
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

77

Manuscript received December 5, 2006.
Manuscript revised December 25, 2006.

An Efficient Sparse Matrix-Vector Multiplication on Distributed
Memory Parallel Computers

Rukhsana Shahnaz and Anila Usman,

Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.

Summary
The matrix-vector product is one of the most important
computational components of Krylov methods. This
kernel is an irregular problem, which has led to the
development of several compressed storage formats. We
design a data structure for distributed matrix to compute
the matrix-vector product efficiently on distributed
memory parallel computers using MPI. We conduct
numerical experiments on several different sparse matrices
and show the parallel performance of our sparse matrix-
vector product routines.
Key words:
Sparse matrices, matrix-vector product, sparse storage
formats, distributed computing.

1. Introduction

Fast solution of linear equations with large sparse
coefficient matrices is an essential requirement of
advanced computations. We are planning to develop a new
library for large-scale sparse matrix solutions that features
a wide range of storage formats for sequential and
distributed memory parallel architectures.
 Krylov subspace methods are currently ubiquitous as
a tool for solving linear systems, especially for very large
sparse matrices. The efficient use of modern
supercomputers strongly depends on a parallel, fast and
memory saving implementation of the matrix-vector
multiplication. A fast and efficient parallelization of
SMVM computations is desirable which requires the
distribution of nonzeros of the input matrix among
processors in such a way that the computational loads of
the processors are almost equal and the cost of
interprocessor communication is low [1].

This paper presents a parallelization strategy of the
SMVM using Transposed Jagged diagonal storage (TJDS)
format on heterogeneous cluster [2, 3]. Two basic
guidelines are defined for the parallel algorithm: one-
dimensional data distribution and broadcast messages for
all data communications. One-dimensional data
distribution eases the processing workload balance on
heterogeneous clusters [4]. The use of broadcast messages
for every data communication is directly oriented to

optimize performance on the most common cluster
interconnection, Ethernet. Experimental results obtained in
a local network of heterogeneous computers are presented.

The remaining paper is organized as follows: In
Section 2 we briefly present the parallel implementation of
matrix-vector multiplication using TJDS storage format.
The Experimental results and performance analysis is
presented in section 3. Finally, in Section 4 we give
conclusions.

2. Implementation of matrix-vector
multiplication

The efficiency of an algorithm for the solution of linear
system is determined by the performance of matrix-vector
multiplication that depends heavily on the storage scheme
used.

In our previous work five storage formats including
Coordinate Storage (COO), Compressed Row Storage
(CRS), Compressed Column Storage (CCS), Jagged
Diagonal Storage (JDS) and Transposed Jagged Diagonal
Storage (TJDS) [3, 5, 6] were implemented and compared
[7]. The TJDS achieve the high performance on
distributed memory parallel architecture.

2.1 The transposed jagged diagonal storage (TJDS)
format

The Transposed Jagged Diagonal Storage (TJDS) format
is inspired from the Jagged Diagonal Storage (JDS) format
and makes no assumptions about the sparsity pattern of the
matrix. To illustrate the principles of the scheme, we
introduce a 8 x 8 matrix A with nonzero elements aij.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

78

In TJDS all the non-zero elements are shifted upward
instead of leftward as in JDS. This gives a new matrix Accs.

A Transposed Jagged Diagonal Storage Atjds is
obtained by reordering the columns of Accs in decreasing
order from left to right according to the number of
nonzero elements per column and reordering the elements
of the vector x accordingly as if it were an additional row
of A.

The rows of the compressed and permuted matrix Atjds are
called transposed jagged diagonals. Obviously, the
number of these diagonals is equal to the maximum
number max_nz of nonzeros per column. A suitable data
structure required to compute Ax = y using TJDS scheme
is shown in Figure 1. The num_nz nonzero elements of
the Atjds matrix are stored in a floating point linear array
value(:), one row after another. Another array of same
length row_ind(:), is needed to store the row indices of the
non-zero elements in the original matrix. Finally, a third
array of length max_nz+1 is also needed, tjd_ptr(:), which
stores the starting position of the transposed jagged
diagonals in the array value(:). Figure 2 shows the matrix
A considered above in the TJDS format.

