to behavior-based
paradigm. These systems have a very simple
representation of world and provide tight coupling of
perception and action. Deliberative systems have
a symbolic representation of the world in terms of
categories such as beliefs; goals or intentions and
that possess logical inference mechanism to make
decisions based on their world model. The
interacting systems are able to coordinate their
activities through communication and negotiation.

 3.1 Architectures for reactive systems

 These systems make decision at run time based on

limited information and simple situation action rules.
These architectures were often called behavior based,
situated or reactive. Some researchers especially,
Brooks with Subsumption architecture denied the
need for symbolic representation of the world,
instead the systems make their decisions based on
the inputs. The decision of reactive architectures are
partly guided by Simon’s hypothesis which states
that that the complexity of the behavior of the
system can be a reflection of the complexity of the
environment rather than the reflection of the
system’s complex internal design.

3.2 Brooks’subsumption architecture

The basic concept of subsumption architecture can
be characterized as follows:

(i) Each module in the system is
connected in parallel between the input
and output in contrast to the
conventional serial processing

(ii) Modules form layers in which higher
layers can subsume lower layer
functionalities and hence the name
subsumption.

(iii) The lower level layers governs the
basic behaviors whereas the higher
level layers provide control mechanism

(iv) Augmenting a new layer at the top
level without disturbing the existing
layers can change the total behavior of
the system.[4][5]

Steels behavior based system architecture: The basic
concept behind this architecture is that, the complex
behavior of the system as a whole can emerge by the
interaction of simple individuals with simple behavior.
This describes the feature of swarm intelligence [6]. This
approach foregoes any planning but refers to emergent
functionality. The performance of the system can be
greatly improved by reactive cooperation method.

3.3 Architectures for deliberative system

Most AI systems maintain the internal representation of
their world, which can be modified by some form of
symbolic processing. AI planning system can be
regarded as the predecessor for this deliberative system
architecture.[7] Recently the AI system architectures are
modeled based on the Beliefs, Desires, Intentions (BDI
architectures). The world is modeled using a temporal
structure with branching time future and linear past

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

37

called time tree. Situations are defined as particular time
points in the world. Time points are transformed in to
one another by events, which can be primitive or non
primitive. The non-primitive plans are useful to model
partial and hierarchical plans that are decomposable into
sub-plans and finally in to primitive actions. In this
architecture there is a distinction between choice and
chance. That is ability to select its actions from a set of
alternatives and the uncertainty of the outcome of the
actions where the decision is made by the environment
rather than by the system.

4. Hybrid AI architectures

Purely reactive systems have a limited scope as they can
hardly implement goal directed behavior where as most
deliberative architectures are based on general purpose
reasoning mechanisms which are not tractable and which
are much less reactive. These disadvantages can be
overcome by layered architectures. Layering is a
powerful way of structuring the complexities in general
and functionalities in particular.[8] The layering
approach supports several properties such as reactivity,
deliberation, cooperation and adaptation. The main idea
is to structure the functionalities into two or more
hierarchically organized layers that interact with each
other to achieve coherent behavior. Layering also offers
the following advantages:

(i) It supports modularization. Different
functionalities can be clearly separated and
linked by well-structured interfaces.

(ii) The design of the architecture is compact,
increases the resolution and facilitates
debugging.

(iii)It is possible to run different layers in
parallel there by increasing the computational
speedup.

5. Design of Hybrid layered architecture

Most AI systems display a rigid separation between the
standard computational components of data, operation
and control. That is, if these systems are described at
an appropriate level one can identify three important
components viz. knowledge database that is manipulated
by well-defined operations all under the control of global
control mechanism. Even though at machine code level,
any neat separation in to distinct components can
disappear, it is important to specify them at appropriate
level of description. One difficulty in using conventional
software systems with hierarchically organized programs

for AI applications is that modifications to knowledge
base might require extensive changes to various existing
programs, data structures and subroutine organization. In
the proposed hybrid architecture for Artificial
Intelligence system, components are defined in a
modular way. The system design is more modular and
changes to any of the components can be made relatively
independently. Apart from describing the system with
distinct components, the critical issue in the construction
of AI system is its architecture; that is its gross
organization as a collection of interacting components. A
good architecture can ensure that a system will satisfy
not only the key functional requirements but also ensures
the non functional requirements such as reliability,
portability, modifiability etc,. In the proposed hybrid
architecture, four distinct components are defined at
appropriate level as shown in fig.1. A task definition
layer defines the problem that should be solved by the
system. The second component viz., Problem solver
layer defines the method for reasoning and a domain
model layer describes the domain knowledge of the AI
system. These three components are described
independently to enable the reusability The fourth
component Adapter layer adjusts the three other
components to each other and to the specific problem.

