
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

119

Manuscript received January 5, 2007

Manuscript revised January 25, 2007

EDRM: A Unified Approach for Enterprise Data Resource
Management

Chen Weiwen and Ma Shilong

National Key Lab of Software Development Environment, Beihang University, Beijing, China

Summary

Data resource always plays the key role in modern enterprise
applications. In the paper, we first give a detailed introduction of
the existing data resource management approaches. Via the
analysis and comparison of the existing apprpaches, a new
unified framework for enterprise data resource management is
proposed. The framework can encapsulate the heterogeneous
data resources in a universal form based on the data persistence
technology, and thus provide a unified data access interface for
the enterprise applications. The architecture and the main
modules of the framework are detailedly introduced in the paper.
And an application example is included in the end to show the
usability of the framework.
Key words:
Data resource management, data persistence, heterogeneous
data.

1. Introduction

Data always play the central roles in modern enterprise
applications, in most of which frequent data storing and
accessing actions are usually involved. That’s all because
of the development of Internet, which increases the shared
information and makes it necessary for enterprise
applications to interchange data with heterogeneous data
sources located in distributed network nodes. Statistics
show that, in the development of today’s enterprise
applications, 70% developing time is spent in creating and
maintaining the data access mechanisms. Then how to
manage the distributed and heterogeneous enterprise data
resources and provide a unified and high-efficiency data
access mechanism has become one of the challenges
confronted with the enterprise application developers.

In early days of the information system development,
the data access details were always embedded in the
business logic modules, in which SQL (Structure Query
Language) codes were usually included. This mechanism
worked well for the quick demo development, but it
caused the business process logic tightly coupled with the
data storage methods and reduced the maintainability and
extensibility of the systems. Meanwhile, as encapsulated
in the concrete applications, the data access codes could
rarely be reused.

With the development of software engineering and data
access technology, we began to employ specified
application modules to accomplish the data access process.

This strategy encapsulated the data storage method–
related access logic into the separate modules ,
prevented the business process logic from being coupled
with the data resources, and improved the maintainability
of the systems. However, similar to the early days’
approach, data access details, such as SQL codes, are still
embedded in the application modules, and the data access
modules are difficult to be reused in the future.

To solve the problems mentioned above, a persistence
layer-based data access approach has been introduced
recently both in the industry and research fields. In the
approach, a data persistence layer focusing on the data
access logic is built between the data source layer and the
business application layer. The data persistence layer
provides certain persistence mechanism that can
automatically transform the operations on data objects in
memory to the data access codes, which meets the
requirement of the object-oriented system developments.
Compared with the two traditional strategies, as the data
persistence layer codes are not coupled with any concrete
applications, the method not only reduces the coupling
between business logic and data resource but also provides
greater flexibility and reusability.

With the analysis above, the paper proposes a new
Enterprise Data Resource Management Framework
(EDRM) based on the theory of data persistence layer, and
applies it to a practical space-equipments auto-testing
system. The EDRM framework has following features:
first, EDRM can integrate and manage the distributed and
heterogeneous data resources, relational databases and
XML files included; Via a general data persistence method
(GDP) it provides a series of unified persistence operation
interfaces for all kinds of data sources, and solves the
problem within several existing persistence frameworks.
Thus, EDRM hides the storage structure of data resources
for enterprise application development. Second, EDRM
provides lots of data access interfaces which can be
customized as services. Then, the business application
modules can subscribe the data access services on demand,
which increases the agility of data access.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

120

2. The EDRM Framework

2.1 Architecture Overview

The architecture of EDRM comprises three layers: data
resource integration layer, data persistence layer, and data
access service provider layer, which is shown in
Figure1.From the figure, we can see that the data resource
integration layer is the lowest layer which integrates
different kinds of data resources into the EDRM. The data
persistence layer, right above the data resource integration
layer, is the core layer of the EDRM, which encapsulates
the data persistence details completely, and, with the idea
of GDP, provides the unified data access methods for all
kinds of data resources. The data access service provider
layer located on top of the EDRM interacts with the
enterprise applications directly, which provides agile data
access services. Then, we will give a detailed explanation
of these layers.
2.1.1 Data Resource Integration Layer

This layer is mainly used to register and then connect
the data resources including relational database and XML
files into the EDRM framework. It is composed of the
resource register module and resource connector module.
The resource register module is in charge of the data
resource registry. As shown in Figure 1, there is a data
resource registry manager build within this module, it can
standardize the data resource being registered into EDFM,
and add them to the resource directory.

