
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

42

Developing a Brokering Architecture for Multimedia
Learning Objects on the Semantic Web

Jinan Fiaidhi, Sabah Mohammed and Marshall Hahn,

Department of Computer Science, Lakehead University,
Thunder Bay, Ontario P7B 5E1, CANADA

Summary
The World Wide Web is changing. While once conceived
of and implemented as a collection of static pages for
browsing, it now promises to become a web of services--a
dynamic aggregate of interactive, automated, and
intelligent services that interoperate via the Internet. For
the web of services model to succeed, techniques which
match service requestors with service providers must be
developed. In particular, such techniques are especially
important for highly demanding applications such as e-
Learning. Such educational applications developed for the
Semantic Web require some kind of reasoning capability.
Providing sound and complete reasoning services is
essential for many of these applications to function
properly. In this paper, we present a Multimedia Learning
Object Brokering Architecture implemented using Apache
Axis, Jena and Pellet. The Broker component determines
which MLOs satisfy a query based upon information
contained in one or more domain-specific ontologies. The
system’s requestor and provider components are designed
specifically for use with SVG slideshow presentations
described using the CanCore standard. All queries are
expressed in OWL-OQL, a concise OWL query language
created for use with our brokering system.

Key words:
Multimedia Learning Objects, Semantic Web, Semantic Broker.

1. Introduction

While eLearning systems become more and more popular
in daily education, available applications lack
opportunities to structure, annotate and manage their
contents, as well as their interactive components in a high-
level fashion. General efforts to improve these deficits are
taken by initiatives to define rich meta data sets and a
semantic web layer so enable users to access the
heterogeneous educational services. Although the
accessibility to various learning repositories is still manual
and time-consuming, the realization of the Semantic Web
provides several new AI-inspired content markup

languages (e.g. OIL, DAML+OIL, DAML-L, RDF, OWL
and OWL-S)[1] that enable the manipulation of complex
taxonomic and logical relations between entities on the
Web. Such languages utilize ontologies to provide basis
for the interoperability among different distributed entities.
The ontologies offer a way to apply structured and well-
defined meanings. In order to achieve the vision of
semantic web (based on such ontologies) and the various
educational services, we need to integrate certain
technologies like matchmaking or brokering. The
matchmaker differs from the broker primarily in that the
matchmaker actually passes responsibility for service
provision directly to the matched server and requesting
client, whereas the broker completely hides the identity of
the server from the client and vice versa [2].

On one hand, matchmakers increasingly appear in
standard for Web services infrastructures such as UDDI.
The Matchmaker is a web service that helps make
connections between service requesters and service
providers. The Matchmaker serves as a "yellow pages" of
service capabilities. The Matchmaker may employ
techniques from information retrieval, AI, and software
engineering to compute the syntactical and semantic
similarity among service capability descriptions. The
matching engine may contain several filters for namespace
comparison, word frequency comparison, ontology
similarity matching, ontology subsumption matching, and
constraint matching. The user may configure these filters
to achieve the desired tradeoff between performance and
matching quality. Most of the available matchmaking
engines adopt OWL-S and implement a version of the
matching algorithm/filters which can be used to provide
capability matching to the UDDI registry. Thus, the
Matchmaker also serves as a liaison between a service
requester and a service provider. However, the main
limitation of OWL based matchmakers is their lack of a
definition of rules and an associated reasoner. Therefore,
some researchers tried to couple OWL-S with RuleML
(e.g SWRL [3]) and other reasoning policies. Such
approaches may end in non-standard systems that make
the matchmaker more complex to be used in practice [4,5].

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

43

On the other hand, brokers play key roles in many
Semantic web applications. Thus in general, brokers
facilitate the interaction between two or more parties. For
example, if two parties want to communicate, but they do
not share a common language, brokers may provide
translation services, or if the two parties do not trust each
other, a broker may provide a trusted intermediary.
Brokers are widely used in distributed information systems.
Yet, there has not been a detailed analysis of a Broker’s
architecture and no general solution has been proposed on
how the Broker’s tasks should be accomplished. Brokers
need more integral framework to represent and use
ontologies. Thus researchers like [6,7,8,9] recommended
the use of a more comprehensive approach based on a new
standard--Web Service Modeling Language (WSMO),
which specifies the key elements for describing Semantic
Web Services and their usage. Such elements include
Ontologies, Goals, Web Services and Mediators.
Ontologies are the key to describe all of these elements
through concepts, relations, functions, instances and
axioms. Goals specify what the user wants from a
particular web service. Web Service descriptions specify
what a service can provide in terms of a capability and any
number of interfaces. Mediators are the coordinating
engines/policies of the brokers and help to link
heterogeneous elements between each other in order to
enable heterogeneous components to interoperate.

