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Summary 
     Evolutionary algorithms (EAs) are modern techniques for 
searching complex spaces for on optimum [11]. Genetic 
algorithms (GAs) are developed as random search methods, 
which have not so sensitivity on primary data of the problems. 
They can be used in estimation of system parameters in order to 
obtain the best result. This can be achieved by optimization of an 
objective function. Genetic programming is a collection of 
methods for the automatic generation of computer programs that 
solve carefully specified problems, via the core, but highly 
abstracted principles of natural selection [12]. In this paper, 
genetic algorithms and parallel genetic algorithms have been 
discussed as one of the best solutions for optimization of the 
systems. Genetic and parallel genetic algorithms have been 
investigated in parallel programming environment called 
Multi-Pascal. Then an optimal binary search tree has been 
selected as a case study for decree sing of searching time. Also a 
dynamic programming method has been accelerated by using of a 
parallel genetic algorithm. In this case, by increasing the size of 
data, speed-up index will be increased. 
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1. Introduction 

     Genetic algorithms are a part of evolutionary 
computing, which is a rapidly growing area of artificial 
intelligence. Their basic working mechanism is as follows: 
the algorithm is started with a set of solutions (represented 
by chromosomes) called population. Solutions from one 
population are taken and used to form a new population. 
This is motivated by a hope, that the new population will 
be better than the old one [13, 14, 15].  
     Everything around us is part of some system. 
Researchers have tried to model it into the system 
computer. The models were not complex enough to solve 
interesting problems. Thus the models were not practical 
[4]. A system is a black box with a set of input parameters. 
The system developers measure the parameters of each 
subsystem separately, and exhibit all them as a set of the 
system's parameters, but ignore the effect of sub-systems 
on each other and disorders signals. In addition, the 
parameters should be set so that the system conclude the 
best. For doing of this matter, it is needed to optimize the 

output function of the system. It means that we should 
minimize or maximize it, and consequently increase its 
performance. The goal of this research is achieving a 
solution that these values are obtained faster without 
involving in internal properties of the system. The optimal 
binary search tree has been considered as a case study. 
Generally, there are three general methods for optimization 
and searching of these optimal points [2] : The Calculus 
Based Searching method, Enumerative Searching method 
and Random Searching method. The calculus based 
searching method is divided to two branches : Direct and 
Indirect. In direct way, the optimal points are obtained by 
solution of some linear equations or non linear ones. In 
indirect way, a limited of optimal pointes are obtained, 
then they are optimized by Hill Climbing methods. In the 
enumerative searching method, the searching space of the 
problem is processed and the value of objective function of 
the system is obtained for each point, and finally optimal 
points are selected. Dynamic programming method is of 
these cases. In random searching method, the space of 
searching problem is searched by random for finding of 
optimal points. Genetic algorithm is a guided random 
algorithm [2]. 
 
     The two first methods aren’t cost effective and they 
don't effect if searching space of the problem is expanded. 
Parallel algorithms are used to increase the speed and 
performance of the optimization methods. The genetic 
algorithms are appropriate for this purpose because of : 1) 
Independency to primary values of the parameters 2) 
Independency to system's objective function properties 
(continuous, derivative, etc.) 3) Searching of greater space 
of the parameters values. The most important 
characteristics of these algorithms is parallelism. It causes 
the increasing of the speed and performance of the system 
and decrease the system's response time. Sometimes due to 
existing the several objective functions in the system, 
using of genetic algorithm will increase the system’s speed 
and will decrease the system's response time. 
 