The resource connector module is mainly designed to
locate and connect the data resources. It consists of data
resource manager and data resource locater. With database
connection technology [5] and XML document location
technology [6], data resource manager creates the
interfaces used for interacting with the data resources.
Data resource locater can locate the data resources by the
registry id and then acquire the connection handler.
2.1.2 Data Persistence Layer

This layer mainly takes charge of the data persistence
process, in which the data objects in memory are stored
into the data storage medium, such as relational database
and XML document. From Figure1, we can see that the
data persistence layer mainly consists of four modules: the
data persistence module, the data access module, the
transaction manager module and the log module.

The data persistence module implements a general
persistence mechanism. With the metadata mapping
method, the mechanism unifies the low layer data
resources including relational database and XML
document into data objects for the enterprise application
module. The data persistence module exposes convenient
persistence operation interfaces and can automatically

generate concrete data access codes for the interface
invoke.

The data access module provides the data access classes
for data object mapping. The module builds the
corresponding data access class for each data object and
encapsulates the persistence operation interfaces in the
classes. Then the data access layer employs the data access
classes to provide various data access services.

 Fig.
1 EDRM architecture overview

The transaction manager module deals with the data
access-related transaction issues in the enterprise-level
distributed computing environment. This module adopts
the two-phase commit protocol to realize the distributed
transaction management, in which a transaction
coordinator is introduced to ensure the integrity and
consistence of data access operations. Meanwhile, the
module also provides the interfaces for transaction
isolation level configuration and improves the transaction
management agility.

The log module is used to record and manage the data
access logs. A set of specified log recording programs are
included in the module to transform the messages
generated by the data access operations to logs and output
them into the log record files according to the predefined
log levels. Then users can trace the access process details
via the files.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

121

2.1.3 Data Access Service Provider Layer
This layer provides diversified data access interfaces for

enterprise applications, such as the universal data access
interface, customized data access interface and web
service-based data access. As shown in Figure 1, the layer
is composed of access customize module, interface
provider module and access service module.

The access customize module is responsible for data
access plans customizing. Through parsing the access plan
configuration files submitted by clients, this module can
build the concrete data access plans, which are then used
by the interface provider module to generate the
customized data access interfaces.

The interface provider module provides data access
interfaces for enterprise applications. There are always
two types of interfaces. The first type is the universal data
access interface, which provides the basic operations on

the mapping data objects in a uniform manner, including
add, delete, update, query, and so on. The second type is
the customized data access interface, which is generated
from the access plan script provided by the access
customize module and intent to satisfy the users’
personalized access requirement.

The access service module provides the web service-
based data access interface. The module encapsulates the
data access APIs into web services and publishes them
into the UDDI registry for enterprise application to invoke.

2.2 Work Process

Via effectively integrating and managing the low layer
data resources, EDRM provides simple and agile data
access services for the upper enterprise applications. The
temporal logic of the work process is shown in figure 2.

Fig. 2 Temporal logic of the work process

Step1：The enterprise application submits the data access
plan to the EDRM via the interface customize client. With
the plan, the access customize module generates the data
access scheme and injects it into the interface provider
module. Then the interface provider module returns the
customized data access interface to enterprise applications.

Step2：The enterprise applications then access data
with the customized interface returned in Step1, which
employ the data access objects (DAO) provided by the
data access module to complete the data access and
storage process. The DAO encapsulates the data resource

persistence method implemented within the data
persistence module, which can obtain the data source
connection handle according to the metadata mapping file,
and then automatically generate the detailed data access
codes to realize the access operation on physical data
sources.

Step3：The EDRM returned the result data of the
access operation as object set to the enterprise applications
upwards layer by layer.

During the whole process, the data access and storage
details are shielded from the enterprise applications, which

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

122

can access data via EDRM framework without knowing
the structure and location of the target data resources.