TJDS_Matrix = record
 value : array [1..num_nz] of REAL
 row_ind : array [1..num_nz] of INTEGER
 tjd_ptr : array [1..max_nz+1] of INTEGER
 X : array [1..n] of REAL
 Y : array [1..n] of REAL
end record

Fig. 1 Data structure of a n x n matrix in the TJDS scheme

Fig. 2 Matrix A in the TJDS scheme

2.2 TJDS Matrix-Vector Multiplication

The Matrix Vector Multiplication (MVM) is
performed along the transposed jagged diagonals
providing an inner loop length equal to the
diagonal length. To minimize the indirect
memory accesses, vector X involved in the
MVM is permuted initially once so that it
automatically carry the same order as the matrix
rows. The numerical core of the MVM is given
in Figure 3.

for j = 1, …, max_nz do
 p = 1
 for i = 1, …, (tjd_ptr (j+1) - tjd_ptr (j)) do
 y (row_ind (p)) = y (row_ind (p) +
 val (j) * x (p)
 p = p+1
 end for i
end for j

Figure 3. MVM in the TJDS format: y = y + Ax.

The innermost loop requires one store and four load
operations (including one indirect load) to perform two
floating-point operations (Flop). In other words the
performance of the MVM is clearly determined by the
quality of the memory access. To reduce the load
operations associated with the vector y, we have splitted
outer j loop into several loops over Transposed Jagged
Diagonals with equal length by introducing an outer loop
k.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

79

for k = 1, …, diff_tjds do
 length=i_length(k)
 for j = j_start(k), …, j_end(k) do
 p = 1
 for i = 1, …, length do
 y (row_ind (p)) = y (row_ind (p) +
 val (j) * x (p)
 p = p+1
 end for i
 end for j
end for k

Figure 4. Modified MVM in the TJDS format with an
outer k loop running over diff_tjds blocks of Transposed

Jagged Diagonals with different loop lengths.

2. Parallel implementation

For parallel computers with distributed memory, we use a
column-wise distribution of matrix and row-wise
distribution of vector elements among the processors
involved in MVM. Communication is required for all
matrix elements that refers to vector data stored on remote
processor (non-local vector elements) [8,9].

Figure 5. Distribution of a matrix A and vector X on 4 processors (P0 –
P3). All nonzero matrix elements are black

Since the matrix does not change during the

computation, a static communication scheme is
predetermined beforehand. In this way, we can exchange
data efficiently in anticipation of the overlapping of
communication and computation in the each MVM. Table

1 shows a list of local variables involved in the
communication.

Table 1. Variables representing the communication scheme

recnum Number of processors from

which vector elements are
received

recid(recnum) IDs of these processors
elrec(recnum) Number of elements received

from each of the recnum
processors

sendnum Number of processors to which
vector elements are sent

sendid(sendnum
)

IDs of these processors

elsend(sendnum) Number of elements sent to each
of the sendnum processors

Figure 6. Communication scheme resulting from the data distribution of
Figure 5

Since the matrix A is distributed column-wise among
the processors, each processor transforms its local
columns into the TJDS format.

Figure 7. Local portion of A on processor P1 in TJDS format

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

80

Vectors involved in MVM automatically carry the
same permuted order as the matrix rows. During MVM,
each matrix element has to find the matching vector
element it is multiplied with by using the information of
row indices. No permutation information is required
during MVM as the vector is already permuted according
to the matrix. The local and non-local elements of vector
X are copied into a separate array recvec(:) which serves
as a vector in MVM. It is apparent that a Transposed
Jagged Diagonal can only be released for computation if
the corresponding non-local elements have successfully
been received. The parallel MVM implementation is based
on MPI. The Transposed Jagged Diagonals are processed
as a whole during MVM.

3. Experimental results and performance
analysis

We have selected the sparse matrices from the Matrix-
Market [10] collection to evaluate the SMVM for TJDS
format.

3.1 Sequential performance

The MVM for TJDS is similar in the sense that they both
have four load operations and one store operation to
compute each partial result. But TJDS outperforms JDS
because the permutation step needed in the JDS is not
required for the TJDS [6]. Figure 8 gives the execution
time for the matrix vector multiplication using JDS and
TJDS formats. The two algorithms are executed
sequentially on Intel Pentium-IV 3GHz processor with
512MB RAM.