2. Genetic Algorithms 
 
     Genetic algorithm can be viewed as a biological 
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metaphor of Darwinian evolution [4]. It is a random 
searching method which creates a new generation of the 
answers by selecting a collection of answers randomly, and 
improves them in each stage, until finally it achieves an 
acceptable answer between these answers. This algorithm 
have some components[1,2,6,9]. These components are : 
Chromosome, Genetic population, fitness function, genetic 
operations, and genetic algorithm parameters. By running 
of genetic algorithm, some chromosomes from genetic 
algorithm are selected as parents. Next generation of 
chromosomes are created by using the operators, and 
therefore the next genetic population is composed. This is 
done by Select operator [4,8,10].  
     Only selection of the parents is not enough for 
producing of the next generation of chromosomes, but we 
should search for some methods for returning of the 
produced chromosomes to the Genetic Population. This is 
also done by Replacement operator. To doing of this case, 
after selecting the parents from Current population, they 
are placed in the Intermediate population. The genetic 
operation will be done on them until a new population of 
the chromosomes will be created, then they will be placed 
in the Next population [4]. Permutation operator is used 
for recombination [4,6]. The permutation operator is also 
another operator which will cause innovation in the 
chromosomes of a genetic population. It also stops 
monotony in genetic population and stops involving the 
algorithm in the local minimize or maximize points. 
 
 
3. Parallel Genetic Algorithms 
 
     For the first time, Holland, 1963, recognized the 
parallel nature of genetic algorithms, and in 1976 Bethke 
calculate the complexity of doing the Genetic algorithm on 
parallel machine, but he didn't simulate or implement it. 
Then in 1981, Grefenstette presented some parallel 
implementation of genetic algorithms[2]. 
     The way in which GAs can be parallelized depends on 
the following elements[16]: 

• How fitness is evaluated and mutation is applied 
• If single or multiple subpopulations (demes) are 

used 
• If multiple populations are used, how individuals 

are exchanged 
• How selection is applied (globally or locally) 

      
     There have been some attempts to develop a unified 
taxonomy GAs which would greatly help addressing this 
issue[24].   
     There are several motivations for parallelism of the 
genetic algorithms. One of them is intending for increasing 
speed and performance of genetic algorithms using the 
parallel computers. The other one is able to apply genetic 

algorithms for solving of greater problems in a reasonable 
time and make it near to its own biologic structure in the 
nature. Also parallel genetic algorithms show a high 
performance for solving the problems with multi-objective 
functions. 
 
  
3-1. Classes of parallel Genetic Algorithms 
 
     The parallel genetic algorithms are categorized to four 
classes : Global[4], Coarse-Grained [25], Fine-
Grained[26], and Hybrid[4]. A global genetic algorithm 
considers all the population as a one. The population 
individuals are evaluated to obtaining their fitness. Also 
the genetic operations act in parallel. The goal in this class 
is parallelism of the genetic algorithm. These kinds of 
algorithms are implemented in two forms : shared memory 
machines and distributed memory machines. In 
implementation of the shared memory machines, the 
individuals of the genetic population will be stored in a 
common memory, and each processor can access this 
memory. These processors get some of individuals, and 
apply the genetic operators on them, and return them to the 
common memory. Synchronization is necessary between 
processors in starting of producing each generation. In the 
implementation of the distributed memory machines, the 
genetic population is stored in the memory of a processor 
called Master (or Farmer). This processor sends the 
individuals of the population to other processors called 
Workers (or Slaves). The workers evaluate individuals and 
collect the results. They also produce the next generations 
by using of genetic operators. This method has two 
problems : 1) A great time is consumed to evaluating and 
the master is unemployed. 2) If the master crash, the 
system will be stop. This model is presented in three forms 
: Synchronous, Asynchronous and Semi-Synchronous. In 
the synchronous model, the processors are synchronized in 
the starting and ending of each generation, therefore the 
master processor should wait for a slower processor. In 
asynchronous or semi-synchronous models, the master 
processor doesn't wait. In here, the master processor 
selects the individuals of the current population. Therefore 
the processors will work asynchronously. 
     The coarse-grained genetic algorithm divides the 
genetic population to separate sub-populations. The 
separate genetic algorithm is applied on the each sub-
population. The individuals are exchanged between sub-
populations in order to optimize the answers at special 
times. In other words, they migrate between sub-
populations. In most of the times, the size of sub-
populations will be taken equal. These kinds of algorithms 
usually are implemented on MIMD computers with 
distributed memories. Some samples of these machines are 
such as : CM-5, NCUBE, Intel's paragon, and etc.[1]. A 
point which should be noted is that in this class, the 
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communication between processors is very lower than the 
calculated work which each processor do on their own 
sub-population.  A new operator called Migration operator, 
is presented here. This operator exchanges the individuals 
between the sub-populations[7]. The following actions is 
done by this operator : 

•  Selecting the emigrants: In this stage, the 
emigrants of each sub-population are selected. 

