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Summary 
The matrix-vector product is one of the most important 
computational components of Krylov methods. This 
kernel is an irregular problem, which has led to the 
development of several compressed storage formats. We 
design a data structure for distributed matrix to compute 
the matrix-vector product efficiently on distributed 
memory parallel computers using MPI. We conduct 
numerical experiments on several different sparse matrices 
and show the parallel performance of our sparse matrix-
vector product routines. 
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1. Introduction 

Fast solution of linear equations with large sparse 
coefficient matrices is an essential requirement of 
advanced computations. We are planning to develop a new 
library for large-scale sparse matrix solutions that features 
a wide range of storage formats for sequential and 
distributed memory parallel architectures. 
 Krylov subspace methods are currently ubiquitous as 
a tool for solving linear systems, especially for very large 
sparse matrices. The efficient use of modern 
supercomputers strongly depends on a parallel, fast and 
memory saving implementation of the matrix-vector 
multiplication. A fast and efficient parallelization of 
SMVM computations is desirable which requires the 
distribution of nonzeros of the input matrix among 
processors in such a way that the computational loads of 
the processors are almost equal and the cost of 
interprocessor communication is low [1]. 

This paper presents a parallelization strategy of the 
SMVM using Transposed Jagged diagonal storage (TJDS) 
format on heterogeneous cluster [2, 3]. Two basic 
guidelines are defined for the parallel algorithm: one-
dimensional data distribution and broadcast messages for 
all data communications. One-dimensional data 
distribution eases the processing workload balance on 
heterogeneous clusters [4]. The use of broadcast messages 
for every data communication is directly oriented to 

optimize performance on the most common cluster 
interconnection, Ethernet. Experimental results obtained in 
a local network of heterogeneous computers are presented. 

The remaining paper is organized as follows: In 
Section 2 we briefly present the parallel implementation of 
matrix-vector multiplication using TJDS storage format. 
The Experimental results and performance analysis is 
presented in section 3. Finally, in Section 4 we give 
conclusions. 

2. Implementation of matrix-vector    
multiplication 

The efficiency of an algorithm for the solution of linear 
system is determined by the performance of matrix-vector 
multiplication that depends heavily on the storage scheme 
used. 

In our previous work five storage formats including 
Coordinate Storage (COO), Compressed Row Storage 
(CRS), Compressed Column Storage (CCS), Jagged 
Diagonal Storage (JDS) and Transposed Jagged Diagonal 
Storage (TJDS) [3, 5, 6] were implemented and compared 
[7]. The TJDS achieve the high performance on 
distributed memory parallel architecture. 

2.1 The transposed jagged diagonal storage (TJDS) 
format 

The Transposed Jagged Diagonal Storage (TJDS) format 
is inspired from the Jagged Diagonal Storage (JDS) format 
and makes no assumptions about the sparsity pattern of the 
matrix. To illustrate the principles of the scheme, we 
introduce a 8 x 8 matrix A with nonzero elements aij. 
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In TJDS all the non-zero elements are shifted upward 
instead of leftward as in JDS. This gives a new matrix Accs. 
 

 
 

A Transposed Jagged Diagonal Storage Atjds is 
obtained by reordering the columns of Accs in decreasing 
order from left to right according to the number of 
nonzero elements per column and reordering the elements 
of the vector x accordingly as if it were an additional row 
of A. 

 

 
 

The rows of the compressed and permuted matrix Atjds are 
called transposed jagged diagonals. Obviously, the 
number of these diagonals is equal to the maximum 
number max_nz of nonzeros per column. A suitable data 
structure required to compute Ax = y using TJDS scheme 
is shown in Figure 1.  The num_nz nonzero elements of 
the Atjds matrix are stored in a floating point linear array 
value(:), one row after another. Another array of same 
length row_ind(:), is needed to store the row indices of the 
non-zero elements in the original matrix. Finally, a third 
array of length max_nz+1 is also needed, tjd_ptr(:), which 
stores the starting position of the transposed jagged 
diagonals in the array value(:).  Figure 2 shows the matrix 
A considered above in the TJDS format. 
 