Table 2. Selection of sparse matrices from matrix market

 Matrix Dimension Nnze

1 dw2048 2048 x 2048 10114

2 add32 4960 x 4960 23884

3 bcsstk23 3134 x 3134 24156

4 add20 2395 x 2395 17319

5 rw5151 5151 x 5151 20199

6 bcsstk15 3948 x 3948 60882

7 mhd3200a 3200 x 3200 68026

DW2048
ADD32

BCSSTK23
ADD20

RW5151
BCSSTK15

MHD3200A

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Ex
ec

ut
io

n
tim

e
in

 s
ec

on
ds

Selected matrices of table 2

 JDS
 TJDS

Figure 8. MVM execution time using JDS and TJDS formats

3.2 Parallel performance

In the parallel MVM the current processor exchanges data
with its neighbors and then computes the product locally.
After completing local computation the contribution from
all processors is summed up by using MPI_ALLREDUCE.
The matrices are partitioned among processors in column-
wise block form. Timings are measured using
MPI_Wtime(). We reported three different timings, total
execution time, communication time and computation time.
From these results we found that for small matrices, the
communication exceeds the computation time and parallel
algorithm performs worst than even sequential.

Total execution time is increased for systems ranging
from 1000 to 10000 with the addition of a processor. This
is due to the communication time because these systems
are not very large and have less computation time as
compared to communication time. For systems ranging
from 50000 to 5000000 the total execution time is
decreased with the addition of new processors in the
cluster because these systems have more computation time
than communication time.

A single processor system is unable to solve the
linear system of order greater than one million (106) and 2-
processor system could not solve a system of order greater
than three million due to memory requirements. Figure 9
show the results of the TJDS SMVP on different
processors with memory consideration.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

81

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

of processors = 8

of processors = 4
of processors = 2

of processors = 1

Ti
m

e
(s

ec
)

Matrix Size (106)

Figure 9. Performance of parallel TJDS matrix-vector product on
different processors

We have tested our implementation on cluster of 8

PCs connected by a network of relatively low performance
(Ethernet 100Mb/s). The results are shown in table 3.

Table 3. Elapsed time of computation on cluster of PCs

Matrix info Elapsed time (sec)

Matrix n cols nnz
P
tcomp tcomm texe

5000 25000 2 1.103 0.031 2.096
2500 12550 4 0.647 0.055 1.812

cry1000
0

10000

1250 6325 8 0.239 0.069 1.054
5487 118014 2 3.714 0.050 4.914
2744 64266 4 1.855 0.072 3.077

bcsstk17 10974

1372 32916 8 1.009 0.081 2.24
5974 40899 2 1.877 0.055 3.082
2987 21978 4 0.886 0.067 2.003

bcsstk18 11948

1494 11514 8 0.499 0.082 1.731
7720 66964 2 2.967 0.06 4.567
3860 34087 4 1.368 0.072 3.068

bcsstk25 15439

1930 17091 8 1.004 0.091 1.88
8879 71619 2 3.940 0.088 5.677
4440 36131 4 1.858 0.034 3.348

memplus 17758

2220 22875 8 0.801 0.01 1.951
11780 242128 2 7.501 0.141 8.742
5890 121506 4 4.213 0.113 5.472

af23560 23560

2945 60781 8 2.001 0.090 3.191

Some parameters in the table are described below.
• The columns of cols and nnz are the maximum

number of columns and the maximum number of
nonzero entries, respectively, for a local matrix. In
this work we partition the matrices for 2, 4 and 8

processors. For a balanced partitioning, both cols and
nnz of all local matrices should be approximately the
same and we double the number of processors, they
should reduce in half. When these properties are
found in the local matrices, we say that the local
balance among the processors is good.

• The column of P# is the number of processors used in
the calculation.

• The column of tcomp is the maximum total elapsed time
for the slowest processor to compute the local matrix-
vector product. Because the computing time for a
local matrix-vector product is proportional to number
of nonzeros, the slowest processor should be the one
whose number of nonzero entries of the local matrix
is maximum. The elapsed time for this processor
represents the computing time. For matrices
partitioned with a good load balance, the computing
time for all processors should be approximately the
same. The matrix af23560 has the maximum
computation time of all selected matrices of table 3 as
it has largest value of nonzeros.

• Before computing a local matrix-vector product, all
processors exchange data with their neighbors. The
column of tcomm is the maximum total elapsed time of
the processor that does the most communication with
its neighbors. The communication cost is another
factor to be taken into account when partitioning a
matrix for parallel computing. The communication
time of the current processor is proportional to both
the number of neighboring processors and the amount
of exchanged data. With many neighbors, there
aremany times to initialize latency of the network.
The data is transferred through the network, so the
larger the amount of data, the more time is required to
transfer them.

• The column of texe is the maximum total elapsed time
of all computations for the slowest processor.