Moreover, the need for content-based retrieval from visual
media, such as multimedia learning objects, is ever
increasing rapidly in many educational applications. The
research in this article aims at the development of an
architecture for an innovative brokerage system in the e-
learning domain that makes use of the emerging Semantic
Web to provide high-level services for people looking for
appropriate online courses. The brokering architecture
aims to describe how Web Service and Semantic Web
technologies can be utilized to support visual media or
course presentation retrieval. The brokering architecture
explains how metadata like CanCore and ontology can be
utilized to realize more intelligent content-based retrieval
on visual media data.

2. Multimedia Learning Objects

In [23], we developed a Java utility called the Learning
Object Presentation (LOP) Generator, which generates an
SVG slideshow presentation based upon an xml
description (i.e. CanCore Metadata). This is the type of
LO we will focus on in this paper. The input file format
of this utility is shown below. All data describing the

presentation is contained within the <ss:presentation> tag.
In this direction, the CanCore metadata describing the
presentation is placed within the <ss:cancore> tag. Global
properties such as the transition type (shift, fade or none)
can placed under the <ss:properties> tag. Each slide is
described within an <ss:slide> tag. The delay attribute
specifies how long the slide should be displayed if the
slideshow is in “play mode”. Each slide must have a
titlebox and may have one bodybox and\or one image.

<ss:presentation
 xmlns:ss='urn:SLIDESHOW:0-395-36341-6'>
 <ss:cancore>
 ...
 </ss:cancore>

 <ss:properties>
 <ss:transition type="fade"
 duration="1000" frames="20"/>
 </ss:properties>

 <ss:slide delay="">
 <ss:titlebox>
 <ss:title>The Title</ss:title>
 <ss:subtitle>Slide 1</ss:subtitle>
 </ss:titlebox>
 <ss:bodybox>
 <ss:point>
 <ss:text>The Text<ss:text>
 <ss:point>...<ss:point>
 ...
 </ss:point>
 ...
 </ss:bodybox>
 <ss:images>
 <ss:image path="p.jpg" x="470"
y="160"
 width="500" height="550" />
 </ss:images>
 </ss:slide>

 <ss:slide delay="">
 ...
 </ss:slide>
...
</ss:presentation>

3. Related Research Work

The whole research work on the Semantic web does not
seem to have moved significantly forward because it is
only at the beginning. There are still quite a number of
open issues to be resolved and several
experiments/attempts need to be analyzed. At the same
time, there are an increasingly large number of learning
objects resulting from the growing interest in e-learning
and there is a large demand for a variety of agents and
brokers that can interact with these learning objects to
provide services for learners. Such agents and brokers

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

44

need to ensure that these services will retrieve relevant
resources. The Semantic web is an important initiative to
provide such agents and brokers with the mechanisms and
standards to achieve their goals. Table 1 list some of the
earlier attempts that use variety of theoretical or non-
standard techniques (e.g. inference Rules, Collaborative
Repositories, middleware and Portals)

SPEL Portal [10]
Diogene Inference Rules [11]

Universal Collaborative
Repositories

[12]

LOMster LOM middleware [13]
 Table 1: Notable Non-Standard Brokers.

However, the major outcome of the research being
undertaken over the last few years in the area of artificial
intelligence for the Semantic Web is the benefit of using
ontologies for content-based information retrieval. The
integration of broker technology and ontologies could
significantly affect the use of Web services and the ability
to extend programs to perform tasks for users more
efficiently and with less human intervention. Such
approaches have been applied specifically to learning
objects[14,15] where they were used to develop a
learning-ontology-broker able to offer different learning
ontologies corresponding to various educational contexts
that may be of user interest. As a result, the learning
materials to be taken into account are the ones that belong
to the educational context relevant for the user. Such
learning objects are most likely the ones that best fit the
user needs.

