
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

103

Self-Organizing Maps in Evolutionary Approach for the
Vehicle Routing Problem with Time Windows

Jean-Charles Créput, Abder Koukam and Amir Hajjam

Systems and Transportation Laboratory University of Technology of Belfort-Montbéliard
90010 Belfort Cedex, France

Summary
The article presents the memetic SOM, an evolutionary
algorithm embedding self-organizing maps as operators to
address the vehicle routing problem with time windows
(VRPTW). We show that it allows to extend the
self-organizing map to deal with a version of the vehicle
routing problem with time windows where the number of
vehicles is an input, and by adding some walking distance from
customers to bus stops. Then, we derived solutions for the
classical VRPTW with no walking distances. This is illustrated
on Solomon’s standard test problems.
Key Words :
Evolutionary algorithm, self-organizing map, vehicle routing
problem with time-windows

1 Introduction
In the literature, many applications of neural networks

have addressed the Euclidean traveling salesman
problem (TSP) [5][11]. Mainly, two types of neural
networks are applied to the TSP. They are the Hopfield
model [20], which is considered performing poorly on
large instances, and the self-organizing map (SOM)
approach [12], similar to elastic nets [6], that can tackle
large instances. When applied in the plane, SOM is a
visual pattern that adapts and modifies its shape
according to some underlying distribution. Application
of SOM to more complex and abstract vehicle routing
problems remains a difficult task. For example, SOM has
been extended to address the vehicle routing problem
(VRP) [8][9][14][15][19][23] but, as far as we know, it
has not been applied yet to the vehicle routing problem
with time windows (VRPTW) [21].

In practice, hybridization of optimization methods is
often compelling. It is a common and promising practice
using a population based metaheuristic incorporating a
neighborhood search. Examples of such methods are
multi-start or restart approaches [1][18], as well as
memetic algorithms [16] or genetic local search [17].
Memetic algorithms are special case of evolutionary
algorithms (EA), combining advantage of heuristics
within population based search. All the SOM
applications to TSP and VRP are based on a modification
of the SOM internal learning law. Here, to improve
quality of results on the TSP and extend SOM to address
the VRPTW, that is new, it is the context of the SOM
application rather than its internal learning rule which is

modified.
The standard and original SOM, as defined in

[12][13] since more than two decades, is now a main
operator embedded into an EA framework and then
combined with other specific greedy operators, fitness
evaluation and selection operators. Following the
memetic algorithm structure, we present the memetic
SOM, an evolutionary algorithm embedding
self-organizing maps as internal operators.
Furthermore, a specific version of the SOM is derived
to tackle time windows. We present the approach and
apply it to solve standard VRPTW test problems of
Solomon [21], we discuss results by comparison to
classical heuristics for the VRPTW.

The paper is organized as follows. Section 2 presents
the problem. Objectives and constraints are given.
Section 3 presents the standard SOM algorithm.
Section 4 describes the memetic SOM approach.
Section 5 presents experiments carried out on the
VRPTW. The last section is devoted to the conclusion
and further research.

2 Problem statement

2.1 Basic concepts
1) Requests. We denote by { }nrrV ,...,1= the

finite set of customer demands, called requests. Each
request ri ∈ V has a location in the Euclidean plane. It
has a non-negative demand qi, a service time si and a
time window (ai, bi). If a vehicle arrives at a location
where request ri is intended to be served by the vehicle,
this can not begin the service before ai. The vehicle has
to arrive before bi. Service is done with service time si.