An overview over the total runtime based on TJDS-
MVM implementation is presented in figure 10 for fixed
matrix size using different number of processors. The
behavior can be attributed to different vector lengths of the
inner loop of MVM, which is determined by the matrix
dimension.

Since the problem size is fixed, the utilization of
processors decreases with increasing number of processors
due to the communication overhead. The parallel features
of the implementation can be demonstrated in more detail
by the parallel efficiency.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

82

0.0

0.5

1.0

1.5

2.0

2.5

1 2 4 8

Ru
nt

im
e

(s
ec

)

of Processors

Figure 10. Runtimes of the TJDS-MVM on different number of
processors

Table 4 shows the speed-up ratio for parallel matrix

vector products using TJDS format. The parallelization
speed-ups are nearly ideal in most cases.

Table 4. Speed-up ratios for parallel matrix-vector products

Matrix P=1 P=2 P=4 P=8

cry10000 1.00 1.93 3.83 7.04

bcsstk17 1.00 1.99 3.97 7.84

bcsstk18 1.00 1.97 3.83 7.04

bcsstk25 1.00 1.90 3.99 7.97

memplus 1.00 2.00 4.03 10.88

af23560 1.00 1.93 3.63 7.00

Speedup ratio determines how much faster the
parallel version runs than does the serial version. As this is
expressed as a ratio of the serial runtime over the parallel
runtime, if the parallel is faster then the ratio is greater
than 1. A perfect speedup occurs when this ratio is exactly
equal to the number of processors that are parallelized.

4. Conclusions

This paper presents some results of a simple but effective
approach for parallelizing linear algebra operation such as
TJDS based sparse matrix-vector multiplication. Also
specific examples and experimental performance results
are presented for the operation to be solved in parallel on
Ethernet-based heterogeneous cluster, using the
advantages of a transposed jagged diagonal storage format.

The experimentation shows that the implementation
obtains good results in parallel.

The number of computation for matrix-vector product
is linear with respect to the number of nonzero elements.
TJDS is suitable for parallel and distributed processing
because the data partition scheme inherent to the data
structure keeps the locality of reference on the non-zero
values of the matrix and the elements of the x array.

We will also work toward high performance iterative
linear solvers using these kernel routines and effective
preconditioners for the solvers, with the goal of
developing a sparse linear solver for sequential and
distributive memory parallel architectures.

References

[1] A. T. Ogielski and W. Aiello, Sparse matrix computations on
parallel processor arrays, SIAM Journal on Scientific
Computing, 14 (1993), pp. 519-530.

[2] Arnold L. Rosenberg, Sharing Partitionable Workloads in
Heterogeneous NOWs: Greedier Is Not Better, cluster, 3rd
IEEE International Conference on Cluster Computing
(CLUSTER'01), 2001, pp. 124.

[3] R. Barrett et al., Templates for the solution of Linear Systems:
Building Blocks for Iterative Methods, SIAM Press,
Philadelphia, 1994.

[4] B. Hendrickson and T. G. Kolda. Partitioning rectangular and
structurally unsymmetric sparse matrices for parallel
processing, SIAM J. on Sci. Comp., 21(6), 2000, pp.2048–
2072.

[5] E. Montagne and Anand Ekambaram, An Optimal Storage
Format for Sparse Matrices, Information Processing Letters,
Elsevier Science Publishers, Volume 90, Issue 2, April 2004,
pp. 87-92.

[6] A. Ekambaram and E. Montagne, An Alternative Compressed
Storage Format for Sparse Matrices, ISCIS XVIII - Eighteenth
International Symposium on Computer and Information
Sciences, LNCS 2869, November 2003, pp. 196-203.

[7] Rukhsana Shahnaz, Anila Usman, Implementation and
Evaluation of Sparse Matrix-Vector Product on Distributed
Memory Parallel Computers, Proc. Cluster2006, IEEE
International Conference on Cluster Computing, Barcelona,
2006.

[8] Fernando G. Tinetti, Walter J. Aroztegui, Antonio A. Quijano,
"Sparse Equation Systems in Heterogeneous Clusters of
Computers," aina, 19th International Conference on
Advanced Information Networking and Applications
(AINA'05) Volume 2 (INA,, USW,, WAMIS,, and IPv6
papers), 2005, pp. 471-474.

[9] S. Riyavong, “Experiments on Parallel Matrix-Vector
Product”, Working Note WN/PA/03/127, CERFACS,
Toulouse, France, 2003.

[10] Matrix Market. http://math.nist.gov/MatrixMarket.