Figure 1. Hybrid Layered Architecture for The Artificial
Intelligence System

6. Formal Specifications of Components

6.1 Task description Layer

The task description layer consists of two elements viz.,
the goals that should be achieved to solve a given

Domain Layer

Properties &

Assumption

Problem Solver Layer

Competency

Operation Specification

Requirements

Adapter Layer

Signature Mapping

Assumption

Requirements

Task Definition Layer

Goals

Requirements

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

38

problem. The second element of the task description
layer is the definition of the requirements on the domain
knowledge. Usually, axioms are used to define the
requirements. The task definitions are done by algebraic
specifications that provide a signature consisting of types
constants functions predicates that defines the property
of this component.

6.2 Problem solver layer:

The concept of problem solver layer is present in many
AI frameworks. The problem solver describes the
reasoning steps and which types of knowledge are
needed to solve the given problem. Even though, there
are some differences in the approaches, the following
features are common in almost all problem solvers:

(i) The problem solver should decompose the
entire reasoning process into primary set of
elementary inferences.

(ii) The problem solver should define the type
of knowledge that is required by the inference
steps to be done.

(ii) The problem solver should define the
control and flow of knowledge between the
inferences.

The description of problem solver layer consists of three
elements viz. Competency description, operational
specification and requirements on domain knowledge.
The competency of a problem solver is a logical theory
that characterizes the solution process. It is similar to the
specification of functionality in software engineering.
Selection of a solution method for the given problem and
the verification of whether the Problem solver fulfils the
requirement for the solution process can be done
independently from the details of the internal reasoning
behavior of the method by proving that the Problem
solver has some competency. The operational
specification defines the dynamic reasoning of the
problem solver, which explains how the competency is
achieved. The third element introduces the requirements
on domain knowledge. All the inference steps and
competency description of the problem solver requires
the specific types of domain knowledge. These
requirements on domain knowledge distinguish a
problem solver from conventional software. Competency
description specifies the actual functionality of the AI
system where as the task description specifies the
problem that should be solved by the AI system.
Distinction between the competency description and task
description is made because of the following reasons.

(i) The problem solver introduces
requirements on domain knowledge in
addition to the task description. Even though
this knowledge is not necessary to define the
problem it is required to describe the solution
process.

(ii) It is not always assumed that the
functionality of the AI is strong enough to
completely solve the problem. Hence the
problem solver should introduce some
important assumptions to reduce the problem
size.

This is similar to the distinction between functional
specification and the design- implementation of software
in software engineering. The functional specification
deals with what and design specification deals with how.
This separation is often not practically possible even in
the domain of software engineering, would not possible
in the development of artificial intelligent system
because a large amount of problem solving knowledge is
required, that is knowledge about how to meet the
solution requirements is not a question of algorithm and
data structures, it exists as a result of experience over the
years and heuristics. Even though, some problems are
completely specifiable but it is not necessarily possible
to derive efficient algorithms from such specifications.
Hence it is not sufficient to have knowledge about what
is the solution to the problem, but also have knowledge
about how to derive such a solution in an efficient way.

6.3 The Domain Layer

The description of the domain layer introduces the
domain knowledge required by the problem solver and
the task description layer. To represent domain
knowledge ontologies are proposed so that the
knowledge can be reused. In the domain layer of the
architecture three elements are defined viz., properties,
assumptions and the domain knowledge itself. The
domain knowledge is necessary to define the task in the
given application domain to carry out the inference steps
of the problem solver. Properties are derived from the
domain knowledge and assumptions are the attributes
that have to be assumed to be true. Hence, the properties
and assumptions are both used to characterize the
domain knowledge.