More general approaches that were applied to other areas
rely more on intelligent reasoning services to access and
integrate information sources (e.g. Ontobroker, SHOE,
OntoSeek, BUSTER, IM, SIMS, OBSERVER, COIN; and
Swoogle)[16,17]. The majority of these systems provide
representation mechanisms based on description logic for
ontology-based content explication. The most
sophisticated system among the above mentioned systems
is BUSTER. The BUSTER[18] client provides an
ontology-driven user interface to specify queries and to
present the results of the retrieval. However, the
communication between the clients and the Web service
clusters is implemented via Remote Method Invocation
(RMI) and not upon standard protocols (e.g. SOAP).

4. Developing a Broker with a Standard

Reasoner

Web services interact with each other by exchanging
SOAP messages. Such services are described using

machine-readable metadata. The metadata describes the
capabilities and requirements of a service — often called
the service policy. If such policies can be mapped into a
standardized logic, then we can benefit from using
standard reasoners that accept such logic. The W3C-
endorsed Web Ontology Language (OWL) is based upon
description logic and is ideal for the goals of our Broker.
In particular, the OWL-DL subset of OWL Full is most
appropriate since it is known to be sound and complete.
Many OWL reasoners are available such as Pellet, Racer
[22], FaCT [21] and FaCT++ [20]. However, Pellet is the
only sound and complete OWL-DL reasoner. Moreover, it
has extensive support for reasoning with individuals
(including nominal support and conjunctive query), user-
defined datatypes, and debugging support for ontologies
[19]. Rather then developing their own API, the
developers of Pellet choose to support a number of
standard APIs such Jena, OWL API and the DIG interface.
We chose to access Pellet using Jena since it is one of the
most widely used Java APIs for RDF and OWL, providing
further services for model representation, parsing,
database persistence and some visualization tools.

5. The Brokering Architecture

Our system’s design requirements are:
1. Centralized store. Metadata from a variety of existing
multimedia learning objects will be integrated and stored
in unified way.
2. Flexible data model. The repository should have the
ability to store all existing content items and also be
extensible in the future as new requirements arise.
3. Scalable. The repository must support our rather large
multimedia learning objects.
4. Query Performance. The repository will be the
backbone of the Broker.
5. Distributable. The broker needs to have uniform
distribution agreements with requesters. Therefore it
should conform to industry standards wherever possible.
6. Comprehensible. The broker needs to have an effective
reasoner that finds relevant learning objects from the
available repository.

Based on these requirements, an RDF/OWL model was
chosen for this research. The RDF/OWL model is
naturally flexible, and standard vocabularies such as
CanCore can be used to meet the distributable requirement.
Centralization was achieved by careful modeling based on
Apache Axis. Scalability and query performance were key
goals in the selection of the RDF/OWL engine for this
research – as discussed later. Integration, scalability, and
query performance were addressed in the system
architecture shown in Figure 1.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

45

The architecture consists of three main components: the
Broker, Requestor and Provider. Although many types of
requestors are possible, we choose to implement a
requestor (Figure 2) designed to help a user find, retrieve
and display SVG slideshow presentations, such as those
produced by the Learning Object Presentation Generator
[23]. Likewise, we have implemented a provider designed
to make a number of SVG slideshow presentations
available to a requestor. The Broker will help the
requestor search amongst the LOs available. These latter
two components are implemented using Apache Axis.

The Ontology used to represent the capabilities of each
provider is shown in Figure 3. Each learning object will
be represented using exactly one instance of
learningObject and any number of concept instances. An
instance of learningObject has five properties: name,
description, url, filename and describes. The url and
filename properties are necessary to provide the requestor
with the details required to retrieve a learning object. The
describes property is intended to indicate the scope of the
learning object’s subject matter. We envision that the
values of this property will come from some imported
domain-specific ontology. Within the top-level ontology,
we add the restriction that the root class of each domain-
specific ontology must be a subclass of concept. As a
result, our Broker’s knowledge of various domains can be
extended with ease. In our prototype, we experiment with
a simple programming languages ontology shown in
Figure 4. This ontology describes a small subset of Java
and C++.

Unfortunately each provider’s contents must be manually
registered within the Ontology. Such a task is most easily
accomplished through use of an Ontology editor such as
Protégé[24]. In the near future, we plan to have each
Provider Web Service automatically register itself upon
start-up and un-register itself upon shut-down. This will
help ensure that all content advertised by the broker is
available.