3. Analysis of Core Modules

3.1 Data Persistence Module

The data persistence module is contained in the data
persistence layer as the main function module. This
module implements a General Data Persistence method
(GDP) which unifies the low layer data resources
including relational database and XML document into data
objects for the enterprise applications to use, and thus
enables the EDRM to shield the storage structure of the
physical data resources. As the detailed business logics are
not involved, the GDP is a universal method and can be
reused in various systems. The GDP method extends the
persistence mechanism of Object-Relation Mapping
(ORM) [1] and implements the persistence from in-
memory data objects to relational databases and XML
documents. The Figure gives the working details of the
data persistence module.

Fig. 3 Working details of the data persistence module

From figure 3, we can see that the data persistence
module consists of a persistence mapper, a data object
manager, a persistence manager, a persistence class state
manager, an automatic code generator, a query parser, and
a data result assembler, the six parts of which collaborates
and together implements the GDP mechanism.

(1) Persistence mapper is the kernel part of the GDP
mechanism, which is used to implement the mapping from
data relations and XML schemas to objects. As shown in
figure 3, the mapper maintains the mapping metadata by
the mapping from data Relations to Objects (O/R) and
from XML DTD files to Objects (O/DTD mapping), in
which the O/R mapping maintains the mapping metadata
between the in-memory data objects and relational data
tables and the O/DTD mapping maintains the mapping
metadata between in-memory data objects and XML
schema files. The mapping metadata is consistent with the
O/R and O/DTD mapping rules defined in the GDP
mechanisms, which are shown in table 1 and table 2.

Table 1 O/R mapping rule
Class Relational table

class A {String b;
C c; }

Table A: Column b, Column c_fk

class C {String d;

String e; }

Table C: Column d, Column e Column

c_pk

Table 1 shows the mapping rules from relational data

tables to in-memory data objects in the GDP mechanism.
The relational data tables are mapped to classes, in which
the columns of data tables are mapped to scalar properties
of the classes and the primary keys and foreign keys are
mapped to the pointers and reference properties. For
example, data table A is mapped to the class A, in which
the column b is mapped to the scalar property b and
column c is mapped to the reference property about class c,
as column is the foreign key of table A and primary key of
table C.

Table 2 O/DTD mapping rules
Class DTD

class A{ String b;
C c; }

<!ELEMENT A (B, C)> <!ELEMENT B
(#PCDATA)> <!ELEMENT C (D, E)>

class C {String d;

String e; }

<!ELEMENT D (#PCDATA)>

<!ELEMENT E (#PCDATA)>

Table 2 shows the mapping rules from XML schema

documents to the in-memory data objects, in which the
complex element types are mapped to classes and simple
element types are mapped to the properties of the classes.
The schema of the xml documents are defined with DTD
(Document Type Definition) [8] documents. For example,
the element A and C are complex type elements and
mapped to class A and class C. And the element D and E
are simple type elements and are mapped to properties d
and e of class C.

(2) The persistence manager provides external
interfaces for data objects persistence operations. The
manager is designed according to the factory pattern and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

123

constructs the persistence factory object for each data
source. Then the persistence manager class (PMC) can be
obtained from the factory. The PMC class maintains a data
source connection handle from the properties and provides
the persistence operations on the in-memory data objects
mapped by the properties, such as add, delete, update,
query, and so on.

(3) The persistence class state manager is used for
maintaining of the data objects mapping state information.
The in-memory data objects can be in either of the two
states: persistent or dissociative. The objects in persistent
state are stored in the persistent objects cache and assigned
the unique Object Identifications (OID), which are
associated with a unique record of the data sources. The
objects in dissociative state are not associated with data
records. When the operations on data objects are carried
out, the OIDs are first used to look up the objects in
persistent objects cache. If the objects are found, they are
directly obtained from the cache without interacting with
the physical data sources, which reduces the data source
access frequency. When the properties of the data objects
are changed in the cache, the persistence class state
manager can automatically update the corresponding
records in the data sources, which guarantees the
consistence between data objects and the data source
records.

(4) The automatic code generator is used to translate the
persistence operations on data objects to the detailed
implementation codes of concrete data access. The
generator contains two engines that are SQL auto-
generation engine and XQuery [10] auto-generation
engine. The SQL auto-generation engine can generate the
standard SQL codes for relational data source access based
on the O/R mapping metadata in the persistence mapper.
The XQuery auto-generation engine can generate the
XQuery codes for XML data source access by parsing the
O/DTD mapping metadata in the persistence mapper. The
automatic code generator can chose the proper engine to
generate the detailed data access codes according to the
types of mapping data sources. Moreover, both of the two
engines are designed with caches and can generate basic
codes in cache at the initialization phase of the program,
which can significantly improve the data operation
efficiency.