2) Transport routes. Let { }knnB ..., ,1= being a

finite set of cluster centers, also called transport points
or bus-stops, localized by their coordinates in the plane.
A transport mesh is a set routes. Formally, it is a
collection { }mRRR ..., ,1= of m routes, where each

route is a sequence ()i
k

i
j

i
i i

nnnR ..., , ..., ,0= ,

Bni
j ∈ , of ki+1 successive cluster centers.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

104

3) Request assignment. In our approach, the main
difference with classical vehicle routing modeling is that
routes are defined by an ordering of cluster centers,
rather than by an ordering of customer requests. To build
this ordering, each request r must be assigned to a single
cluster center nr ∈ B in one of the m routes. A single
vehicle is associated to each route. Then, routes are
identified with vehicles that follow the routes.

iRC is the

capacity of a vehicle associated with route Ri, and iL its
load (sum of request quantities assigned to that vehicles).
We denote by ()rarr nt the time of arrival of the
vehicle to point nr for each request r ∈ V.

2.2 Euclidean Vehicle clustering and routing
problem with time windows

The problem is presented as a clustering version of the
vehicle routing problem with time windows. It is stated
as follows:
Euclidean vehicle clustering and routing problem
with time windows (clustering VRPTW). The problem
input is given by a set of requests { }nrrV ,...,1= and a

set of interconnected routes { }mRRR ..., ,1= . Using
notations and definitions of section 2.1, the problem
consists of finding cluster center locations, except for
some fixed transport points at a depot location, and
assignment of requests to cluster centers in routes, in
order to minimize the following objectives:

()1
1, , 0,..., 1i

i i
j j

i .. m, j k
length d n ,n +

= = −
= ∑ ∑ , (1)

()
1,...,

,
ii r

i n
distortion d r n

=
= ∑ , (2)

subject to the capacity constraint:

iRi CL ≤ , { }mi ,...,1∈ , (3)

and time-window constraint:
()() 0≥−

∈ i
i

rarri
Vr

ntbMin . (4)

The length value of objective (1) is the routes total
length. The distortion value of objective (2) is the sum of
distances from request locations to their assigned
bus-stops, it is called distortion measure. The problem

can be seen as a combination of a classical vehicle
routing problem [4] with the well-known Euclidean
k-median problem [1], adding time windows.
Solutions with distortion = 0 and where length is
minimum are solutions of a classical Euclidean
VRPTW where the vehicle number is an input.

3 Kohonen’s self-organizing maps
The self-organizing map is a non directed graph G =

(N, E) where each vertex n ∈ N is a neuron having a
synaptic weight vector wn = (x, y) ∈ ℜ2, where ℜ2 is the
two-dimensional Euclidean space. Synaptic weight
vector corresponds to the vertex location in the plane.

The set of neurons N is provided with the dG induced
canonical metric (), ' 1Gd n n = if and only

if (), 'n n E∈ , and with the usual Euclidean distance

d(n, n').
The training procedure is summarized in Fig.1. A

basic iteration follows three basic steps. At each
iteration t, a point p(t)∈ℜ2 is randomly extracted from
the data set (extraction step). Then, a competition
between neurons against the input point p(t) is
performed to select the winner neuron n* (competition
step). Usually, it is the closest neuron to p(t). Finally,
the following learning rule (triggering step):

() () () () () ()()1 . *, .n n t nw t w t t h n n p t w tα+ = + − , (5)

is applied to n* and to all neurons within a finite
neighborhood of n* of radius σt, in the sense of the
topological distance dG, using learning rate α(t) and
function profile ht. The function profile is given by the
Gaussian:

() ()()2 2*, exp *,t G th n n d n n σ= − . (6)

Here, learning rate α(t) and radius σt are geometric
time decreasing functions. To perform a decreasing run
within tmax iterations, at each iteration t, coefficients
α(t) and σt are multiplied by

()()maxexp ln final initx x t , with respectively x =

α and x = σ, xinit and xfinal being respectively the preset
values at starting and final iteration.

Application of SOM to a set of routes

Randomly generate weight vertices.

Repeat maxt times.

 Randomly extract a point p from the data distribution.
 Perform competition to select the winner neuron n* according to p.
 Apply learning rule to move the neurons of a neighborhood of n*.
 Decrease learning rate α and radius σ of neighborhood.
End Repeat.