6.4 The adapter Layer

Adapters are of general importance in component-based
software. In the hybrid architecture, adapter layer is
introduced to relate the competency of the problem
solver to the functionality given by the task description

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

39

layer. Further, the adapter layer introduces new
requirements and assumptions because the most
problems tackled with AI systems are in general complex
and intractable. Hence, a problem solver can solve such
tasks with reasonable computation by the way of partial
processing by introducing assumptions that restrict the
complexity of the problem or by strengthening the
requirements on the domain knowledge. The other three
layers viz., Task description, problem solver and domain
layer can be described independently since the adapter
layer combines these layers in such a way that meets the
solution requirements of the specific application. The
consistency in the relation and the adaptations to the
specific aspects of the problem makes it reusable.

7. Proposed architecture applied to text
Classification:

To illustrate the approach the task of text categorization
is used. The objective of the text classification is to
assign a number of appropriate categories based on the
content. To carry out this task manually, a large amount
of human resources are needed. Several features of text
classification task make it different from other artificial
intelligence problems. First, the problem spaces of text
classification involve a high dimensional space.[9]
Second even though the problem space is high the each
document contains only a small number of features
which are sparse. Some of the standard methods for text
classifications are K-nearest neighbor algorithm,
Bayesian algorithm and back propagation algorithm. The
main disadvantage of K-nearest neighbor algorithm is it
makes use of training examples as instances for
computing similarity. To overcome this k-nearest
neighbor is enhanced such that it makes use of
generalized instances for computing the similarity, which
is called as Generalized Instance Set algorithm. The main
idea of this enhanced version is to construct the
generalized instances to replace the original training
examples. Given a particular category, it can be observed
that the regularity among the positive examples is
usually more than that of the negative examples. The
classification knowledge induced from a pool of similar
examples is relatively accurate. But, on the other hand
negative examples close to such a pool are likely
incorrect negative instances or noise. Based on this idea
the Generalized Instance Set algorithm focuses on
refining the original instances and constructs a set of
generalized instances. First it selects a positive instance
and conducts a generalization process using k nearest
neighbors. After a generalized instance is formed it is
used as a new starting point and the process is repeated
based on nearest neighbors. This search is repeated until
no positive instance remains.

8. Results and discussion:

The performance of various algorithms implemented in
the problem solver layer is measured and the results
obtained have been compared. The performance
measurement for text classification is usually done by
macro averaged recall/precision break-even point
measure (F measure). In this scheme precision and recall
are two important parameters used in calculating the F
measure. For a category I, the precision is defined as the
ratio of number of documents classified according
category I by the classifier. Recall is defined as the ratio
between the number of documents correctly classified to
category I to the total number of documents actually
belonging to I.

Macro averaged F= ∑ F (I)/ m
Where m is the total number of categories and
F(I)= (2* precision(I)*recall(I))/(recall(I)+precision (I))

The fig. 2 shows the performance of the problem solver
implemented with Generalized Instance set(enhanced
K-nearest neighbor) and K-nearest neighbor algorithms.
The recall level at which K-nearest neighbor starts is
lower than the recall level of Generalized Instance set.
For the recall level between 0.5 and 1 it is seen that the
precision level of Generalized Instance set method is less
than k- nearest neighbor. This is because k nearest
neighbor method operates well on this data without noise.
Hence, there is a slight increase in the performance for
this recall level. But when the macro averaged precision
F is compared it is inferred that the average precision of
GIS is more than that of K-nearest neighbor and also the
macro averaged break-even point measure for GIS is
better than K nearest neighbor. To over come this
problem feature set pertaining to each category can be
extracted and generalized instance can then be formed.
When this is done GIS method will show better
performance for all recall levels.

Figure 2. Relative performances of GIS and K-Nearest
Neighbor Algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

40

The fig. 3 shows the performance of the problem solver
implemented with enhanced K-nearest neighbor method
and Bayesian method. Except for recall level at 0.4, the
precision is more for enhanced K-nearest neighbor
method than that of Bayesian. The precision is more for
all other recall levels. The macro-averaged break-even
point measure is also higher for GIS method.

