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Summary 
Lot output time prediction is a critical task to a wafer fabrication 
plant (wafer fab). To enhance the effectiveness, a look-ahead 
FBPN incorporating the future release plan is constructed in this 
study. Three nearest exponentially discounted future workloads, 
modified from Chen’s nearest future discounted workloads, are 
proposed for the look-ahead function. According to experimental 
results, the prediction accuracy of the look-ahead FBPN was 
significantly better than those of some existing approaches. 
Besides, the proposed nearest exponentially discounted future 
workload functions are shown to be more effective than Chen’s 
nearest future discounted workload functions in incorporating the 
fab’s future release plan. 
Key words: 
Fuzzy back propagation network, Output time prediction, Wafer 
fabrication. 

1. Introduction 

Predicting the output time for every lot in a wafer fab is a 
critical task not only to the fab itself, but also to its 
customers. After the output time of each lot in a wafer fab 
is accurately predicted, several managerial goals can be 
simultaneously achieved [6]. Predicting the output time of 
a wafer lot is equivalent to estimating the cycle time of the 
lot, because the former can be easily derived by adding the 
release time (a constant) to the latter. 

There are six major approaches commonly applied to 
predicting the output/cycle time of a wafer lot: multiple-
factor linear combination (MFLC), production simulation 
(PS), back propagation networks (BPN), case based 
reasoning (CBR), fuzzy modeling methods, and hybrid 
approaches. Among the six approaches, MFLC is the 
easiest, quickest, and most prevalent in practical 
applications. The major disadvantage of MFLC is the lack 
of forecasting accuracy [6]. Conversely, huge amount of 
data and lengthy simulation time are two shortages of PS. 
Nevertheless, PS is the most accurate output time 
prediction approach if the related databases are 
continuingly updated to maintain enough validity, and 
often serves as a benchmark for evaluating the 

effectiveness of another method. PS also tends to be 
preferred because it allows for computational experiments 
and subsequent analyses without any actual execution [3]. 
Considering both effectiveness and efficiency, Chang et al. 
[4] and Chang and Hsieh [2] both forecasted the 
output/cycle time of a wafer lot with a BPN having a 
single hidden layer. Compared with MFLC approaches, 
the average prediction accuracy measured with root mean 
squared error (RMSE) was considerably improved with 
these BPNs. For example, an improvement of about 40% 
in RMSE was achieved in Chang et al. [4]. On the other 
hand, much less time and fewer data are required to 
generate an output time forecast with a BPN than with PS. 
More recently, Chen [7] incorporated the fab’s future 
release plan into a BPN, and constructed a “look-ahead” 
BPN for the same purpose, which led to an average 
reduction of 12% in RMSE. Chang et al. [3] proposed a k-
nearest-neighbors based case-based reasoning (CBR) 
approach which outperformed the BPN approach in 
forecasting accuracy. In one case, the advantage was up to 
27%. Chang et al. [4] modified the first step (i.e. 
partitioning the range of each input variable into several 
fuzzy intervals) of the fuzzy modeling method proposed 
by Wang and Mendel [13], called the WM method, with a 
simple genetic algorithm (GA) and proposed the evolving 
fuzzy rule (EFR) approach to predict the cycle time of a 
wafer lot. Their EFR approach outperformed CBR and 
BPN in prediction accuracy. Chen [6] constructed a fuzzy 
BPN (FBPN) that incorporated expert opinions in forming 
inputs to the FBPN. Chen’s FBPN was a hybrid approach 
(fuzzy modeling and BPN) and surpassed the crisp BPN 
especially in the efficiency respect. Another hybrid 
approach was proposed in Chang and Liao [5] by 
combining self-organization map (SOM) and WM, in 
which a wafer lot was classified with SOM before 
predicting the lot’s output time with WM. Recently, Chen 
[8] constructed a kM-BPN for the same purpose. 

To enhance the effectiveness, a look-ahead FBPN 
incorporating the future release plan is constructed in this 
study. PS is also applied in this study to generate test 
examples. According to experimental results, the 
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prediction accuracy of the look-ahead FBPN was 
significantly better than those of some existing approaches. 

2. Methodology 

The parameters used in the following are defined: 
(1) Rn: the release time of the n-th lot. 
(2) Un: the average fab utilization at Rn. 
(3) Qn: the total queue length on the lot’s processing route 

at Rn. 
(4) BQn: the total queue length before bottlenecks at Rn. 
(5) FQn: the total queue length in the whole fab at Rn. 
(6) WIPn: the fab WIP at Rn. 

(7) )(i
nD : the delay of the i-th recently completed lots, i = 

1~3. 

