
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

138

Designing Optimal Binary Search Tree Using Parallel
Genetic Algorithms

K. Zamanifar M. Koorangi

Department of Computer, Faculty of Engineering, University of Isfahan, Iran

Summary
 Evolutionary algorithms (EAs) are modern techniques for
searching complex spaces for on optimum [11]. Genetic
algorithms (GAs) are developed as random search methods,
which have not so sensitivity on primary data of the problems.
They can be used in estimation of system parameters in order to
obtain the best result. This can be achieved by optimization of an
objective function. Genetic programming is a collection of
methods for the automatic generation of computer programs that
solve carefully specified problems, via the core, but highly
abstracted principles of natural selection [12]. In this paper,
genetic algorithms and parallel genetic algorithms have been
discussed as one of the best solutions for optimization of the
systems. Genetic and parallel genetic algorithms have been
investigated in parallel programming environment called
Multi-Pascal. Then an optimal binary search tree has been
selected as a case study for decree sing of searching time. Also a
dynamic programming method has been accelerated by using of a
parallel genetic algorithm. In this case, by increasing the size of
data, speed-up index will be increased.
Key words:
Optimization, Genetic Algorithm, Parallel Genetic Algorithm,
Optimal Binary Search Tree

1. Introduction

 Genetic algorithms are a part of evolutionary
computing, which is a rapidly growing area of artificial
intelligence. Their basic working mechanism is as follows:
the algorithm is started with a set of solutions (represented
by chromosomes) called population. Solutions from one
population are taken and used to form a new population.
This is motivated by a hope, that the new population will
be better than the old one [13, 14, 15].
 Everything around us is part of some system.
Researchers have tried to model it into the system
computer. The models were not complex enough to solve
interesting problems. Thus the models were not practical
[4]. A system is a black box with a set of input parameters.
The system developers measure the parameters of each
subsystem separately, and exhibit all them as a set of the
system's parameters, but ignore the effect of sub-systems
on each other and disorders signals. In addition, the
parameters should be set so that the system conclude the
best. For doing of this matter, it is needed to optimize the

output function of the system. It means that we should
minimize or maximize it, and consequently increase its
performance. The goal of this research is achieving a
solution that these values are obtained faster without
involving in internal properties of the system. The optimal
binary search tree has been considered as a case study.
Generally, there are three general methods for optimization
and searching of these optimal points [2] : The Calculus
Based Searching method, Enumerative Searching method
and Random Searching method. The calculus based
searching method is divided to two branches : Direct and
Indirect. In direct way, the optimal points are obtained by
solution of some linear equations or non linear ones. In
indirect way, a limited of optimal pointes are obtained,
then they are optimized by Hill Climbing methods. In the
enumerative searching method, the searching space of the
problem is processed and the value of objective function of
the system is obtained for each point, and finally optimal
points are selected. Dynamic programming method is of
these cases. In random searching method, the space of
searching problem is searched by random for finding of
optimal points. Genetic algorithm is a guided random
algorithm [2].

 The two first methods aren’t cost effective and they
don't effect if searching space of the problem is expanded.
Parallel algorithms are used to increase the speed and
performance of the optimization methods. The genetic
algorithms are appropriate for this purpose because of : 1)
Independency to primary values of the parameters 2)
Independency to system's objective function properties
(continuous, derivative, etc.) 3) Searching of greater space
of the parameters values. The most important
characteristics of these algorithms is parallelism. It causes
the increasing of the speed and performance of the system
and decrease the system's response time. Sometimes due to
existing the several objective functions in the system,
using of genetic algorithm will increase the system’s speed
and will decrease the system's response time.

2. Genetic Algorithms

 Genetic algorithm can be viewed as a biological

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

139

metaphor of Darwinian evolution [4]. It is a random
searching method which creates a new generation of the
answers by selecting a collection of answers randomly, and
improves them in each stage, until finally it achieves an
acceptable answer between these answers. This algorithm
have some components[1,2,6,9]. These components are :
Chromosome, Genetic population, fitness function, genetic
operations, and genetic algorithm parameters. By running
of genetic algorithm, some chromosomes from genetic
algorithm are selected as parents. Next generation of
chromosomes are created by using the operators, and
therefore the next genetic population is composed. This is
done by Select operator [4,8,10].
 Only selection of the parents is not enough for
producing of the next generation of chromosomes, but we
should search for some methods for returning of the
produced chromosomes to the Genetic Population. This is
also done by Replacement operator. To doing of this case,
after selecting the parents from Current population, they
are placed in the Intermediate population. The genetic
operation will be done on them until a new population of
the chromosomes will be created, then they will be placed
in the Next population [4]. Permutation operator is used
for recombination [4,6]. The permutation operator is also
another operator which will cause innovation in the
chromosomes of a genetic population. It also stops
monotony in genetic population and stops involving the
algorithm in the local minimize or maximize points.