Fig. 1. Self-organizing map on-line algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

105

Initialize population with Pop individuals.
Do while not Gen generations are performed.
 - Apply one or more standard SOM operators (named SOM).
 - Apply operator for request assignment and fitness evaluation, chosen
from set { FITNESSTW1, FITNESSTW2 }.
 - Memorize best individual.
 - Apply selection operators, chosen from set {SELECT, SELECT_ELIT}, that
replace worst individuals by best ones.
 - Apply SOM derived operators, chosen from set {SOMTW1, SOMTW2}.
End do.
Report best individual encountered.

Fig. 2. The generic memetic loop.

{ }mRRR ..., ,1= consists of applying iterations on
the undirected graph GR = (N, E) induced by R. Vertex
set N is the set of cluster centers, whereas E is the set of
edges composed of any two successive centers from
routes. The data set is the request set. SOM has two main
properties of topology and density preservation [12].
This explains why it naturally addresses length (1) and
distortion (2) minimization. In our evolutionary
algorithm, a SOM simulation becomes an operator
specified by its running parameters

()max,,,, tfinalinitfinalinit σσαα . Furthermore,

basing upon algorithm structure of Fig.1. specific greedy
operators are derived to address the time window
constraint.

4 The generic evolutionary approach

4.1 Generic evolutionary loop and operators

The evolutionary loop structure is presented in Fig.2.
This structure will be instantiated for the clustering
VRPTW. A construction loop as well as an improvement
loop are instantiated. A master loop controls execution of
the construction phase followed by the improvement
phase. Details of instantiations, as the parameter values
of operators and their order of application, will be given
in experiment section. As usual, one individual
represents exactly one solution, that is, a set of routes.
The generic memetic loop applies a set of operators to a
population of individuals. At each generation, a
predefined number of basic iterations are performed
letting the SOM decreasing run being interrupted and
combined with application of other operators, as fitness
evaluation and requests assignment, selection and
specific derived versions of SOM. At each generation,
each operator is applied with probability prob. Three
parameters start, max and free are possibly used for
synchronization purpose. They mean that an operator
starts its execution at generation start, and that it is
applied alternatively during max successive generations
followed by free successive generations where it is
inhibited, and so on indefinitely. Details of operators are

the followings:
1) Self-organizing map operator. It is the standard

SOM applied to the graph network defined by the
routes. It is denoted by its name and its internal
parameters, as

()max, , , ,init final init finalSOM tα α σ σ . One or

more instances of the operator can be combined with
their own parameter values. A SOM operator is
executed performing niter basic iterations by
individual, at each generation. Parameter tmax is the
total amount of iterations applied to all individuals. It
defines a decreasing run possibly performed in several
generations. Once tmax basic iterations are performed,
the operator resets to its initial parameter values and
starts again. The SOM operator naturally addresses a
minimization of objectives (1) and (2).

2) SOM derived operators. While the capacity
constraint (3) is considered specifically in the
fitness/assignment operator below, two problem

specific operators are derived from the SOM algorithm
structure for dealing with the time window constraint.
The operator, denoted SOMTW1, performs a greedy
insertion move. Given a request that is not already
assigned to some vehicle, the competitive step selects
to be the winner the closest vehicle transport point
encountered for which the time window constraint is
satisfied, letting time window constraints of the other
inserted requests in the route also satisfied. A second
operator, denoted SOMTW2, selects the route with the
minimum increase of travel time as a supplementary
condition. The evaluation of the travel time and the
verification of the time window constraints are done
after moving the transport point on the request location
and including the request into the route.