•  Sending the emigrants: In this stage, the 
emigrants of a sub-population are sent to the 
other one. 

•  Receiving the emigrants: In this stage, the 
emigrants are received from a sub-population. 

•  Merging the emigrants: In this stage, the 
emigrants are merged in a sub-population. 

 
     By this operator, sending and receiving of the 
individuals can be done in parallel message passing way. 
In this way, selecting and merging of the emigrants cause a 
population of the best answers in each sub-population. 
Migration models are presented in two forms: Island 
model and Stepping-Stone model. In island model, the 
individuals are allowed to migrate to each sub-population 
while in stepping-stone model, the migration limited to the 
neighborhood sub-populations. In Island model, the 
individuals have freedom to migrate, but the overhead of 
communication and delay are too much, while in stepping-
stone model, the freedom of migration is limited but the 
overhead of communication is decreased. 
     The fine-grained genetic algorithm divides the genetic 
population into several small sub-population (Deme), and 
sometimes it behaves with each individual separately. In 
this algorithm, each one of the demes or individuals can 
place on a separate processor and each individual can 
mates with its neighborhoods. These kinds of algorithms 
also can be implemented on the parallel computers. The 
first attempt in this field was done by Robertson in 1987 
on SIMD computers, and this algorithm was named 
ASPARAGOS [1, 5]. In these kinds of algorithms, against 
of the coarse-grained genetic algorithms, the 
communication between processors is more than the 
calculation work of each processor. Also using these 
algorithms prevents from soon dominant of super 
individuals on population. 
The hybrid genetic algorithm is a combination of two 
previous algorithms. In here, two levels are considered for 
execution of algorithm which in each level, a class of 
parallel genetic algorithms is applied. In 1994, Gruau 
presented the hybrid genetic algorithm for the first time, 
and used it for Neural Networks [3]. 
 
 
3-2. Parallel population Models 
 
     Parallel population models state the following things: 

• How a population is divided to different sub-
populations? 

• How information is exchanged between sub-
populations?  

 
     These models are divided into three general parts[7] : 
Global, Regional, Local. In the global model, the 
population is not structured, the select operation is general, 
the fitness of each individual is calculated related to all the 
individuals, and each one of individuals can be selected as 
a parent for reproduction. In regional model, the 
population is divided to several sub-populations (Region). 
The fitness of each individual is calculated related to the 
individuals of its sub-population, and the parents are 
selected from that region. In the local model, the 
population has a neighborhood structure. The fitness of 
each individual is determined related to its local 
neighborhood, and parents are selected from the same 
neighborhood. Table1 shows the summary of related works 
with these three models [7]. 
 

Table 1:  Summary of Related Works with three Models 
 

Reference Global Model Regional Model Local Model 
GREFENSTETTE(1981) 
MANDERICK et al.(1989) 
MACFARLANE et al. (1990) 
GORGES-
SCHLEUTER(1992) 
DORIGO et al. (1993) 
WHITLEY(1993) 
CANTU-PAZ(1995) 

Master-Slave 
R-Algorithm 
Farming 
Panmixia 
      - 
Global Pop. 
Global Par. 