3. Parallel Genetic Algorithms

 For the first time, Holland, 1963, recognized the
parallel nature of genetic algorithms, and in 1976 Bethke
calculate the complexity of doing the Genetic algorithm on
parallel machine, but he didn't simulate or implement it.
Then in 1981, Grefenstette presented some parallel
implementation of genetic algorithms[2].
 The way in which GAs can be parallelized depends on
the following elements[16]:

• How fitness is evaluated and mutation is applied
• If single or multiple subpopulations (demes) are

used
• If multiple populations are used, how individuals

are exchanged
• How selection is applied (globally or locally)

 There have been some attempts to develop a unified
taxonomy GAs which would greatly help addressing this
issue[24].
 There are several motivations for parallelism of the
genetic algorithms. One of them is intending for increasing
speed and performance of genetic algorithms using the
parallel computers. The other one is able to apply genetic

algorithms for solving of greater problems in a reasonable
time and make it near to its own biologic structure in the
nature. Also parallel genetic algorithms show a high
performance for solving the problems with multi-objective
functions.

3-1. Classes of parallel Genetic Algorithms

 The parallel genetic algorithms are categorized to four
classes : Global[4], Coarse-Grained [25], Fine-
Grained[26], and Hybrid[4]. A global genetic algorithm
considers all the population as a one. The population
individuals are evaluated to obtaining their fitness. Also
the genetic operations act in parallel. The goal in this class
is parallelism of the genetic algorithm. These kinds of
algorithms are implemented in two forms : shared memory
machines and distributed memory machines. In
implementation of the shared memory machines, the
individuals of the genetic population will be stored in a
common memory, and each processor can access this
memory. These processors get some of individuals, and
apply the genetic operators on them, and return them to the
common memory. Synchronization is necessary between
processors in starting of producing each generation. In the
implementation of the distributed memory machines, the
genetic population is stored in the memory of a processor
called Master (or Farmer). This processor sends the
individuals of the population to other processors called
Workers (or Slaves). The workers evaluate individuals and
collect the results. They also produce the next generations
by using of genetic operators. This method has two
problems : 1) A great time is consumed to evaluating and
the master is unemployed. 2) If the master crash, the
system will be stop. This model is presented in three forms
: Synchronous, Asynchronous and Semi-Synchronous. In
the synchronous model, the processors are synchronized in
the starting and ending of each generation, therefore the
master processor should wait for a slower processor. In
asynchronous or semi-synchronous models, the master
processor doesn't wait. In here, the master processor
selects the individuals of the current population. Therefore
the processors will work asynchronously.
 The coarse-grained genetic algorithm divides the
genetic population to separate sub-populations. The
separate genetic algorithm is applied on the each sub-
population. The individuals are exchanged between sub-
populations in order to optimize the answers at special
times. In other words, they migrate between sub-
populations. In most of the times, the size of sub-
populations will be taken equal. These kinds of algorithms
usually are implemented on MIMD computers with
distributed memories. Some samples of these machines are
such as : CM-5, NCUBE, Intel's paragon, and etc.[1]. A
point which should be noted is that in this class, the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

140

communication between processors is very lower than the
calculated work which each processor do on their own
sub-population. A new operator called Migration operator,
is presented here. This operator exchanges the individuals
between the sub-populations[7]. The following actions is
done by this operator :

• Selecting the emigrants: In this stage, the
emigrants of each sub-population are selected.

• Sending the emigrants: In this stage, the
emigrants of a sub-population are sent to the
other one.

• Receiving the emigrants: In this stage, the
emigrants are received from a sub-population.

• Merging the emigrants: In this stage, the
emigrants are merged in a sub-population.