Figure 3. Relative performances of GIS and Bayesian
Algorithm

The table given below gives the macro averaged F
measure for various categories in the data set for
enhanced K-nearest neighbor, k-nearest neighbor and
Bayesian classification method. From the table it is
inferred that the macro-averaged precision is also
higher for enhanced K-nearest neighbor. In this paper,
Bayesian method-nearest neighbor method and the
enhanced version of it were implemented in the problem
solver layer of the hybrid layered software architecture in
a reusable way. It is also found that the F measure for
enhanced version is 12 % higher than primitive version.

Table: 1 Macro averaged F measure for various methods

Category

Generalized

Instance Set

Method

K-nearest neighbor

Method

Bayesian

 Method

corn
0.47368421052631

58

0.49090909090909

09

0.15447154471544

72

Crude
0.68243243243243

25

0.65909090909090

91

0.43537414965986

39

Earn
0.90890990542558

49

0.93741307371349

08

0.76190476190476

20

Ship
0.65853658536585

37

0.49799196787148

60

0.43533123028391

16

Interest
0.51485148514851

50

0.41626794258373

20

0.35842293906810

03

Trade
0.73267326732673

28

0.62499999999999

99

0.42567567567567

56

Acq
0.87068381855111

71

0.71932773109243

70

0.46450304259634

88

Wheat
0.72602739726027

39

0.57142857142857

15

0.23214285714285

71

Money-fx
0.40201005025125

63

0.40909090909090

91

0.39534883720930

23

∑ F(I)/ m

0.66331212803200

90

0.59183557730895

84

0.40701944869514

10

9. Conclusions and future work:

Software architecture for artificial intelligence system
has been is developed based on conceptual and formal
framework based on reusable components. Future work
may be focused on the development of a semantic search
layer, which can be augmented to the existing system
without changing the architecture that can change the
behavior of the system. The consistency checker in the
adapter layer cannot make changes directly to the
knowledge base in the domain layer. Hence the present
work can be extended to perform this task by suitably
modifying the task description layer. By specifying
suitable quality metrics, the quality of the software
architecture can also be measured. In this architecture,
the overall structure is decomposed into sub components,
in a layered way such that adding new layer without
changing the existing layers can change the behavior of
the system as a whole. Hence an AI system can be built
in an evolutionary way by combining and adapting
several reusable components.

References:

[1]. Hideyuki Nakshima, “AI as Complex processing”
Minds and Machine vol 9. pp57-80 1999.

[2]. David Garlan, “Software Architecture: a
Roadmap”. ACM press 2000

[3]. Rikard Land ,”A brief survey of software
architecture” MRTC report Dept.Computer Science
Malardalen University Sweden 2002

[4]. Rodney A. Brooks, “ Intelligence without
representation” Artificial Intelligence 47:139-160 1991.

[5] Hideyuki Nakashima Itsuki Noda “Dynamic
Subsumption architecture for Programming Intelligent
agents” Proc. International Conference on Multiagent
Systems” AAAI press pp190-197 1998.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

41

[6]. Steels. L” Cooperation between distributed agents
through self organization” Decentralized AI pp 175-196.
1976.

[7] Newell A.Simon” Computer Science as empirical
enquiry: Symbols and search” Communications of ACM
19(3) pp113-126. 1976

[8]. J.F Sowa “Architectures for Intelligent systems IBM
Systems Journal vol41 No.3 pp331-349. 2002

[9].Dolores Del Castillo Jose Ignacio Serrano “ A
Multistrategy Approach for Digital Text Categorization
from Imbalanced Documents” Sigkdd Explorations vol.6.
pages 70-77.

[10]. Wai Lam Yiqui Han “ Automatic Textual Document
Categorization based on Generalized Instance sets and
Metamodel” IEEE Transactions on Pattern Analysis and
Machine Intelligence vol.25 no.5 pp 628-633

.

B.Vinayagasundaram received his
B.E. and M.E degrees in 1985 and
1994 from Madurai Kamraj University
and Anna University respectively. He
is working as Senior Lecturer in the
computer center, MIT campus Anna
University. His research interest
includes Software Engineering AI and

Dr.S.K.Srivatsa, a Ph.D from IISC
Bangalore, Professor(Retd.) of
Electronics Engineering in 2005.
Currently he is Senior Professor at St.
Joseph College of Engineering,
Chennai. He is author of more than
200 publications. His research interest
includes Computer Networks, Logic