3) Fitness/assignment operator. This operator
greedily assigns requests to their closest cluster center,
vehicle capacity constraint being satisfied. Here,
cluster size is limited to a single request. Thus, the
capacity constraint (3) is greedily tackled thru the
assignment of requests. Then, the operator evaluates a
scalar fitness value that has to be maximized and which
is used by the selection operator. During this fitness

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

106

evaluation, requests that have their time window
constraint violated are removed form the assignment.
Objectives of length (1) and distortion (2) minimization

and time window constraint (4) are traduced and
combined into the scalar fitness value. The
fitness/assignment operators are the followings:

• FITNESSTW1 : it is a version for the
clustering VRPTW specific to the
construction phase. The fitness
value is fitness = sat, where sat is
the number of requests that are
successfully assigned to routes, i.e.
for which constraints are satisfied.
The value sat is then considered as
a main objective and admissible
solutions are the ones for which sat
= n, n being the request number.

• FITNESSTW2 : it is a version for the
clustering VRPTW specific to the
improvement phase. The fitness
value is fitness = sat - 10-4 × length,
in order to consider the number of
satisfied requests sat (defined
above) as a main objective and
length as a secondary objective.

4) Selection operators. Based on fitness maximization,
the operator denoted SELECT replaces replace worst
individuals, which have the lowest fitness values in the
population, by the same number of bests individuals,
which have the highest fitness values in the population.
An elitist version SELECT_ELIT replaces the worst
individuals by the single best individual encountered

during the run.

4.2 Master loop
To implement a construction phase followed by an
improvement phase, a master loop executes
sequentially two memetic loops to respectively
implement the construction and improvement phases.
Once an execution terminated, the master loop
performs population movements. The process of
construction followed by improvement can be repeated
several times starting from previously constructed
solutions. Cluster centers coordinates are randomly
generated into a squared area containing requests
before execution.

5 Experimental results on the VRPTW

5.1 Algorithm configuration and parameters

The algorithm consists of applying a construction
phase followed by an improvement phase several times.
Operators previously explained in section 4 are
instantiated as in Tables 1-2. The number of neurons,
or cluster centers, per route was set to 2n divided by the
number of vehicle/routes. The construction loop
CONFIGTW1 of Table 1 generates initial solutions for
the improvement loop. In experiments, such solutions
present roughly 70 % of time-window constraints
satisfied. The second configuration CONFIGTW2 of
Table 2 uses the two derived SOM operator, denoted
SOMTW1 and SOMTW2, to perform greedy insertion

Table 1. Construction loop CONFIGTW1 for the clustering VRPTW.
CONFIGTW1 (Size = 50; Gen = 5)

Operator Internal SOM parameters Evolutionary parameters
 initα finalα initσ finalσ maxt prob niter replace
1 SOM 1.0 0.5 20.0 0.5 25000 1.0 100 -
2 FITNESSTW1 - - - - - 1.0 - -
3 SELECT - - - - - 1.0 - 1
4 SEL_ELIT - - - - - 0.1 - 1

Table 2. Improvement loop CONFIGTW2 for the clustering VRPTW.
CONFIGTW2 (Size = 50; Gen = 50)

Operator Internal SOM parameters Evolutionary parameters

 initα

finalα

initσ finalσ maxt prob niter replace

m
a
x

free

1 SOM 0.9 0.1 6 2 500000 1.0 100 - 5 5
2 FITNESSTW2 - - - - - 1.0 - - -
3 SELECT - - - - - 0.5 - 1 - -
4 SEL_ELIT - - - - - 0.01 - 1 - -
5 SOMTW1 1.0 1.0 0.5 0.5 - 1.0 5 - - -
6 SOMTW2 1.0 1.0 0.5 0.5 - 1.0 5 - - -

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

107

moves, whereas the standard SOM operator works on the
transport routes to maintain topology and address length
reduction. Starting at the beginning from random

solutions, the construction followed by
improvement process is repeated 240 times using at each
time the previously generated solutions.