(5) The query parser is employed to parse the query
conditions for persistent data objects. The parser can split
the query conditions according to the involved data
sources and parses one multi-source query string into
several single-source query strings. Then the parsed query
strings are passed to the automatic code generator to
generate the SQL codes or XQuery codes for the concrete
data sources.

(6) The data result assembler is used to rebuild and
return the data result as object sets. The assembler first

constructs the mapping data object sets based on the
mapping metadata and then assigns the class properties
based on the result data.

3.2 Interface provider module

The interface provider module is included in the data
access interface layer and used for providing data access
interfaces for the enterprise applications. The module
provides both the static universal data access interface and
the dynamic customizable data access interface. Then the
enterprise applications can customize the interfaces on
demand and thus get more agile data access services via
the EDRM framework.

There are mainly four function classes in the interface
provider module, which are the access interface façade
class, the data access class, the access customizing class
and the access schema class. The function classes work
together to provide the function of the data access
interface module. For example, the access interface façade
class is mainly in charge of providing various data access
interfaces, which needs the data access function provided
by the data access class to implement the concrete data
access process, and the access customizing class is used to
implement the customizable data access operations, which
employs the user data access plans provided by the access
schema class to process the corresponding data. The tight
coupling between the classes caused by the inter-
dependencies reduces the flexibility of data access
interface customizing, so the Inversion Of Control (IOC)
[11] pattern is introduce to build the interface provider
module.

The IOC pattern can help to reduce the coupling
between two collaborative classes. In the pattern, an
external configuration file is employed to describe the
dependency between two collaborative classes (e.g. Class
A and B). When the instance of one class (e.g. Class A) is
initialized, the collaborative class (e.g. Class B) is injected
based on the external configuration file, which implements
the dynamic configuration of the dependency between
classes. With the IOC pattern, the interface provider
module implements the loose coupling between function
classes based on the configuration file, and thus achieves
the flexibility of data access customizing. The detailed
architecture of the module is shown in figure 4.

The access interface façade class and the access
customizing class in the module provides the universal

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

124

 Fig. 4 Interface provider module architecture

data access interface and customizable data access
interface for the enterprise applications respectively.

(1) The universal data access interface is provided by
the collaboration of data access interface façade class and
data access class, in which the dependency between them
is described in the configuration file Conf1.When the
instance of the access interface façade class is created, the
interface provider module will inject the data access class
as the property DaoImpMap based on the data access
assembling method DaoMap in the Conf1 file. Then when
the enterprise applications invoke the interface method of
the access interface façade class, the concrete data access
process is implemented by the data access class.

(2) The customizable data access interface is
dynamically generated according to the user-defined
access plan, which is based on the collaboration of the
access interface façade, the access customizing class and
the access schema class. As shown in figure 4, based on
the data access class assembling schema Dao and the
access plan assembling schema AccessPlan in the
configuration file Conf3, the interface provider module
first injects the user-defined data access plan into the
instance of data access class as a property with the
property assigning methods SetDao and setAccessPlan,
which enables the instance can carried out the data access
operations according to user requirement. Then, based on
the configuration file Conf2, the module injects the
instance of data access class into the access interface
façade class. Thus the enterprise applications can achieve
the customized data access operations by calling the
customizing interface of the access interface façade class.

4 EDRM Application Example

The Space Equipment Auto-Testing System (SEATS) is
an integrated information system for one large corporation,
in which a great deal of data need to be collected from
several data sources including the testing database, the
device database, the parameter database, and so on. Then
the collected data are provided for various applications to
use, such as testing preparation, statistics query
application, report generation, and so on. The data sources
involved in the SEATS are distributed and heterogeneous,
which includes both the relational databases, such as
Oracle, MySQL and SQL Server, and the XML document
sets. To effectively manage the data resources, EDRM
Framework is employed to build the data platform for
SEATS system.

