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Summary 
The article presents the memetic SOM, an evolutionary 
algorithm embedding self-organizing maps as operators to 
address the vehicle routing problem with time windows 
(VRPTW). We show that it allows to extend the 
self-organizing map to deal with a version of the vehicle 
routing problem with time windows where the number of 
vehicles is an input, and by adding some walking distance from 
customers to bus stops. Then, we derived solutions for the 
classical VRPTW with no walking distances. This is illustrated 
on Solomon’s standard test problems. 
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1 Introduction 
In the literature, many applications of neural networks 

have addressed the Euclidean traveling salesman 
problem (TSP) [5][11]. Mainly, two types of neural 
networks are applied to the TSP. They are the Hopfield 
model [20], which is considered performing poorly on 
large instances, and the self-organizing map (SOM) 
approach [12], similar to elastic nets [6], that can tackle 
large instances. When applied in the plane, SOM is a 
visual pattern that adapts and modifies its shape 
according to some underlying distribution. Application 
of SOM to more complex and abstract vehicle routing 
problems remains a difficult task. For example, SOM has 
been extended to address the vehicle routing problem 
(VRP) [8][9][14][15][19][23] but, as far as we know,  it 
has not been applied yet to the vehicle routing problem 
with time windows (VRPTW) [21].  

In practice, hybridization of optimization methods is 
often compelling. It is a common and promising practice 
using a population based metaheuristic incorporating a 
neighborhood search. Examples of such methods are 
multi-start or restart approaches [1][18], as well as 
memetic algorithms [16] or genetic local search [17]. 
Memetic algorithms are special case of evolutionary 
algorithms (EA), combining advantage of heuristics 
within population based search. All the SOM 
applications to TSP and VRP are based on a modification 
of the SOM internal learning law. Here, to improve 
quality of results on the TSP and extend SOM to address 
the VRPTW, that is new, it is the context of the SOM 
application rather than its internal learning rule which is 

modified. 
The standard and original SOM, as defined in 

[12][13] since more than two decades, is now a main 
operator embedded into an EA framework and then 
combined with other specific greedy operators, fitness 
evaluation and selection operators. Following the 
memetic algorithm structure, we present the memetic 
SOM, an evolutionary algorithm embedding 
self-organizing maps as internal operators. 
Furthermore, a specific version of the SOM is derived 
to tackle time windows. We present the approach and 
apply it to solve standard VRPTW test problems of 
Solomon [21], we discuss results by comparison to 
classical heuristics for the VRPTW. 

The paper is organized as follows. Section 2 presents 
the problem. Objectives and constraints are given. 
Section 3 presents the standard SOM algorithm. 
Section 4 describes the memetic SOM approach. 
Section 5 presents experiments carried out on the 
VRPTW. The last section is devoted to the conclusion 
and further research. 

2 Problem statement 

2.1 Basic concepts 
1) Requests. We denote by { }nrrV ,...,1=  the 

finite set of customer demands, called requests. Each 
request ri ∈ V has a location in the Euclidean plane. It 
has a non-negative demand qi, a service time si and a 
time window (ai, bi). If a vehicle arrives at a location 
where request ri is intended to be served by the vehicle, 
this can not begin the service before ai. The vehicle has 
to arrive before bi. Service is done with service time si. 

 
2) Transport routes. Let { }knnB  ..., ,1=  being a 

finite set of cluster centers, also called transport points 
or bus-stops, localized by their coordinates in the plane. 
A transport mesh is a set routes. Formally, it is a 
collection { }mRRR  ..., ,1=  of m routes, where each 

route is a sequence ( )i
k

i
j

i
i i

nnnR  ..., , ..., ,0= , 

Bni
j ∈ , of ki+1 successive cluster centers. 
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3) Request assignment. In our approach, the main 
difference with classical vehicle routing modeling is that 
routes are defined by an ordering of cluster centers, 
rather than by an ordering of customer requests. To build 
this ordering, each request r must be assigned to a single 
cluster center nr ∈ B in one of the m routes. A single 
vehicle is associated to each route. Then, routes are 
identified with vehicles that follow the routes. 

iRC is the 

capacity of a vehicle associated with route Ri, and iL  its 
load (sum of request quantities assigned to that vehicles). 
We denote by ( )rarr nt  the time of arrival of the 
vehicle to point nr for each request r ∈ V. 