5.2 Numerical results

We used the Solomon's standard VRPTW benchmark
[21]. Problems are 100-customer Euclidean problems.
The tests are embedded into a 100 km × 100 km
geographic area, using vehicle speed of 60 km/h.
Time-windows are given in minutes. Since here,

solutions are generated with some non null distortion
(2), a classical VRPTW solution where distortion = 0
is derived at a final step. Fig.3(a-c) illustrates on the

rc201 test case, the different steps to generate a
classical VRPTW solution from an obtained solution
with non null distortion. The deformable pattern
generated by the algorithm is shown in (a). An
intermediate result obtained by removing empty
clusters is shown in (b). Then, a VRPTW solution as
drawn in (c) is derived by projecting each cluster
center to the location of its single assigned request.

Visual patterns of the solutions obtained for six
representative test cases c101, r101, rc101, c201, r201
and rc201 are shown respectively in Fig.(a)-(f). Empty
clusters were removed. Table 3 presents numerical
results for the six problems. Results are given for a

(a) (b) (c)

Fig. 4. The steps to derive a classical VRPTW solution from a clustering VRPTW solution on the rc201 test case. (a) Obtained solution. (b) Same
solution after removing the empty clusters. (c) A VRPTW solution obtained after projection of the cluster centers to their (single) assigned requests.

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a)-(f) Solutions for six c101, r101, rc101, c201, r201, rc201 test cases.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

108

single run. The first column indicates the instance name
and the number of vehicles. Second column presents the
best known length value. Then, the number of satisfied
requests, the total route length and the average distortion
(distortion / n) are given in columns “sat”, “length” and
“avg. dist.”, respectively for the obtained clustering
VRPTW solutions and the derived standard VRPTW
solutions. Percentage deviation to the best-known value
is given within parenthesis. Here, the clustered c101 and
c201 test cases are easy to solve and the algorithm finds
near optimal solutions with less than 1% deviation from
optimum. For the other cases, running the 120 master
loop iterations, thus restarting internal coefficients many
times, took approximately 5 mn on our PC 2000MHz.
Deviation is less than 6 % above optimum for r101 and
rc101 instances, whereas algorithm accuracy clearly
diminishes with the r201 and rc201 cases which present
a large horizon. Some time window lateness time is
observed for few (non satisfied) requests.

Nevertheless, considering the clustering VRPTW
results, lengths that are obtained are lower than the best
known lengths for the classical VRPTW, while average
distance from requests to their assigned vehicle cluster

center (average distortion) is maintained within a narrow
interval of less than 2 km. We can appreciate visually on
Fig.3, how the Voronoï assignment takes place.
Assignment of a request to the closest vehicle transport
point is an important characteristic of the solutions
generated, since a customer would like to go to its closest
bus stop, and since otherwise, finding the right
assignment would become a difficult problem by itself.
We think that the approach leads to a new way of
thinking about the VRPTW by generating underlying
patterns that dispatch thru the requests, letting some
place for dynamic adaptation to input modifications.

As usual with neural network applications to vehicle
routing problems, the approach is far from being
competitive with regards to the complex and powerful
Operations Research heuristics specifically dedicated for
the VRPTW, as for example the ones presented in
[3][7][10][22]. For example, tabu search adaptive
memory of Taillard et al. (1997) [22] produces, for a

single instance where vehicle number is also an input, a
solution of less than 1 % deviation to the best known
within roughly less than 10 mn on average, and using a
Sun Sparc 10 workstation. We are far from obtaining
the same accuracy and execution time except on
clustered instances of class C. But, simplicity (easy to
understand) and flexibility (easy to extend) as well as
their intrinsic parallelism are key points of neural
networks and evolutionary algorithms that may lead in
the future to computationally competitive applications
for the VRPTW. Here, the results illustrate flexibility
of using SOM into an evolutionary framework rather
than trying to solely modify its internal law, but the two
aspects may be combined in further research.