Fig. 1: The system architecture.

Fig. 2: The Requestor GUI.

Fig. 3: Learning Object Ontology

Fig. 4: A simple programming languages Ontology.

6. Developing OWL Object Query Language

A number of different query languages for OWL exist
such as Versa, SeRQL, SPARQL, and OWL-QL[25]. All
of them are too verbose for our purposes. As a result, we
have created a new OWL query language called OWL
Object Query Language (OWL-OQL).

A simple instance query (SIQ) can have the forms shown
in the following table:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

46

iname[cname] Find a specific instance of a specific class.
?[cname] Find all instances of a specific class.
iname[?] Find a specific instance of any class.
?[?] Find all instances of all classes.
We use a question mark to indicate that something is
variable1. More complex queries require all solutions to
have particular properties whose values satisfy conditions
specified via sub SIQs. They have the following form:

SIQ
{
 prop1(SIQ_1{ … }, …, SIQ_Np1{ … }),
 …,
 propS(SIQ_1{ … }, …,SIQ_NpS{ … })
}

All required properties all listed between {} brackets. A
list of SIQs to be performed on the values of a property
are found between () brackets. Property value SIQs can
also take the form of a regular expression found between
two quotes. Of course, such queries can only succeed if
the property in question has string values.

The conditions that must be fulfilled for a complex query
to succeed are (1) every SIQ must have at least one
solution and (2) each solution to an SIQ must have all
properties specified. Regarding the latter, a solution need
not have only the properties specified.

The query’s solutions will be returned in multi-node tree
data structure expressed in XML. There are three types of
nodes in the tree: SIQ nodes, solution nodes, and property
nodes. The children of an SIQ node are its solutions.
Each solution node has its properties (the ones specified in
SIQ only) as children. Each property node has its property
value SIQs as children. Our requestor creates a graphical
representation of this tree in which SIQ, solution, and
property nodes are shown in different colors or gray scales.

We now present a number of example queries to help
clarify the ideas expressed in the above. All examples will
use the ontologies shown in Figures 3 and 4. Ignoring the
url and filename fields, the following table describes the
learning objects we will use in our examples:

1 Optionally a variable name can be provided after the question mark.
This does not effect how the query is performed. The purpose of this
feature is to help ease the extraction of data from the results xml
document.

Inst. Name Description Describes
lo Java: Basic

concepts
A discussion of
control structures
and classes.

loi1[java:class],
loi2[cc:loop],
loi3[cc:selectionStructure],

lo2 C++: Basic
concepts

A discussion of
control structures
and classes.

lo2i1[cpp:class],
lo2i2[cc:loop],
lo2i3[cc:controlStructure],

lo3 Java vs.
C++

A comparison. lo3i1[java:java],
lo3i2[cpp:cpp]

The following query can be used to obtain the name of
each learning object:

?[learningObject]{ name(?[?]) }

The results tree is the following:

The following query will return all learning objects whose
name contains Java or java:

?[learningObject]{ name(“[Jj]ava”) }

The results tree is the following:

The following query could be used to get the names of all
learning objects that are related to Java and C++ in some
way:

?[learningObject]{
 name(?[?]),
 describes(?[java:java], ?[cpp:cpp])
}

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

47

The results tree is the following:

Recall that according to Figure 3, a concept has a property
called text. The idea behind this field is as follows. The
text field of some concept instance can optionally contain
all text contained in the LO that is related to that concept.
This allows combined keyword-based and ontology-based
searches to be performed. Such a feature would be useful
when searching for something that is not described in the
ontology directly. For example, suppose that the text
field of the “Java vs. C++” presentation’s cpp:cpp instance
had the value “C++ lacks built-in support for
multithreading. Therefore, developers must rely on the
facilities provided by the OS.”.

The following query would find this presentation:

?[learningObject]{
 Describes(?[cpp:cpp]{ text(“lacks“) })
}

The results tree is the following:

6. Implementation

In this section, we mostly describe the implementation of
our Broker shown in Figure 1. The other components are
very simple and do not to warrant a detailed discussion.
The provider is a simple remote procedure call (RPC) web
service with one method which returns the SVG specified
via the filename argument. The requestor consists of
mostly GUI code.