2.1 Incorporating the Future Release Plan (Look-
ahead) 

Almost all existing methods are based on the historical 
data of the fab. However, a lot of studies have shown that 
the performance of sequencing and scheduling in a fab 
relies heavily on the future release plan, which has been 
neglected in this field. In addition, the characteristic re-
entrant production flows of a fab lead to the phenomenon 
that a lot that will be released in the future might appear in 
front of another lot that currently exists in the fab. For 
these reasons, to further improve the accuracy of wafer lot 
output time prediction, the future release plan of the fab 
has to be considered (look-ahead). There are many 
possible ways to incorporate the future release plan in 
predicting the output time of a wafer lot currently existing 
in the fab. The first one is the three nearest future 
discounted workload functions proposed by Chen [7]: 
(1) The 1st nearest future discounted workload ( )1(

nFDW ): 
the sum of the (processing time/release time)’s of the 
operations of the lots that will be released within time 
[Rn, Rn + T1]. 

(2) The 2nd nearest future discounted workload 
( )2(

nFDW ): the sum of the (processing time/release 
time)’s of the operations of the lots that will be 
released within time [Rn + T1, Rn + T1 + T2]. 

(3) The 3rd nearest future discounted workload 
( )3(

nFDW ): the sum of the (processing time/release 
time)’s of the operations of the lots that will be 
released within time [Rn + T1 + T2, Rn + T1 + T2 + T3]. 
In this study, the three nearest exponentially 

discounted future workloads on the lot’s processing route 
(according to the future release plan) are proposed for the 
same purpose: 

(1) The 1st nearest exponentially discounted future 
workload ( )1(

nEDFW ): the sum of the (processing time 
* exp(-release time))’s of the operations of the lots that 
will be released within time [Rn, Rn + T1]. 

(2) The 2nd nearest exponentially discounted future 
workload ( )2(

nEDFW ): the sum of the (processing time 
* exp(-release time))’s of the operations of the lots that 
will be released within time [Rn + T1, Rn + T1 + T2]. 

(3) The 3rd nearest exponentially discounted future 
workload ( )3(

nEDFW ): the sum of the (processing time 
* exp(-release time))’s of the operations of the lots that 
will be released within time [Rn + T1 + T2, Rn + T1 + T2 
+ T3]. 

Note that only the operations performed on the machines 
on the lot’s processing route are considered in calculating 
these future workloads, which then become three 
additional inputs to the FBPN. 

2.1 Output Time Prediction with FBPN 

The configuration of the FBPN is established as follows: 
(1) Inputs: eleven parameters associated with the n-th 

example/lot including Un, Qn, BQn, FQn, WIPn, 
)(i

nD  (i 

= 1~3), and )(r
nEDFW  (r = 1~3). These parameters 

have to be normalized so that their values fall within [0, 
1]. Then some production execution/control experts are 
requested to express their beliefs (in linguistic terms) 
about the importance of each input parameter in 
predicting the cycle (completion) time of a job. 
Linguistic assessments for an input parameter are 
converted into several pre-specified triangular fuzzy 
numbers (TFNs). The subjective importance of an 
input parameter is then obtained by averaging the 
corresponding fuzzy numbers of the linguistic replies 
for the input parameter by all experts. The subjective 
importance obtained for an input parameter is 
multiplied to the normalized value of the input 
parameter. After such a treatment, all inputs to the 
FBPN become TFNs, and the fuzzy arithmetic for 
TFNs is applied to deal with all calculations involved 
in training the FBPN. 

(2) Single hidden layer: Generally one or two hidden 
layers are more beneficial for the convergence property 
of the network. 

(3) Number of neurons in the hidden layer: the same as 
that in the input layer. Such a treatment has been 
adopted by many studies (e.g. [2, 5]). 

(4) Output: the (normalized) cycle time forecast of the 
example. 

(5) Network learning rule: Delta rule. 
(6) Transformation function: Sigmoid function, 
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).1/(1)( xexf −+=  (1) 
(7) Learning rate (　): 0.01~1.0. 
(8) Batch learning. 

The procedure for determining the parameter values is 
now described. A portion of the examples is fed as 
“training examples” into the FBPN to determine the 
parameter values. Two phases are involved at the training 
stage. At first, in the forward phase, inputs are multiplied 
with weights, summated, and transferred to the hidden 
layer. Then activated signals are outputted from the hidden 
layer as: 
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where )(−  and )(×  denote fuzzy subtraction and 

multiplication, respectively; jh~ ’s are also transferred to 
the output layer with the same procedure. Finally, the 
output of the FBPN is generated as: 
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To compare with the normalized actual cycle time o, the 
fuzzy-valued output o~  is defuzzified according to the 
centroid-of-area (COA) formula: 

.4/)2()~(COA 321 ooooo ++==  (8) 
Then RMSE is calculated: 

.examplesofnumber/)(RMSE 2∑ −= ao  (9) 