Network 
Coarse Grain 
Migration 
Model 
Migration 
Model 
Island Model 
Island Model 
Coarse Grain 

       - 
Fine Grain 
Diffusion Model 
Diffusion Model 
Neighborhood 
Model 
Cellular GA 
Fine Grain 

 
• They do less functional evaluation for finding the 

optimized solutions. 
• They are able to find several solutions. 
• They can be synchronous or asynchronous. 
• Their implementations accommodate with parallel 

architectures. 
• They are fault tolerant. 
• They are nearer to biological simile of evolution. 

 
   

4. Designing of Optimal Binary Search Tree 
   using the Parallel Genetic Algorithms 
    
     Binary trees and binary search trees are covered in 
many standard texts such as [17,18,19,20,21,22,23].  

• Definition: A binary tree T is the structure defined 
on a finite set of nodes that either contains no 
nodes, or is composed of three disjoint sets of 
nodes: a root node, a binary tree called its left 
sub-tree, and a binary tree called its right sub-tree 
[21]. 

• Definition: A binary search tree (BST) is a binary 
tree whose nodes are organized according to the 
binary search tree property: keys in the left sub-
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tree are all less than the key at the root; keys in 
the right sub-tree are all greater than the key at 
the root; and both sub-trees are themselves BSTs.  

 
Optimal Binary Search Trees are covered in many 

algorithms texts [17,18,19,21,22,23]. For any set of keys, 
there are many different binary search trees. The time 
required to seek a given key can vary from tree to tree 
depending on the depth of the node where the key is 
found, or the length of the branch searched if the key is not 
present. An optimal binary search tree is a binary search 
tree with minimum expected comparisons for special set of 
keys and their possibilities. The number of comparisons is 
called Searching Time.  
     Suppose 1key , 2key , 3key , … nkey  are n keys, iP  

is the possibility of  ikey  and iC  is number of the 

comparisons for finding of ikey , then optimization of  
Binary Search Tree is minimizing of the following 
relation. It calculates the average searching time for n keys 
in a binary search tree. 
 

∑
=

n

i
ii PC

1
                       

)1,10,1(
1

nCPP ii

n

i
i ≤≤≤≤=∑

=

       (1) 

 
 
4-1. Dynamic Programming for Solving Problems 
 
     Suppose tree 1t  is an optimal one for a case that 1key  

is in the tree's root, tree 2t  is an optimal one for a case that 

2key  is in the tree's root, and tree nt  is an optimal one for 

a case that nkey  is in the tree's root. Then we should 

search for a k , so that kkey  is in the tree's root and 
searching time the tree for it be minimum. The same work 
is repeated in left and right sub-trees, until an Optimal 
Binary Search Tree is formed. This is shown with the 
following equation : 
 

)(,...,1,,)]][1[]1][[min(]][[ jijiikPjkAkiAjiA
j

im
m <+=∀+++−= ∑

=

 
,0]1][[,0]1][[,]][[ =+=−= jjAiiAPiiA i
                   (2) 

 
0]1][[,0]1][[,]][[ =+=−= jjRiiRkjiR  

This equation calculates the minimum searching time. It 
means we should find a k  so make the time minimized. A 
is the cost function of the problem or in other words is the 

minimum searching time, and R shows the tree's root in 
each stage. 
     The execution cost of this algorithm is equal with the 
cost of filling 2)2/)1((2 +++ nnm  memory fields, 
because without considering the main diameter of 
matrixes, we should fill n  fields in the first line, 1−n  
fields in the second line, …, and 1 field in the last line of 
each matrix. And if the elements of main diameters are 
considered, so we can reach to above equation. In addition, 
we should choose the minimum values between different 
k s which has cost of )(nO  in the worst case. Then in 
total, the cost of this algorithm is 

)()()( 32 nOnOnO =× . Of course, we can optimize 

this way, and in result decrease time cost to )( 2nO  [11]. 
The above way was presented in 1959 by Gilbert and was 
obtained in 1982 by Yaeu [11]. 
 