Initialization of all Broker components is performed by the
AxisWS constructor. It will initialize a Jena OntModel
instance with the ontologies shown in Figures 4 and 5.
This OntModel instance is then passed to an
OWLOQLqueryProcessor instance, the sole member
variable of AxisWS. As for the other responsibility of
AxisWS, it provides a remotely callable interface currently
consisting of one method that takes a query string as an
argument and returns an xml results document.

The OWL-OQL processor is the most complex component
of the Broker. The architecture of this component is
shown in Figure 5 (The figure omits some details: the
return types of all class methods, all arguments of
resultsDocBuilder’s methods, and OWLPropertyModel’s
overriding of all inherited methods).

Fig.5: Architecture of OWL-OQL Processor.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

48

The only class users of this component need knowledge of
is OWLOQLqueryProcessor. It has one public method
called query that takes a query string as an argument. This
method will parse a given query, execute the query, and
return an XML document containing the results. It is
implemented using the recursive parseQuery and
executeQuery methods.

A call to parseQuery will build a tree data structure
representing the query. The function relies on the regular
expression facilities provided by Java to extract each
component of the query. These components are placed
into a tree with two types of nodes: SIQ nodes and
property nodes. As an example, recall the following
query:

?[learningObject]{
 name(?[?]),
 describes(?[java:java], ?[cpp:cpp])
}

Given the above query, parseQuery would produce the
following data structure:

After creating the parse tree, the query method will call
executeQuery with the parse tree root and an instance of
OWLModel as arguments. The pseudocode shown in
Figure 6 describes the executeQuery method and how it is
called.

The following is a list of key points regarding the
algorithm:

• since each solution has its own set of values for
each property, all property value SIQs must be
performed once for each solution.

• A recursive call to executeQuery is used to
process each property value SIQ. These calls are
passed an OWLPropertyModel instead of an
OWLModel to limit the search space to the
values of the property in question.

• If any of these recursive calls fail (ie., the SIQ
has no solutions), the remaining SIQs are not
executed for the current solution under
consideration since all property value SIQs must
succeed for the solution to be valid.

Document query(String qstr)
{
 siqPN root = parseQuery(new Scanner(qstr), 0);
 Element r = executeQuery(root, model);
 //recall that model is an instance of OWLModel
 //so the first SIQ will consider all individuals
 results.addRootSIQ(r);
 return results.doc;
}

Element executeQuery(siqPN root, OWLModel sp)
{
 Iterator solutions = call to appropriate method of sp.
 Information needed for args taken from root;
 propPN[] props = root.props;
 ArrayList solList = new ArrayList();

 failed: while(solutions.hasNext())
 {
 Solution sol = (Solution)instances.next();
 ArrayList propList = new ArrayList();

 for(int i=0; i<props.length; i++)
 {
 OWLPropertyModel m = new
 OWLPropertyModel(sp.model, sol, props[i].name);
 ArrayList siqList = new ArrayList();

 for(int j=0; j<props[i].SIQs.length; j++)
 {
 Element inst = executeQuery(props[i].SIQs[j], m);
 // switch to model m to search amongst
 // the values of property i
 if(inst == null) continue failed;
 else siqList.add(inst);
 }
 //create a property Element with SIQs as children
 propList.add(results.createProp(
 root.props[i].name, siqList));
 } //end of properties loop
 String iname = sol.getInstanceName();
 String cname = sol.getClassName();
 //create a solutions Element with props as children
 solList.add(results.createSol(iname, cname, propList));
 } //end of solutions loop
 if(solList.size() > 0) return results.createSIQ(
 root.iname, root.cname, solList);
 else return null;
}
Fig. 6: Pseudocode describing the executeQuery method.

We conclude this section with a brief discussion of the
implementations of OWLModel and OWLPropertyModel.
The query methods of OWLModel are mostly thin
wrappers of methods provided by Jena’s OntModel class.
Their implementations can be summarized as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

49

Method Description of Implementation
getIndividual(
 String iname)

Calls model.getIndividual(String
iname) to find the individual in the
Ontology whose name is iname.

getIndividual(
String iname,
String cname)

Same as above with one difference: the
query will fail if the individual is not a
member of class cname.

getIndividuals(
String cname)

Calls model.getOntClass(String
cname) to retrieve an instance of
OntClass representing the class. Then
calls OntModel.listIndividuals(OntClass
c) to find all individual belonging to
that class.

getIndividuals(
)

Calls model.listIndividuals() to get all
individuals in the Ontology.