 By this operator, sending and receiving of the
individuals can be done in parallel message passing way.
In this way, selecting and merging of the emigrants cause a
population of the best answers in each sub-population.
Migration models are presented in two forms: Island
model and Stepping-Stone model. In island model, the
individuals are allowed to migrate to each sub-population
while in stepping-stone model, the migration limited to the
neighborhood sub-populations. In Island model, the
individuals have freedom to migrate, but the overhead of
communication and delay are too much, while in stepping-
stone model, the freedom of migration is limited but the
overhead of communication is decreased.
 The fine-grained genetic algorithm divides the genetic
population into several small sub-population (Deme), and
sometimes it behaves with each individual separately. In
this algorithm, each one of the demes or individuals can
place on a separate processor and each individual can
mates with its neighborhoods. These kinds of algorithms
also can be implemented on the parallel computers. The
first attempt in this field was done by Robertson in 1987
on SIMD computers, and this algorithm was named
ASPARAGOS [1, 5]. In these kinds of algorithms, against
of the coarse-grained genetic algorithms, the
communication between processors is more than the
calculation work of each processor. Also using these
algorithms prevents from soon dominant of super
individuals on population.
The hybrid genetic algorithm is a combination of two
previous algorithms. In here, two levels are considered for
execution of algorithm which in each level, a class of
parallel genetic algorithms is applied. In 1994, Gruau
presented the hybrid genetic algorithm for the first time,
and used it for Neural Networks [3].

3-2. Parallel population Models

 Parallel population models state the following things:

• How a population is divided to different sub-
populations?

• How information is exchanged between sub-
populations?

 These models are divided into three general parts[7] :
Global, Regional, Local. In the global model, the
population is not structured, the select operation is general,
the fitness of each individual is calculated related to all the
individuals, and each one of individuals can be selected as
a parent for reproduction. In regional model, the
population is divided to several sub-populations (Region).
The fitness of each individual is calculated related to the
individuals of its sub-population, and the parents are
selected from that region. In the local model, the
population has a neighborhood structure. The fitness of
each individual is determined related to its local
neighborhood, and parents are selected from the same
neighborhood. Table1 shows the summary of related works
with these three models [7].

Table 1: Summary of Related Works with three Models

Reference Global Model Regional Model Local Model
GREFENSTETTE(1981)
MANDERICK et al.(1989)
MACFARLANE et al. (1990)
GORGES-
SCHLEUTER(1992)
DORIGO et al. (1993)
WHITLEY(1993)
CANTU-PAZ(1995)

Master-Slave
R-Algorithm
Farming
Panmixia
 -
Global Pop.
Global Par.

Network
Coarse Grain
Migration
Model
Migration
Model
Island Model
Island Model
Coarse Grain

 -
Fine Grain
Diffusion Model
Diffusion Model
Neighborhood
Model
Cellular GA
Fine Grain

• They do less functional evaluation for finding the

optimized solutions.
• They are able to find several solutions.
• They can be synchronous or asynchronous.
• Their implementations accommodate with parallel

architectures.
• They are fault tolerant.
• They are nearer to biological simile of evolution.

4. Designing of Optimal Binary Search Tree
 using the Parallel Genetic Algorithms

 Binary trees and binary search trees are covered in
many standard texts such as [17,18,19,20,21,22,23].

• Definition: A binary tree T is the structure defined
on a finite set of nodes that either contains no
nodes, or is composed of three disjoint sets of
nodes: a root node, a binary tree called its left
sub-tree, and a binary tree called its right sub-tree
[21].

• Definition: A binary search tree (BST) is a binary
tree whose nodes are organized according to the
binary search tree property: keys in the left sub-

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

141

tree are all less than the key at the root; keys in
the right sub-tree are all greater than the key at
the root; and both sub-trees are themselves BSTs.

Optimal Binary Search Trees are covered in many

algorithms texts [17,18,19,21,22,23]. For any set of keys,
there are many different binary search trees. The time
required to seek a given key can vary from tree to tree
depending on the depth of the node where the key is
found, or the length of the branch searched if the key is not
present. An optimal binary search tree is a binary search
tree with minimum expected comparisons for special set of
keys and their possibilities. The number of comparisons is
called Searching Time.
 Suppose 1key , 2key , 3key , … nkey are n keys, iP

is the possibility of ikey and iC is number of the

comparisons for finding of ikey , then optimization of
Binary Search Tree is minimizing of the following
relation. It calculates the average searching time for n keys
in a binary search tree.