TJDS_Matrix  =  record 
          value       : array [1..num_nz] of REAL 
          row_ind  : array [1..num_nz] of INTEGER  
          tjd_ptr     : array [1..max_nz+1] of INTEGER 
         X              : array [1..n] of REAL 
         Y              : array [1..n] of REAL 
end record 
 

Fig. 1  Data structure of a n x n matrix in the TJDS scheme 

 

 
 

Fig. 2  Matrix A in the TJDS scheme 

2.2 TJDS Matrix-Vector Multiplication 

The Matrix Vector Multiplication (MVM) is 
performed along the transposed jagged diagonals 
providing an inner loop length equal to the 
diagonal length. To minimize the indirect 
memory accesses, vector X involved in the 
MVM is permuted initially once so that it 
automatically carry the same order as the matrix 
rows. The numerical core of the MVM is given 
in Figure 3.  
 
for j = 1, …, max_nz do 
    p = 1 
    for i = 1, …, (tjd_ptr ( j+1 ) - tjd_ptr ( j )) do 
        y ( row_ind ( p ) ) = y ( row_ind ( p ) +  
                                         val ( j ) *   x ( p ) 
     p = p+1 
     end for i 
end for j 
 

Figure 3. MVM in the TJDS format: y = y + Ax. 

The innermost loop requires one store and four load 
operations (including one indirect load) to perform two 
floating-point operations (Flop). In other words the 
performance of the MVM is clearly determined by the 
quality of the memory access. To reduce the load 
operations associated with the vector y, we have splitted 
outer j loop into several loops over Transposed Jagged 
Diagonals with equal length by introducing an outer loop 
k. 
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for k = 1, …, diff_tjds do 
   length=i_length(k)    
   for j = j_start(k), …, j_end(k) do 
      p = 1 
      for i = 1, …, length do 
         y ( row_ind ( p ) ) = y ( row_ind ( p ) +  
                                         val ( j ) *   x ( p ) 
         p = p+1 
      end for i 
   end for j 
end for k 
 

Figure 4. Modified MVM in the TJDS format with an 
outer k loop running over diff_tjds blocks of Transposed 

Jagged Diagonals with different loop lengths. 

2. Parallel implementation 

For parallel computers with distributed memory, we use a 
column-wise distribution of matrix and row-wise 
distribution of vector elements among the processors 
involved in MVM. Communication is required for all 
matrix elements that refers to vector data stored on remote 
processor (non-local vector elements) [8,9]. 
 

 

Figure 5. Distribution of a matrix A and vector X on 4 processors (P0 – 
P3). All nonzero matrix elements are black 

 
Since the matrix does not change during the 

computation, a static communication scheme is 
predetermined beforehand. In this way, we can exchange 
data efficiently in anticipation of the overlapping of 
communication and computation in the each MVM. Table 

1 shows a list of local variables involved in the 
communication. 

 

Table 1. Variables representing the communication scheme 

 
recnum Number of processors from 

which vector elements are 
received 

recid(recnum) IDs of these processors 
elrec(recnum) Number of elements received 

from each of the recnum 
processors 

sendnum Number of processors to which 
vector elements are sent 

sendid(sendnum
) 

IDs of these processors 

elsend(sendnum) Number of elements sent to each 
of the sendnum processors 

 

 
 
 

Figure 6. Communication scheme resulting from the data distribution of 
Figure 5 

Since the matrix A is distributed column-wise among 
the processors, each processor transforms its local 
columns into the TJDS format. 

 

 

Figure 7. Local portion of A on processor P1 in TJDS format 
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Vectors involved in MVM automatically carry the 
same permuted order as the matrix rows. During MVM, 
each matrix element has to find the matching vector 
element it is multiplied with by using the information of 
row indices. No permutation information is required 
during MVM as the vector is already permuted according 
to the matrix. The local and non-local elements of vector 
X are copied into a separate array recvec(:) which serves 
as a vector in MVM. It is apparent that a Transposed 
Jagged Diagonal can only be released for computation if 
the corresponding non-local elements have successfully 
been received. The parallel MVM implementation is based 
on MPI. The Transposed Jagged Diagonals are processed 
as a whole during MVM. 