2.2 Euclidean Vehicle clustering and routing 
problem with time windows 

The problem is presented as a clustering version of the 
vehicle routing problem with time windows. It is stated 
as follows: 
Euclidean vehicle clustering and routing problem 
with time windows (clustering VRPTW). The problem 
input is given by a set of requests { }nrrV ,...,1=  and a 

set of interconnected routes { }mRRR  ..., ,1= . Using 
notations and definitions of section 2.1, the problem 
consists of finding cluster center locations, except for 
some fixed transport points at a depot location, and 
assignment of requests to cluster centers in routes, in 
order to minimize the following objectives: 

( )1
1, ,  0,..., 1i

i i
j j

i .. m, j k
length d n ,n +

= = −
= ∑ ∑ , (1) 

( )
1,...,

,
ii r

i n
distortion d r n

=
= ∑ , (2) 

subject to the capacity constraint: 

iRi CL ≤ , { }mi ,...,1∈ , (3) 

and time-window constraint: 
( )( ) 0≥−

∈ i
i

rarri
Vr

ntbMin . (4) 

The length value of objective (1) is the routes total 
length. The distortion value of objective (2) is the sum of 
distances from request locations to their assigned 
bus-stops, it is called distortion measure. The problem 

can be seen as a combination of a classical vehicle 
routing problem [4] with the well-known Euclidean 
k-median problem [1], adding time windows. 
Solutions with distortion = 0 and where length is 
minimum are solutions of a classical Euclidean 
VRPTW where the vehicle number is an input.  

3 Kohonen’s self-organizing maps 
The self-organizing map is a non directed graph G = 

(N, E) where each vertex n ∈ N is a neuron having a 
synaptic weight vector wn = (x, y) ∈ ℜ2, where ℜ2 is the 
two-dimensional Euclidean space. Synaptic weight 
vector corresponds to the vertex location in the plane. 

The set of neurons N is provided with the dG induced 
canonical metric ( ), ' 1Gd n n =  if and only 

if ( ), 'n n E∈ , and with the usual Euclidean distance 

d(n, n'). 
The training procedure is summarized in Fig.1. A 

basic iteration follows three basic steps. At each 
iteration t, a point p(t)∈ℜ2 is randomly extracted from 
the data set (extraction step). Then, a competition 
between neurons against the input point p(t) is 
performed to select the winner neuron n* (competition 
step). Usually, it is the closest neuron to p(t). Finally, 
the following learning rule (triggering step): 

( ) ( ) ( ) ( ) ( ) ( )( )1 . *, .n n t nw t w t t h n n p t w tα+ = + − , (5) 

is applied to n* and to all neurons within a finite 
neighborhood of n* of radius σt, in the sense of the 
topological distance dG, using learning rate α(t) and 
function profile ht. The function profile is given by the 
Gaussian: 

( ) ( )( )2 2*, exp *,t G th n n d n n σ= − . (6) 

Here, learning rate α(t) and radius σt are geometric 
time decreasing functions. To perform a decreasing run 
within tmax iterations, at each iteration t, coefficients 
α(t) and σt are multiplied by 

( )( )maxexp ln final initx x t , with respectively x = 

α and x = σ, xinit and xfinal being respectively the preset 
values at starting and final iteration.  

Application of SOM to a set of routes 

 
Randomly generate weight vertices. 

Repeat maxt times. 

 Randomly extract a point p from the data distribution. 
 Perform competition to select the winner neuron n* according to p. 
 Apply learning rule to move the neurons of a neighborhood of n*. 
 Decrease learning rate α and radius σ of neighborhood. 
End Repeat. 

Fig. 1.  Self-organizing map on-line algorithm. 
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Initialize population with Pop individuals. 
Do while not Gen generations are performed. 
    - Apply one or more standard SOM operators (named SOM). 
    - Apply operator for request assignment and fitness evaluation, chosen 
from set { FITNESSTW1, FITNESSTW2 }. 
    - Memorize best individual. 
    - Apply selection operators, chosen from set {SELECT, SELECT_ELIT}, that 
replace worst individuals by best ones. 
    - Apply SOM derived operators, chosen from set {SOMTW1, SOMTW2}. 
End do. 
Report best individual encountered. 
 