The data platform of SEATS system is developed using
Microsoft .NET framework, the main user interface of
which is shown in figure 5. The area A labeled in the
figure shows the data sources registered into the data
platform, each of which comprises several mapping data
classes. For example, the testing database consists of
planet class, subsystem class, electrics testing class,
research class, work project class, testing task class and so
on. The area B labeled in the figure 5 indicates the basic
information of the data sources, including the location
URL, the source type, the user name and password, the
data adapter and so on. In addition, the associating
relationship between the data classes is also shown as a
mapping picture. The area C marked in the figure 5 gives
the class definition for each mapping data classes, which
detailedly describes the attributes and member methods.
With the operations on these data classes, the business
applications based on the data platform can achieve the
physical data access and storage without knowing any
details about the scheme and location of the target data
source. The area D labeled in the figure 5 lists the
universal data access service interfaces and their invoke
methods, which implement the basic data access
operations for the business application modules, such as
add, delete, update, query and so on. The area E marked in
the figure 5 lists the user-customized data access services
and their invoke information, which are customized by the
application developers on demand via the interface
customize clients. For example, in figure 5, the service
named getTestProjectbyPRE is customized by the testing
execution application to satisfy the requirement of getting
the testing project information by the satellite type, the
research phase name and the electrics testing phase name.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

125

Fig.5 User interfaces of SEATS platform

Nowadays, the data platform of SEATS has been put
into the practical use for several months, which shows the
good performance of the EDRM-based data platform. By
shielding the distributed and heterogeneous data resources
and providing the function of data access service
customization, the data platform well satisfies the
requirement of data access and storage in the space
equipment testing process.

5 Conclusion

Based on the idea of data persistence mechanism, the
paper introduces a new enterprise data resource
management framework (EDRM). The framework
implements the general data persistence method (GDP)
and data access service customization, which can
encapsulate the data access logics and manage the
distributed and heterogeneous data resources in a uniform
way. The EDRM framework reduces the coupling between
the business process logic and data storage scheme, and

then provides the transparent and agile data access method.
The EDRM framework has been successfully applied into
the space equipment testing system and can be
conveniently transplanted into other enterprise
applications.

In the future research, we will further optimize the
cache strategy in the EDRM framework to reduce the
access efficiency lost caused by the metadata mapping
process. Then the EDRM framework will better satisfy the
need of mass data access in various enterprise systems.

References
[1] Jin Qiangyong, Li Guanyu, Zhang Jun. Development and

Present Situation of Heterogeneous Data Integration Tech
nology. Computer Engineering and Applications. 2002,
38(11): 112-114.

[2] Xiao Aihua, Wang Shilin. A Common Way Implements
Data Access Object Pattern for J2EE Application. Computer
Applications and Software. 2005, 22(09): 136-138.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

126

[3] Scott W. Ambler. The Design of a Robust Persistence
Layer for Relational Databases.
http://www.ambysoft.com/persistenceLayer.pdf, 2000.

[4] Hibernate Reference 2.1.6.
http://www.hibernate.org/hib_docs/reference/zh-
cn/pdf/hibernate_reference.pdf, 2005.

[5] Zhu X M, Liu W D, Lin W M. Study of Database
Connection Middleware. Computer Engineering and
Applications. 2003, 39(20):176-178

[6] Anders Berglund and Scott Boag. XML Path Language
(XPath)2.0. http://www.w3.org/TR/xpath20/, 2002.

[7] Scott W. Ambler. Mapping Object to Relational Database.
http://www.Ambysoft.com/mappingObjects.pdf, 2000.

[8] He Yingjie,Wangshan. Mapping DTD to Relational Schema:
An Approach to Preserving Data Dependency. Journal of
Computer Research and Development.2004, 41(05): 868-
873.

[9] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented software. Beijing: China Machine Press, 2002.

[10] Sun Dengfeng, Yu Xiaofeng. Research on XML Query
Language. Computer Engineering. 2003, 29(13): 4-6.

[11] Martin Fowler. Inversion of Control Containers and the
Dependency Injection Pattern.
http://martinfowler.com/articles/in-jection.html, 2004

Chen Weiwen is a Master degree
Candidate of the Beihang University
(BUAA). She received the B.S.
degree in Computer Science and
Technology from North Eastern
University in 2004. During 2004 to
2007, she studied in the National
Key Lab of Software Development
Environment of BUAA. Her research
interests include massive information
process and distributed data
management.

Ma Shilong is now a professor of computer science at
Beihang University. His research interests include grid
computing, service-oriented computing, massive information
process and so on.