3. Experimental results and performance 
analysis 

We have selected the sparse matrices from the Matrix-
Market [10] collection to evaluate the SMVM for TJDS 
format. 

3.1 Sequential performance 

The MVM for TJDS is similar in the sense that they both 
have four load operations and one store operation to 
compute each partial result. But TJDS outperforms JDS 
because the permutation step needed in the JDS is not 
required for the TJDS [6]. Figure 8 gives the execution 
time for the matrix vector multiplication using JDS and 
TJDS formats. The two algorithms are executed 
sequentially on Intel Pentium-IV 3GHz processor with 
512MB RAM. 
 

Table 2. Selection of sparse matrices from matrix market 

 
 Matrix Dimension Nnze 

1 dw2048 2048 x 2048 10114 

2 add32 4960 x 4960 23884 

3 bcsstk23 3134 x 3134 24156 

4 add20 2395 x 2395 17319 

5 rw5151 5151 x 5151 20199 

6 bcsstk15 3948 x 3948 60882 

7 mhd3200a 3200 x 3200 68026 

DW2048
ADD32

BCSSTK23
ADD20

RW5151
BCSSTK15

MHD3200A

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Ex
ec

ut
io

n 
tim

e 
in

 s
ec

on
ds

Selected matrices of table 2

 JDS
 TJDS

 

Figure 8. MVM execution time using JDS and TJDS formats 

3.2 Parallel performance 

In the parallel MVM the current processor exchanges data 
with its neighbors and then computes the product locally. 
After completing local computation the contribution from 
all processors is summed up by using MPI_ALLREDUCE. 
The matrices are partitioned among processors in column-
wise block form. Timings are measured using 
MPI_Wtime(). We reported three different timings, total 
execution time, communication time and computation time. 
From these results we found that for small matrices, the 
communication exceeds the computation time and parallel 
algorithm performs worst than even sequential. 

Total execution time is increased for systems ranging 
from 1000 to 10000 with the addition of a processor. This 
is due to the communication time because these systems 
are not very large and have less computation time as 
compared to communication time. For systems ranging 
from 50000 to 5000000 the total execution time is 
decreased with the addition of new processors in the 
cluster because these systems have more computation time 
than communication time.  

A single processor system is unable to solve the 
linear system of order greater than one million (106) and 2-
processor system could not solve a system of order greater 
than three million due to memory requirements. Figure 9 
show the results of the TJDS SMVP on different 
processors with memory consideration. 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007 
 

 

81

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

# of processors = 8

# of processors = 4
# of processors = 2

# of processors = 1

Ti
m

e 
(s

ec
)

Matrix Size (106)

 
 

Figure 9. Performance of parallel TJDS matrix-vector product on 
different processors 

 
We have tested our implementation on cluster of 8 

PCs connected by a network of relatively low performance 
(Ethernet 100Mb/s). The results are shown in table 3. 

 

Table 3. Elapsed time of computation on cluster of PCs 

 
Matrix info Elapsed time (sec) 

Matrix n cols nnz 
P 
# tcomp tcomm texe 

5000 25000 2 1.103 0.031 2.096 
2500 12550 4 0.647 0.055 1.812 

cry1000
0 

10000 

1250 6325 8 0.239 0.069 1.054 
5487 118014 2 3.714 0.050 4.914 
2744 64266 4 1.855 0.072 3.077 

bcsstk17 10974 

1372 32916 8 1.009 0.081 2.24 
5974 40899 2 1.877 0.055 3.082 
2987 21978 4 0.886 0.067 2.003 

bcsstk18 11948 

1494 11514 8 0.499 0.082 1.731 
7720 66964 2 2.967 0.06 4.567 
3860 34087 4 1.368 0.072 3.068 

bcsstk25 15439 

1930 17091 8 1.004 0.091 1.88 
8879 71619 2 3.940 0.088 5.677 
4440 36131 4 1.858 0.034 3.348 

memplus 17758 

2220 22875 8 0.801 0.01 1.951 
11780 242128 2 7.501 0.141 8.742 
5890 121506 4 4.213 0.113 5.472 

af23560 23560 

2945 60781 8 2.001 0.090 3.191 

 
 
Some parameters in the table are described below. 
• The columns of cols and nnz are the maximum 

number of columns and the maximum number of 
nonzero entries, respectively, for a local matrix. In 
this work we partition the matrices for 2, 4 and 8 

processors. For a balanced partitioning, both cols and 
nnz of all local matrices should be approximately the 
same and we double the number of processors, they 
should reduce in half. When these properties are 
found in the local matrices, we say that the local 
balance among the processors is good. 