OWLPropertyModel overrides all individual retrieval
methods it inherits. Its constructor will initialize the
Individual and Property member variables. The property
member is initialized by calling
model.getOntProperty(propn). Each query method begins
by obtaining an Iterator of property values by calling
indv.listPropertyValues(prop). Each property value is
inspected one by one in a sequential manner to produce a
new Iterator containing only those property values that
meet the search criteria. The methods conclude by
returning this Iterator.

7. Conclusion

This article describes a new brokering architecture that
exploits Semantic Web technologies for locating
multimedia learning objects. Central to our architecture is
the Brokering Web Service, which provides lightweight
query processing and reasoning in response to Requestor
OWL-OQL queries. We describe the use of this Broker, its
associated ontologies and its reasoning mechanism in an
intelligent multimedia learning object search engine
prototype. The prototype has been tested via searches for
multimedia learning objects representing SVG
presentations on programming languages like Java and
C++. The authors aim to develop this prototype to include
different types of learning objects and to expand it to
register such learning objects using a standard registry
service like the UDDI. We are also considering further
development of OWL-OQL as a general-purpose OWL
query language.

Acknowledgment
This research is supported by the first author NSERC Discovery
grant 50-16110105-2004.

References
[1] Reformat, M. DengMing Li Cuong Ly, Approximate

reasoning and Semantic Web Services, IEEE Annual
Meeting on Fuzzy Information, 2004, Proceeding of
NAFIPS '04, 27-30 June 2004
Volume: 1, On page(s): 413- 418 Vol.1

[2] Brenner, W.; Zarnekow, R.; & Wittig, H. Intelligent
Software Agents, Foundations and Applications. Berlin,
Germany: Springer-Verlag, 1998.

[3] Antonio Guerrero, Vector A. Villagrd, Jorge E. Lpez
de Vergara, Including management behavior defined
with SWRL rules in an Ontology-based management
framework, Proceedings of the 12th Annual Workshop
of HP Openview University Association, Porto,
Portugal, 10-13 July 2005.

[4] Christopher J. Matheus, Mitch M. Kokar,
Kenneth Baclawski and Jerzy Letkowski, Constructing
RuleML-Based Domain Theories on Top of OWL
Ontologies, Lecture Notes in Computer Science, Book
Name: Rules and Rule Markup Languages for the
Semantic Web, Volume 2876/2003.

[5] F. Tewissen, N. Baloian, U. Hoppe, E. Reimberg,
""MatchMaker": Synchronising Objects in Replicated
Software-Architectures," criwg, p. 60, 6th International
Workshop on Groupware (CRIWG'00), 2000.

[6] Rubén Lara, Dumitru Roman, Axel Polleres and
Dieter Fensel, A Conceptual Comparison of WSMO
and OWL-S, Lecture Notes in Computer Science,
Volume 3250/2004

[7] Massimo Paolucci, Naveen Srinivasan, and Katia
Sycara, Expressing WSMO Mediators in OWL-S, The
Third International Semantic Web Conference (ISWC
2004), November 8, 2004, Hiroshima,Japan.

[8] Dieter Fensel, Stefan Decker, M. Erdmann, and Rudi
Studer, ‘Ontobroker: The very high idea’, in 11.
International Flairs Conference (FLAIRS-98), Sanibal
Island, USA, (1998). AAAI Press.

[9] Juan M. Santos, Luis Anido and Martín Llamas,
Design of a Semantic Web-based Brokerage
Architecture for the E-learning Domain,A Proposal for
a Suitable Ontology, 35th ASEE/IEEE Frontiers in
Education Conference, October 19 – 22, 2005,
Indianapolis, IN

[10] Arthur Stutt, Maria Cleci Martins and John
Domingue, Tribalization, E-learning and the Semantic
Web, First Intl. Conference on Educational Technology
in Cultural Context, Joensuu, Finland, 2002

[11] N. Capuano, M. Gaeta, A. Micarelli, E. Sangineto
Diogene: a Semantic Web-Based Automatic Brokering
System, AIS SIGSEMIS bulletin, vol. 1, no. 3, p. 65-67,
October 2004.