6 Conclusion
By incorporating SOM into an evolutionary

algorithm, the approach extends and improves SOM
based neural networks applications. This is illustrated
in the paper by application to the vehicle routing
problem with time windows, that is new. From the
point of view of neural networks, the evolutionary
framework introduces a level of supervision but it

corresponds to a selection principle at a higher level
with the aim to allow simplicity and flexibility and
favor further parallel implantations. Operators have a
similar structure based on closest point findings and
simple moves performed in the Euclidean plane. In
further research, improvement would be carried out by
a finest parameter tuning and another combination of
operators, as well as by the development of problem
specific SOM learning laws. Exploiting the natural
parallelism of the approach for multi-processor
implantations is also a key point to address in further
work.

References
[1] S. Arora, “Polynomial Time Approximation

Schemes for Euclidean k-medians and related
problems,” in ACM STOC'98, 1998.

[2] K. D. Boese, A. B. Kahng, and S. Muddu,
“Adaptive Multi-Start Technique for
Combinatorial Global Optimization,” Journal of

Table 3. Results for six Solomon test cases.
 Best known Clustering VRPTW solution Derived VRPTW solution

Instance - nb. of
vehicles length sat length avg. dist. sat length avg. dist.

c101 – 10 827.3* 101 774.6(-6.4%) 0.952 101 828.94(+0.2%) 0.0
r101 – 19 1650.80 101 1564.02(-5.3%) 1.733 98 1723.95(+4.4%) 0.0
rc101 – 14 1696.94 101 1683.96(-0.8%) 1.408 97 1793.23(+5.7%) 0.0
c201 – 3 589.1* 101 506.5(-14%) 1.323 101 595.12(+1%) 0.0
r201 – 8 1143.2* 101 1157.67(+1.3%) 1.928 100 1366.68(+19.5%) 0.0
rc201 – 9 1261.8* 101 1297.67(+2.8%) 1.948 101 1502.83(+19.1%) 0.0
* Optimum

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

109

Operations Research Letters, vol. 16, pp. 101-113,
1994.

[3] O. Bräysy, W. Dullaert, and M. Gendreau,
“Evolutionary Algorithms for the Vehicle Routing
Problem with Time Windows,” Journal of
Heuristics, vol. 10, no 6, pp. 587-611, 2004.

[4] N. Christofides, A. Mingozzi, and P. Toth, “The
vehicle routing problem,” Combinatorial
Optimization, Christofides N. et al. (eds), Wiley,
315-338, 1979.

[5] E. M. Cochrane and J. E. Beasley, “The co-adaptive
neural network approach to the Euclidean
Travelling Salesman Problem,” Neural Networks,
vol. 16, pp.1499-1525, 2003.

[6] R. Durbin and D. J. Willshaw, “An Analogue
Approach to the Traveling Salesman problem using
an Elastic Net Method,” Nature, vol. 326, pp
689-691, 1987.

[7] L. M Gambardella, E. Taillard, and G Agazzi,
“MACS-VRPTW: A Multiple Ant Colony System
for Vehicle Routing Problems with Time
Windows,” in New Ideas in Optimization, D. Corne,
M. Dorigo and F. Glover, editors, McGraw-Hill,
UK, pp. 63-76, 1999.

[8] H. Ghaziri, “Supervision in the Self-Organizing
Feature Map: Application to the Vehicle Routing
Problem,” in Meta-Heuristics: Theory &
Applications, I.H. Osman and J.P. Kelly (eds),
Kluwer, Boston, pp. 651-660, 1996.

[9] L. C. T. Gomes and F. J. A. Von Zuben, “Vehicle
Routing Based on Self-Organization with and
without Fuzzy Inference,” in Proc. of the IEEE
International Conference on Fuzzy Systems, vol. 2,
pp. 1310-1315, 2002.

[10] J. Homberger and H. Gehring, “Two evolutionary
metaheuristics for the vehicle routing problem with
time windows,” INFOR, 37:297– 318, 1999.

[11] D.S. Johnson and L.A. McGeoch, “The Traveling
Salesman Problem: A Case Study in Local
Optimization,” In Local Search in Combinatorial
Optimization, E. H. L. Aarts and J. K. Lenstra (eds.),
John Wiley and Sons, London, pp. 215-310, 1997.