Fig. 2. The generic memetic loop. 

 

{ }mRRR  ..., ,1=  consists of applying iterations on 
the undirected graph GR = (N, E) induced by R. Vertex 
set N is the set of cluster centers, whereas E is the set of 
edges composed of any two successive centers from 
routes. The data set is the request set. SOM has two main 
properties of topology and density preservation [12]. 
This explains why it naturally addresses length (1) and 
distortion (2) minimization. In our evolutionary 
algorithm, a SOM simulation becomes an operator 
specified by its running parameters 

( )max,,,, tfinalinitfinalinit σσαα . Furthermore, 

basing upon algorithm structure of Fig.1. specific greedy 
operators are derived to address the time window 
constraint. 

4 The generic evolutionary approach  

4.1 Generic evolutionary loop and operators 

The evolutionary loop structure is presented in Fig.2. 
This structure will be instantiated for the clustering 
VRPTW. A construction loop as well as an improvement 
loop are instantiated. A master loop controls execution of 
the construction phase followed by the improvement 
phase. Details of instantiations, as the parameter values 
of operators and their order of application, will be given 
in experiment section. As usual, one individual 
represents exactly one solution, that is, a set of routes. 
The generic memetic loop applies a set of operators to a 
population of individuals. At each generation, a 
predefined number of basic iterations are performed 
letting the SOM decreasing run being interrupted and 
combined with application of other operators, as fitness 
evaluation and requests assignment, selection and 
specific derived versions of SOM. At each generation, 
each operator is applied with probability prob. Three 
parameters start, max and free are possibly used for 
synchronization purpose. They mean that an operator 
starts its execution at generation start, and that it is 
applied alternatively during max successive generations 
followed by free successive generations where it is 
inhibited, and so on indefinitely. Details of operators are 

the followings: 
1) Self-organizing map operator. It is the standard 

SOM applied to the graph network defined by the 
routes. It is denoted by its name and its internal 
parameters, as 

( )max, , , ,init final init finalSOM tα α σ σ . One or 

more instances of the operator can be combined with 
their own parameter values. A SOM operator is 
executed performing niter basic iterations by 
individual, at each generation. Parameter tmax is the 
total amount of iterations applied to all individuals. It 
defines a decreasing run possibly performed in several 
generations. Once tmax basic iterations are performed, 
the operator resets to its initial parameter values and 
starts again. The SOM operator naturally addresses a 
minimization of objectives (1) and (2).  

2) SOM derived operators. While the capacity 
constraint (3) is considered specifically in the 
fitness/assignment operator below, two problem 

specific operators are derived from the SOM algorithm 
structure for dealing with the time window constraint. 
The operator, denoted SOMTW1, performs a greedy 
insertion move. Given a request that is not already 
assigned to some vehicle, the competitive step selects 
to be the winner the closest vehicle transport point 
encountered for which the time window constraint is 
satisfied, letting time window constraints of the other 
inserted requests in the route also satisfied. A second 
operator, denoted SOMTW2, selects the route with the 
minimum increase of travel time as a supplementary 
condition. The evaluation of the travel time and the 
verification of the time window constraints are done 
after moving the transport point on the request location 
and including the request into the route. 

3) Fitness/assignment operator. This operator 
greedily assigns requests to their closest cluster center, 
vehicle capacity constraint being satisfied. Here, 
cluster size is limited to a single request. Thus, the 
capacity constraint (3) is greedily tackled thru the 
assignment of requests. Then, the operator evaluates a 
scalar fitness value that has to be maximized and which 
is used by the selection operator. During this fitness 
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evaluation, requests that have their time window 
constraint violated are removed form the assignment. 
Objectives of length (1) and distortion (2) minimization 

and time window constraint (4) are traduced and 
combined into the scalar fitness value. The 
fitness/assignment operators are the followings: 

• FITNESSTW1 : it is a version for the 
clustering VRPTW specific to the 
construction phase. The fitness 
value is fitness = sat, where sat is 
the number of requests that are 
successfully assigned to routes, i.e. 
for which constraints are satisfied. 
The value sat is then considered as 
a main objective and admissible 
solutions are the ones for which sat 
= n, n being the request number. 