[12] Lai-Chong Law and E.T. Hvannberg,
Complementarity and convergence of heuristic
evaluation and usability test: a case study of universal

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

50

brokerage platform, ACM International Conference
Proceeding Series; Vol. 31, Proceedings of the second
Nordic conference on Human-computer interaction,
Aarhus, Denmark, pp71 – 80, 2002.

[13] Duval, E., Vandepitte, P., & Ternier, S., LOMster:
Peer-to-peer Learning Object Metadata, World
Conference on Educational Multimedia, Hypermedia
and Telecommunications 2002(1), 1942-1943.

[14] A. Cavallaro, A.Faro, D.Giordano and S. Mineo,
A brokerage system for context-based retrieval of
learning objects, Proceedings of the 3rd International
Conference on Multimedia and Information and
Communication Technologies in Education, m-
ICTE2005, Seville (Spain) 29 November till 2
December 2006.

[15] Kay, J., & Holden, S. (2002). Automatic Extraction
of Ontologies from Teaching Document Metadata. In L.
Aroyo, & D. Dicheva (Eds.) Proceedings of ICCE 2002
Workshop on Concepts and Ontologies in Web-based
Educational Systems (pp. 25-28). Auckland, New
Zealand.

[16] Holger Wache, Thomas Vogele, Ubbo Visser, Heiner
Stuckenschmidt, Gerhard Schuster, Holger Neumann,
and Sebastian Hubner, ‘Ontology based integration of
information - a survey of existing approaches’, in
IJCAI-01 Workshop: Ontologies and Information
Sharing, pp. 108–117, Seattle, WA, (2001).

[17] Li Ding et al., Swoogle: a search and metadata engine
for the semantic web, Conference on Information and
Knowledge Management, Proceedings of the thirteenth
ACM international conference on Information and
knowledge management, Washington, D.C., USA
Pages: 652 – 659, 2004

[18] Visser, U. and Schuster, G., Finding and Integration
of Information-A Practical Solution for the Semantic
Web,In:Proceedings of ECAI 02, Workshop on
Ontologies and Semantic Interoperability, Lyon, France,
73-78, 2002.

[19] Bijan Parsia and Evren Sirin, Pellet: An OWL DL
Reasoner, Third International Semantic Web
Conference (ISWC04)November 7-11, 2004, Hiroshima,
Japan.

[20] Ian Horrocks. Fact++ web site.
http://owl.man.ac.uk/factplusplus/.

[21] Ian Horrocks. The fact system. In Automated
Reasoning with Analytic Tableaux and Related
Methods: International Conference Tableaux’98, pages
307 – 312. Springer-Verlag, May 1998.

[22] Ralf Moller Volker Haarslev. Racer system
description. In International Joint Conference
on Automated Reasoning, IJCAR 2001, 2001.

[23] J. Fiaidhi, S. Mohammed, M. Hahn, Developing
Multimedia Learning Objects for the Semantic Web, Int.

Journal of Computer Science and Network Security,
Vol. 6, No. 11, Nov. 2006, pp 121-129

[24] protege.stanford.edu/
[25] www.w3.org/TR/owl-features/

Jinan Fiaidhi received her PgD and
PhD in Computer Science from
England UK (Essex and Brunel
Universities) during 1983 and 1986
respectively. She served as faculty
member at various universities
including Philadelphia, Applied
Science, Sultan Qaboos and Lakehead
Universities. Since January 2002, she
is with Lakehead University,

Ontario/Canada. Currently she holds the rank of Professor and
the designates of MBCS and I.S.P. of Canada. Her research
interests include Learning Objects, Multimedia/Virtual
Environments and Peer-to-Peer Learning.

Sabah Mohammed received his MSc
and PhD in Computer Science from
England UK (Glasgow and Brunel
Universities) during 1981 and 1986
respectively. He served as faculty
member at various universities
including Amman, Philadelphia,
Applied Science, Oman HCT and
Lakehead Universities. Since January
2002, he is with Lakehead University,
Ontario/Canada. Currently he holds

the rank of Professor and the designates of MBCS. His research
interests include Image Segmentation, Image Protection and
Open Source Multimedia.

Marshall Hahn is HBSc fourth
year Computer Science student.
He is conducting the research in
this article as part of his NSERC
grant on multimedia programming.