• The column of P# is the number of processors used in 
the calculation. 

• The column of tcomp is the maximum total elapsed time 
for the slowest processor to compute the local matrix-
vector product. Because the computing time for a 
local matrix-vector product is proportional to number 
of nonzeros, the slowest processor should be the one 
whose number of nonzero entries of the local matrix 
is maximum. The elapsed time for this processor 
represents the computing time. For matrices 
partitioned with a good load balance, the computing 
time for all processors should be approximately the 
same. The matrix af23560 has the maximum 
computation time of all selected matrices of table 3 as 
it has largest value of nonzeros.  

• Before computing a local matrix-vector product, all 
processors exchange data with their neighbors.  The 
column of tcomm is the maximum total elapsed time of 
the processor that does the most communication with 
its neighbors. The communication cost is another 
factor to be taken into account when partitioning a 
matrix for parallel computing. The communication 
time of the current processor is proportional to both 
the number of neighboring processors and the amount 
of exchanged data. With many neighbors, there 
aremany times to initialize latency of the network. 
The data is transferred through the network, so the 
larger the amount of data, the more time is required to 
transfer them. 

• The column of texe is the maximum total elapsed time 
of all computations for the slowest processor. 

An overview over the total runtime based on TJDS-
MVM implementation is presented in figure 10 for fixed 
matrix size using different number of processors. The 
behavior can be attributed to different vector lengths of the 
inner loop of MVM, which is determined by the matrix 
dimension. 

Since the problem size is fixed, the utilization of 
processors decreases with increasing number of processors 
due to the communication overhead. The parallel features 
of the implementation can be demonstrated in more detail 
by the parallel efficiency. 
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Figure 10. Runtimes of the TJDS-MVM on different number of 
processors 

 
Table 4 shows the speed-up ratio for parallel matrix 

vector products using TJDS format. The parallelization 
speed-ups are nearly ideal in most cases. 

Table 4. Speed-up ratios for parallel matrix-vector products 
 

Matrix P=1 P=2 P=4 P=8 

cry10000 1.00 1.93 3.83 7.04 

bcsstk17 1.00 1.99 3.97 7.84 

bcsstk18 1.00 1.97 3.83 7.04 

bcsstk25 1.00 1.90 3.99 7.97 

memplus 1.00 2.00 4.03 10.88

af23560 1.00 1.93 3.63 7.00 
 

Speedup ratio determines how much faster the 
parallel version runs than does the serial version. As this is 
expressed as a ratio of the serial runtime over the parallel 
runtime, if the parallel is faster then the ratio is greater 
than 1. A perfect speedup occurs when this ratio is exactly 
equal to the number of processors that are parallelized. 

4. Conclusions 

This paper presents some results of a simple but effective 
approach for parallelizing linear algebra operation such as 
TJDS based sparse matrix-vector multiplication. Also 
specific examples and experimental performance results 
are presented for the operation to be solved in parallel on 
Ethernet-based heterogeneous cluster, using the 
advantages of a transposed jagged diagonal storage format. 

The experimentation shows that the implementation 
obtains good results in parallel.  

The number of computation for matrix-vector product 
is linear with respect to the number of nonzero elements. 
TJDS is suitable for parallel and distributed processing 
because the data partition scheme inherent to the data 
structure keeps the locality of reference on the non-zero 
values of the matrix and the elements of the x array. 

We will also work toward high performance iterative 
linear solvers using these kernel routines and effective 
preconditioners for the solvers, with the goal of 
developing a sparse linear solver for sequential and 
distributive memory parallel architectures.   
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