 

• FITNESSTW2 : it is a version for the 
clustering VRPTW specific to the 
improvement phase. The fitness 
value is fitness = sat - 10-4 × length, 
in order to consider the number of 
satisfied requests sat (defined 
above) as a main objective and 
length as a secondary objective. 

4) Selection operators. Based on fitness maximization, 
the operator denoted SELECT replaces replace worst 
individuals, which have the lowest fitness values in the 
population, by the same number of bests individuals, 
which have the highest fitness values in the population. 
An elitist version SELECT_ELIT replaces the worst 
individuals by the single best individual encountered 

during the run. 
 

4.2 Master loop 
To implement a construction phase followed by an 
improvement phase, a master loop executes 
sequentially two memetic loops to respectively 
implement the construction and improvement phases. 
Once an execution terminated, the master loop 
performs population movements. The process of 
construction followed by improvement can be repeated 
several times starting from previously constructed 
solutions. Cluster centers coordinates are randomly 
generated into a squared area containing requests 
before execution. 
 

5 Experimental results on the VRPTW 

5.1 Algorithm configuration and parameters 

The algorithm consists of applying a construction 
phase followed by an improvement phase several times. 
Operators previously explained in section 4 are 
instantiated as in Tables 1-2. The number of neurons, 
or cluster centers, per route was set to 2n divided by the 
number of vehicle/routes. The construction loop 
CONFIGTW1 of Table 1 generates initial solutions for 
the improvement loop. In experiments, such solutions 
present roughly 70 % of time-window constraints 
satisfied. The second configuration CONFIGTW2 of 
Table 2 uses the two derived SOM operator, denoted 
SOMTW1 and SOMTW2, to perform greedy insertion 

Table 1. Construction loop CONFIGTW1 for the clustering VRPTW. 
CONFIGTW1 (Size = 50; Gen = 5) 

Operator Internal SOM parameters Evolutionary parameters 
  initα  finalα initσ finalσ maxt prob niter replace
1 SOM 1.0 0.5 20.0 0.5 25000 1.0 100 -
2 FITNESSTW1 - - - - - 1.0 - -
3 SELECT - - - - - 1.0 - 1
4 SEL_ELIT - - - - - 0.1 - 1

Table 2. Improvement loop CONFIGTW2 for the clustering VRPTW. 
CONFIGTW2 (Size = 50; Gen = 50) 

Operator Internal SOM parameters Evolutionary parameters 

  initα  
 

finalα

 
initσ finalσ maxt prob niter replace 

m 
a 
x 

free

1 SOM 0.9 0.1 6 2 500000 1.0 100 - 5 5
2 FITNESSTW2 - - - - - 1.0 - - - 
3 SELECT - - - - - 0.5 - 1 - -
4 SEL_ELIT - - - - - 0.01 - 1 - -
5 SOMTW1 1.0 1.0 0.5 0.5 - 1.0 5 - - -
6 SOMTW2 1.0 1.0 0.5 0.5 - 1.0 5 - - -
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moves, whereas the standard SOM operator works on the 
transport routes to maintain topology and address length 
reduction. Starting at the beginning from random                           

solutions, the construction followed by 
improvement process is repeated 240 times using at each 
time the previously generated solutions. 

 

5.2 Numerical results 

We used the Solomon's standard VRPTW benchmark 
[21]. Problems are 100-customer Euclidean problems. 
The tests are embedded into a 100 km × 100 km 
geographic area, using vehicle speed of 60 km/h.  
Time-windows are given in minutes. Since here, 

solutions are generated with some non null distortion 
(2), a classical VRPTW solution where distortion = 0 
is derived at a final step. Fig.3(a-c) illustrates on the 

rc201 test case, the different steps to generate a 
classical VRPTW solution from an obtained solution 
with non null distortion. The deformable pattern 
generated by the algorithm is shown in (a). An 
intermediate result obtained by removing empty 
clusters is shown in (b). Then, a VRPTW solution as 
drawn in (c) is derived by projecting each cluster 
center to the location of its single assigned request.  