 
4-2. Genetic and Parallel Genetic Algorithms for 
       solving the Problems 
 
     In the genetic algorithm, a collection of possible 
answers are considered as  iC s, and it is tried to find an 

optimal answer from them. Each array is considered as an 
answer (or a chromosome). Each gene of this 
chromosome, determine value of C  for a key. And the 
internal number of each gene is value of  iC  for ikey . 
More over, we should consider the following case for each 
gene. 
 
• nCi <<1  

• maximum number of 1s are 1, and maximum number 
of 2 s  are 2 , maximum number of 3 s are 4 , and in 
general, maximum number of k s are k2  (regarding 
number of leaves in a level of complete binary tree). 

• If the number of nodes for one level is m , so the 
number of next level can not be more than m2 . 

 
     If this procedure is used, then coding of the problem 
will be difficult, and in each stage of the algorithm, the 
above conditions should be controlled, that leads to lose 
the time. On the other hand, in this kind of coding, the 
solution depends to specifications of the problem. For 
removing this fault, instead using the objective function 
directly, we can use another evaluation function, and 
change the genetic population chromosomes (equation 2). 
     For this purpose, by using genetic and parallel genetic 
algorithms, it is tried to make the dynamic programming 
of this problem faster and better. We use this solution, 
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because of easy implementing the dynamic programming 
of this problem in parallel form. And the other hand, the 
introduced cost function can be used as the fitness 
function, and the chromosomes of the genetic population 
can be used as k s. Therefore instead using directly the 
objective function and obtaining iC s, we try to obtain 

suitable k  by using of genetic algorithm in each stage of 
the dynamic programming. We can decrease the algorithm 
execution cost by parallelism of this algorithm. Fig. 2 and 
Fig. 3 state a summary of this method. 
 

 
 
Input  : the number of keys (n) and set of their 
possibilities (Array p) 
Output : the optimal search time (t) and the set of 
multipliers (Array c) 
Parameters : 
• genetic population size (popsize) 
• length of the chromosome (lchrom) 
• maximum of the generation number (maxgen) 
• possibility of Crossover operator (pcross) 
• possibility of the Mutation operator (pmutate) 
• primary value of producing of random number (seed) 
Properties  : 
• type of coding: Binary coding 
• type of the Select operator: Roulette wheel 
• type of the Crossover operator: Single point 
• type of the Mutation operator: Inverting of selected 

bits 
• Condition of terminating of genetic algorithm: 

maximum number of generations 
• Objective function: ],1[]1,[ jkakia ++−  
• Fitness function: ]),1[]1,[/(1 jkakia ++−  

• Model of parallel population: Global 
• Parallel architecture : Shared Memory 
• Class of Parallel Algorithm : Global 

(Semi-Synchronous Master-Slaves) 
 

Fig. 2  Properties of Genetic Algorithm for the solution of Optimal 
Binary Search Tree 

 
input(n,p) 
input(popsizepercent,maxgen,pcross,pmutate,seed) 
   fork forall i:=1 to n do 
     fork a[i,i-1]:=0 
     fork r[t,i-1]:=0 
    fork w[i,i]:=p[i] 
      fork a[i,i]:=p[i] 
      r[i,i]:=i; 
   fork a[n,n+1]:=0 
   r[n,n+1]:=0 
   join 
   join 
   for d:=1 to n-1 do 
      forall i:=1 to n-d do 
      j:=i+d 
      k:=SGA(i,j) 
      fork r[i,j]:=k 
      w[i,j]:=w[i,j-1]+w[j,j] 
      a[i,j]:=a[i,k-1]+a[k+1,j]+w[i,j] 
   SGA(i,j): 
      popsize:=(j-i+1) * popsizepercent / 100 
      lchrom:=log j +1 
      gen:=0 
      initialize(gen) 
      repeat 
         gen:=gen+1 
         generate(gen) 
         k:=min(individuals) 
         oldpop:=newpop 
      until gen=maxgen 
      return(k) 
generate(gen): 
   j:=1 
   repeat 
      fork mate1:=fitness_and_select(oldpop) 
      mate2:=fitness_and_select(oldpop) 
      join 
      fork newpop[j]:=crossover_and_mutation 
                            (mate1,mate2,pcross,pmutate) 
      newpop[j+1]:=crossover_and_mutation 
                            (mate1,mate2,pcross,pmutate) 
      join 
      j:=j+2 
   until j > popsize 
make_c(i,j,l): 