[12] T. Kohonen, Self-Organization Maps and
associative memory, Springer Verlag, Berlin, 3rd
edition, 2001.

[13] T. Kohonen, “Clustering, Taxonomy, and
Topological Maps of Patterns,” Proceedings of the
6th International Conference on Pattern
Recognition, 1982.

[14] Y. Matsuyama, “Self-organization via competition,
cooperation and categorization applied to extended
vehicle routing problems,” in Proc. of the
International Joint Conference on Neural Networks,
Seatle, WA, pp. 385–390, 1991.

[15] A. Modares, S. Somhom, and T. Enkawa, “A
self-organizing neural network approach for
multiple traveling salesman and vehicle routing

problems,” International Transactions in
Operational Research, vol. 6, pp. 591-606, 1999.

[16] P. Moscato, “Memetic Algorithms: A Short
Introduction,” in New Ideas in Optimization, D.
Corne, M. Dorigo, and F. Glover, eds., McGraw
Hill, 1999.

[17] H. Mühlenbein, “Evolution in Time and Space –
The Parallel Genetic Algorithm,” in G. Rawlins
(Ed.), Foundations of Genetic Algorithms,
Morgan Kaufmann, Los Altos, CA, 1991.

[18] M.G.C. Resende and C.C. Ribeiro, “Greedy
randomized adaptive search procedures,” In "State
of the Art Handbook in Metaheuristics, F. Glover
and G. Kochenberger, eds., Kluwer, 2002.

[19] M. Schumann and R. Retzko, “Self-organizing
maps for vehicle routing problems minimizing an
explicit cost function,” in F. Fogelman-Soulie,
editor, Proceedings of the International
Conference on Artificial Neural Networks, Paris,
pp. 401-406, 1995.

[20] K. A. Smith, “Neural Networks for Combinatorial
Optimization: A Review of More Than a Decade
of Research,” INFORMS Journal on Computing,
vol. 11, no. 1, 1999.

[21] M.M. Solomon, “Algorithms for the vehicle
routing, and scheduling problems with time
window constrains,” Operations Research, vol. 35,
pp. 254–264, 1987.

[22] E.D. Taillard, P. Badeau, M. Gendreau, F. Guertin,
and J.Y. Potvin, “A tabu search heuristic for the
vehicle routing problem with soft time windows,”
Transportation science, vol. 31, pp. 170-186,
1997.

[23] A. I. Vakhutinsky and B.L. Golden, “Solving
vehicle routing problems using elastic net,” in
IEEE International Conference on Neural
Network, pp. 4535-4540, 1994.

Jean-Charles Créput received
his Ph.D. in Computer Science
from University of Paris 6,
France, in 1997. He is currently
an associate professor in
Computer Sciences and
Engineering at the University of
Technology of
Belfort-Montbeliard, France, and
performs research activity at the

Systems and Transportation (SeT) Laboratory. His current
research interest include evolutionary algorithms and neural
networks applied to telecommunications and intelligent
transportation services.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

110

Abder Koukam is professor of
Computer Science at the
University of Technology of
Belfort-Montbeliard, France.
He received the Ph.D. in
Computer Science from
University of Nancy I, France,
in 1990. He heads research
activities at Systems and
Transportation (SeT)
Laboratory on modelling and

analysis of complex systems, including software engineering,
multi-agent systems and optimization.

Amir Hajjam received his
Ph.D. in Computer Science
from University of
Haute-Alsace, France, in
1990. He is currently an
associate professor in
Computer Sciences and
Engineering at the
University of Technology
of Belfort-Montbeliard,
France, and performs

research activity at the Systems and Transportation (SeT)
Laboratory. His current research interest include evolutionary
algorithms and neural networks applied to networks,
telecommunications and intelligent transportation services.