Visual patterns of the solutions obtained for six 
representative test cases c101, r101, rc101, c201, r201 
and rc201 are shown respectively in Fig.(a)-(f). Empty 
clusters were removed. Table 3 presents numerical 
results for the six problems. Results are given for a 

   
(a) (b) (c) 

Fig. 4. The steps to derive a classical VRPTW solution from a clustering VRPTW solution on the rc201 test case. (a) Obtained solution. (b) Same 
solution after removing the empty clusters. (c) A VRPTW solution obtained after projection of the cluster centers to their (single) assigned requests. 
 

  
(a) (b) (c) 

  
(d) (e) (f) 

Fig. 3. (a)-(f) Solutions for six c101, r101, rc101, c201, r201, rc201 test cases. 
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single run. The first column indicates the instance name 
and the number of vehicles. Second column presents the 
best known length value. Then, the number of satisfied 
requests, the total route length and the average distortion 
(distortion / n) are given in columns “sat”, “length” and 
“avg. dist.”, respectively for the obtained clustering 
VRPTW solutions and the derived standard VRPTW 
solutions. Percentage deviation to the best-known value 
is given within parenthesis. Here, the clustered c101 and 
c201 test cases are easy to solve and the algorithm finds 
near optimal solutions with less than 1% deviation from 
optimum. For the other cases, running the 120 master 
loop iterations, thus restarting internal coefficients many 
times, took approximately 5 mn on our PC 2000MHz. 
Deviation is less than 6 % above optimum for r101 and 
rc101 instances, whereas algorithm accuracy clearly 
diminishes with the r201 and rc201 cases which present 
a large horizon. Some time window lateness time is 
observed for few (non satisfied) requests. 
 

Nevertheless, considering the clustering VRPTW 
results, lengths that are obtained are lower than the best 
known lengths for the classical VRPTW, while average 
distance from requests to their assigned vehicle cluster 

center (average distortion) is maintained within a narrow 
interval of less than 2 km. We can appreciate visually on 
Fig.3, how the Voronoï assignment takes place. 
Assignment of a request to the closest vehicle transport 
point is an important characteristic of the solutions 
generated, since a customer would like to go to its closest 
bus stop, and since otherwise, finding the right 
assignment would become a difficult problem by itself. 
We think that the approach leads to a new way of 
thinking about the VRPTW by generating underlying 
patterns that dispatch thru the requests, letting some 
place for dynamic adaptation to input modifications. 

As usual with neural network applications to vehicle 
routing problems, the approach is far from being 
competitive with regards to the complex and powerful 
Operations Research heuristics specifically dedicated for 
the VRPTW, as for example the ones presented in 
[3][7][10][22]. For example, tabu search adaptive 
memory of Taillard et al. (1997) [22] produces, for a 

single instance where vehicle number is also an input, a 
solution of less than 1 % deviation to the best known 
within roughly less than 10 mn on average, and using a 
Sun Sparc 10 workstation. We are far from obtaining 
the same accuracy and execution time except on 
clustered instances of class C. But, simplicity (easy to 
understand) and flexibility (easy to extend) as well as 
their intrinsic parallelism are key points of neural 
networks and evolutionary algorithms that may lead in 
the future to computationally competitive applications 
for the VRPTW. Here, the results illustrate flexibility 
of using SOM into an evolutionary framework rather 
than trying to solely modify its internal law, but the two 
aspects may be combined in further research. 

6 Conclusion 
By incorporating SOM into an evolutionary 

algorithm, the approach extends and improves SOM 
based neural networks applications. This is illustrated 
in the paper by application to the vehicle routing 
problem with time windows, that is new. From the 
point of view of neural networks, the evolutionary 
framework introduces a level of supervision but it 

corresponds to a selection principle at a higher level 
with the aim to allow simplicity and flexibility and 
favor further parallel implantations. Operators have a 
similar structure based on closest point findings and 
simple moves performed in the Euclidean plane. In 
further research, improvement would be carried out by 
a finest parameter tuning and another combination of 
operators, as well as by the development of problem 
specific SOM learning laws. Exploiting the natural 
parallelism of the approach for multi-processor 
implantations is also a key point to address in further 
work.  
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