 
SGA(i,j) 

0 1 … j … n 

i

…
2

1

…

n

n+1 

…

Output Parallel 

Masters

Slaves 

Seria
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   k:=r[i,j] 
   if k<>0 then{ 
      fork c[k]:=l 
      fork make_c(i,k-1,l+1) 
      make_c(k+1,j,l+1)} 
   t:=a[1,n] 
   output(c,t) 
 
 
Fig. 3  The Genetic Algorithm for the solution of Optimal Binary Search Tree 
 
     In the mentioned algorithm, first the number of keys, 
array P  include possibilities of keys, and the genetic 
algorithm parameters are received from input, and then 
some entries of matrixes such as a , r , w  are initiated. 
This work is done according to second part of equation 2. 
The matrix w  stores the set of keys possibilities. In next 
part of the algorithm, matrixes entries are filled in the form 
of diagonal and parallel with the main diameter. This work 
is also done according to the first part of equation2. As it is 
obvious from Figure1, a master process is created for each 
secondary diameter and also main one. These processes 
create a worker for each element of diameters. Each 
worker process executes a simple genetic algorithm until 
the value of optimal k  is calculated, and the obtained key 
is placed in matrix r . The master processes also are 
created as serial and according to the figure2. Finally, 
output array C  is created according to matrix r , and the 
optimal searching time, ],1[ na , is sent to the output. 
     In executing of the genetic algorithm, the binary coding 
has been used. Each chromosome shows a value for k , 
and because of this, it's length shouldn't be more than  

1+jLog  for each process. On the other hand, the 
maximum of the genetic population for each process will 
be 1+− ij . But for increasing the speed of the algorithm 
execution, we only apply a percent of the population. 
Here, the type of crossover is the common single point 
method. For creating the intermediate population and 
selecting the parents, the Roulette wheel has been used. 
Since the minimum value should be selected from the 
current population, the inverted objective function has 
been used. Therefore in the Roulette wheel, the optimal 
value allocates itself most of share, and in result the 
possibility of its selection will be more. Regarding to the 
problem structure, the global method is used. And because 
the processes work independently, and only they are 
synchronized in end of each stage, so class of this 
algorithm is global and semi-synchronous. 
Ignoring the part related to the genetic algorithm in the 
main body of the program, the algorithm execution has 
time cost O(n), because the internal loop is executed in 
parallel. Notice in here, a processor is allocated to each 
process. If the number of processes is N , so this cost will 

be )/( 2 NnO . Also in the genetic algorithm, there is a 
main loop which creates some generation of 
chromosomes, that it's the execution cost is 

)(max genO . Creating the primary population and 
making the chromosomes depends on the length of 
chromosomes. The time cost of creating a chromosome is 

)(lchromO , and it's maximum will be happened in last 
stage of the algorithm. This value approximately is equal 
with nLog

2
. Due to the number of these chromosomes 

are equal with the genetic population, so time cost of 
creating a population is )( lchrompopsizeO × . The 
maximum size of genetic population is also 

centpopsizepern× . If the chromosomes are created in 
parallel, so this value will be )( popsizeO . In general, 
the executing cost of the genetic algorithm will be 

)(max popsizegenO × , and finally the total time cost 

will be )/max( 2 NpopsizegennO ×× . Now if there 
are enough processors, and operations are done in parallel, 
so the above cost will be simplified as follows : 

)max( centpopsizepergennO ××  
     If above parameters are suitable, then the algorithm 
cost will be decreased, else the cost will be increased. It 
means that : popsizegen×max  percent n< .  
     Of course we should note that suitable performance of 
the algorithm depend on communication delay in the 
Network, time of creating and synchronizing of the 
processors, and the random distribution function used in 
the algorithm. 
Also the cost of consumed memory will be as follow :  

))max()max(( 2 lchrompopsizenO ×+  
     Because the algorithm has applied three matrix of 

)1()1( +×+ nn  and one record conclude a multi-
chromosomes population. 
 