Subsequently in the backward phase, the deviation 
between o and a is propagated backward, and the error 
terms of neurons in the output and hidden layers can be 
calculated, respectively, as 
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Based on them, adjustments that should be made to the 
connection weights and thresholds can be obtained as 
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Theoretically, network-learning stops when RMSE 
falls below a pre-specified level, or the improvement in 
RMSE becomes negligible with more epochs, or a large 
number of epochs have already been run. In addition, to 
avoid the accumulation of fuzziness during the training 
process, the lower and upper bounds of all fuzzy numbers 
in the FBPN will no longer be modified if Chen’s index 
[6] converges to a minimal value. Then test examples are 
fed into the FBPN to evaluate the accuracy of the network 
that is also measured with the RMSE. Finally, the FBPN 
can be applied to predicting the cycle time of a new lot. 
When a new lot is released into the fab, the eleven 
parameters associated with the new lot are recorded and 
fed as inputs to the FBPN. After propagation, the network 
output determines the output time forecast of the new lot. 

3. Simulation 

In practical situations, the history data of each lot is only 
partially available in the factory. Further, some 
information of the previous lots such as Qn, BQn, and FQn 
is not easy to collect on the shop floor. Therefore, a 
simulation model is often built to simulate the 
manufacturing process of a real wafer fabrication factory 
[1-6, 10, 12]. Then, such information can be derived from 
the shop floor status collected from the simulation model 
[3]. To generate a demonstrative example, the simulation 
model constructed in Chen [8] is adopted in this study. 

3.1 Results and Discussions 

In the demonstrative example, the following five 
approaches were all applied for comparison to five test 
cases containing the data of full-size (24 wafers per lot) 
lots with different product types and priorities: 
(1) BPN. 
(2) FBPN. 
(3) CBR. 
(4) Look-ahead FBPN with Chen’s nearest future 

discounted workload functions, indicated with L/a 
FBPN-1. 

(5) Look-ahead FBPN with the proposed nearest 
exponentially discounted future workload functions, 
indicated with L/a FBPN-2. 
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The minimal RMSEs achieved by applying these 
approaches to different cases were recorded and compared 
in Table 1. The convergence condition was established as 
either the improvement in RMSE becomes less than 0.001 
with one more epoch, or 1000 epochs have already been 
run. According to experimental results, the following 
discussions are made: 
(1) From the effectiveness viewpoint, the prediction 

accuracy (measured with RMSE) of L/a FBPN-2 was 
significantly better than those of the other approaches 
in all cases by achieving a 11%~35% (and an average 
of 23%) reduction in RMSE over the comparison basis 
– the BPN. The average advantage over CBR is 23%. 

(2) The effect of “look ahead” by incorporating the three 
nearest exponentially discounted workloads is revealed 
with the fact that L/a FBPN-2 surpassed the FBPN 
(without look-ahead) in all cases. The advantage 
ranges from 8% to 29%. 

(3) As the lot priority increases, the superiority of L/a 
FBPN-2 over FBPN becomes more evident. 

(4) The proposed nearest exponentially discounted future 
workload functions are more effective than Chen’s 
nearest future discounted workload functions in 
incorporating the fab’s future release plan, which leads 
to an average reduction of 8% in RMSE. 

Table 1: Comparisons of the RMSEs of various approaches 

RMSE A 
(normal) 

A 
(hot) 

A 
(super hot) 

B 
(normal)

B 
(hot)

(1) 177.1 102.27 12.23 286.93 75.98

(2) 171.82 
(-3%) 

89.5 
(-12%) 

11.34 
(-7%) 

286.14
(-0%) 

76.14
(+0%)

(3) 172.44 
(-3%) 

86.66 
(-15%) 

11.59 
(-5%) 

295.51
(+3%)

78.85
(+5%)

(4) 163.45 
(-8%) 

85.6 
(-16%) 

8.09 
(-34%) 

264.8 
(-8%) 

69.65
(-8%)

(5) 158.24 
(-11%) 

79.46 
(-22%) 

7.95 
-35%) 

231.51
(-19%)

54.23
(-29%)

3. Conclusions and Directions for Future 
Research 

A look-ahead FBPN incorporating the future release plan 
is constructed in this study to enhance the effectiveness of 
wafer lot output time prediction. Three nearest 
exponentially discounted future workloads, modified from 
Chen’s nearest future discounted workloads, are proposed 
for the look-ahead function. According to experimental 
results, the prediction accuracy of the look-ahead FBPN 
was significantly better than those of some existing 
approaches. Besides, the proposed nearest exponentially 
discounted future workload functions are shown to be 
more effective than Chen’s nearest future discounted 

workload functions in incorporating the fab’s future 
release plan. 

However, to further evaluate the advantages and 
disadvantages of the proposed methodology, it has to be 
applied to a full-scale actual wafer fab in future research. 
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