 
5. Experimental Results 
 
     A Multi-Pascal programming language has been used to 
implement the presented genetic algorithm. Multi-Pascal 
was designed by Bruce P. Lester as a research work in the 
computer group of International University of Maharishi 
(MIU). The goal of this design was creation a language 
with a set of high level instructions, so that we can 
simulate parallel algorithms on the multi-computers and 
multi-processors. This language consists many of standard 
parallel programming instructions. On the other hand, the 
instructions of this language are based on the standard 
Pascal language, which parallel capabilities added to it, 
and therefore it presents a simple high level language to 
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user. Multi-Pascal is a machine independent language, and 
we can simulate different parallel architectures by it. This 
language with two instructions FORK and FORALL, 
creates different processes as parallel. Instruction of JOIN 
along with FORK cause to join two processes of father and 
child in a point. Multi-Pascal uses the global variables as 
common, and it uses the internal variables of block (or a 
subroutine or a function) as a local case. It uses 
CHANNEL variable for sending a message. Also this 
language done the calculations related to run-time, 
processors number, speed-up and processors utilizations. 
     Here, results of different implementations of the 
algorithm are presented. Fig.4 shows four different 
implementations of the program. These diagrams show the 
speed-up and number of processors for different values of 
the genetic parameters. As it is seen, for less values of n, 
speed-up is small, and when it is increased, so the number 
of processors will be increased. 
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popsizepercent=90,  maxgen=5, 
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C 
popsizepercent=80,  maxgen=4, 
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popsizepercent=20,  maxgen=2, 
pcross=0.2, pmutate=0.01, seed=0.5
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Fig. 4  Four different implementations of the Program 

 
     Fig.5 also shows speed-up of these four samples with 
each other. As it is seen, when n grows, the speed-up of 
sample 4 increase which it's genetic parameters are low, 
while the speed-up of sample 2 decrease which it's genetic 
parameters values are high. 
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Fig. 5  Speed-up of the four Samples of Program 
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     Fig.6 shows outputs of the algorithm execution with the 
same input values and different genetic parameters (fig.1 
and fig.2). As it is seen, the different executions of this 
algorithm with the same inputs produce different outputs. 
And the output value decrease when greater genetic 
parameters are selected. 
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Fig.6 Outputs of the algorithm execution 

 
 
 
6. Conclusion and future works 
 
     In this paper, a parallel genetic algorithm was presented 
for solution of the optimal binary search tree. To 
implement of this algorithm and obtaining the 
experimental results, a parallel programming environment 
called Multi-Pascal was used. First, a dynamic 
programming method was implemented, and then a 
genetic algorithm was added to it. Finally, by using of its 
parallel model and creating a semi-synchronous 
architecture of master/slave shared memory global genetic 
algorithm, the problem of optimal binary search tree was 
solved. 
     
     In general, we can refer to the following results: 

• The simulation results show that speed-up will be 
increased when the number of inputs grows. 

• The simulation results show that overhead of the 
algorithm execution is high when data is less, and 
their execution time is equal with usual methods. 

• The simulation results show that executing of the 
genetic algorithm with the greater input has high 
speed. 

• Optimizing the dynamic programming method 
using parallel genetic algorithms, increases the 
speed of the algorithm execution. 

 
The works which can be done in this way are: 
• Implementing other parallel genetic algorithms 

such as coarse grained and hybrid one. 
• Implementing the parallel genetic algorithms on 

the different topologies. 
• Finding the suitable values for parallel genetic 

algorithm parameters so that we reach to an 
answer with a high speed. 

• Presenting a method for adjustment of population 
with parallel hardware.  
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