∑
=

n

i
ii PC

1

)1,10,1(
1

nCPP ii

n

i
i ≤≤≤≤=∑

=

 (1)

4-1. Dynamic Programming for Solving Problems

 Suppose tree 1t is an optimal one for a case that 1key

is in the tree's root, tree 2t is an optimal one for a case that

2key is in the tree's root, and tree nt is an optimal one for

a case that nkey is in the tree's root. Then we should

search for a k , so that kkey is in the tree's root and
searching time the tree for it be minimum. The same work
is repeated in left and right sub-trees, until an Optimal
Binary Search Tree is formed. This is shown with the
following equation :

)(,...,1,,)]][1[]1][[min(]][[jijiikPjkAkiAjiA
j

im
m <+=∀+++−= ∑

=

,0]1][[,0]1][[,]][[=+=−= jjAiiAPiiA i
 (2)

0]1][[,0]1][[,]][[=+=−= jjRiiRkjiR

This equation calculates the minimum searching time. It
means we should find a k so make the time minimized. A
is the cost function of the problem or in other words is the

minimum searching time, and R shows the tree's root in
each stage.
 The execution cost of this algorithm is equal with the
cost of filling 2)2/)1((2 +++ nnm memory fields,
because without considering the main diameter of
matrixes, we should fill n fields in the first line, 1−n
fields in the second line, …, and 1 field in the last line of
each matrix. And if the elements of main diameters are
considered, so we can reach to above equation. In addition,
we should choose the minimum values between different
k s which has cost of)(nO in the worst case. Then in
total, the cost of this algorithm is

)()()(32 nOnOnO =× . Of course, we can optimize

this way, and in result decrease time cost to)(2nO [11].
The above way was presented in 1959 by Gilbert and was
obtained in 1982 by Yaeu [11].

4-2. Genetic and Parallel Genetic Algorithms for
 solving the Problems

 In the genetic algorithm, a collection of possible
answers are considered as iC s, and it is tried to find an

optimal answer from them. Each array is considered as an
answer (or a chromosome). Each gene of this
chromosome, determine value of C for a key. And the
internal number of each gene is value of iC for ikey .
More over, we should consider the following case for each
gene.

• nCi <<1

• maximum number of 1s are 1, and maximum number
of 2 s are 2 , maximum number of 3 s are 4 , and in
general, maximum number of k s are k2 (regarding
number of leaves in a level of complete binary tree).

• If the number of nodes for one level is m , so the
number of next level can not be more than m2 .

 If this procedure is used, then coding of the problem
will be difficult, and in each stage of the algorithm, the
above conditions should be controlled, that leads to lose
the time. On the other hand, in this kind of coding, the
solution depends to specifications of the problem. For
removing this fault, instead using the objective function
directly, we can use another evaluation function, and
change the genetic population chromosomes (equation 2).
 For this purpose, by using genetic and parallel genetic
algorithms, it is tried to make the dynamic programming
of this problem faster and better. We use this solution,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

142

because of easy implementing the dynamic programming
of this problem in parallel form. And the other hand, the
introduced cost function can be used as the fitness
function, and the chromosomes of the genetic population
can be used as k s. Therefore instead using directly the
objective function and obtaining iC s, we try to obtain

suitable k by using of genetic algorithm in each stage of
the dynamic programming. We can decrease the algorithm
execution cost by parallelism of this algorithm. Fig. 2 and
Fig. 3 state a summary of this method.

Input : the number of keys (n) and set of their
possibilities (Array p)
Output : the optimal search time (t) and the set of
multipliers (Array c)
Parameters :
• genetic population size (popsize)
• length of the chromosome (lchrom)
• maximum of the generation number (maxgen)
• possibility of Crossover operator (pcross)
• possibility of the Mutation operator (pmutate)
• primary value of producing of random number (seed)
Properties :
• type of coding: Binary coding
• type of the Select operator: Roulette wheel
• type of the Crossover operator: Single point
• type of the Mutation operator: Inverting of selected

bits
• Condition of terminating of genetic algorithm:

maximum number of generations
• Objective function:],1[]1,[jkakia ++−
• Fitness function:]),1[]1,[/(1 jkakia ++−

• Model of parallel population: Global
• Parallel architecture : Shared Memory
• Class of Parallel Algorithm : Global

(Semi-Synchronous Master-Slaves)

Fig. 2 Properties of Genetic Algorithm for the solution of Optimal
Binary Search Tree

input(n,p)
input(popsizepercent,maxgen,pcross,pmutate,seed)
 fork forall i:=1 to n do
 fork a[i,i-1]:=0
 fork r[t,i-1]:=0
 fork w[i,i]:=p[i]
 fork a[i,i]:=p[i]
 r[i,i]:=i;
 fork a[n,n+1]:=0
 r[n,n+1]:=0
 join
 join
 for d:=1 to n-1 do
 forall i:=1 to n-d do
 j:=i+d
 k:=SGA(i,j)
 fork r[i,j]:=k
 w[i,j]:=w[i,j-1]+w[j,j]
 a[i,j]:=a[i,k-1]+a[k+1,j]+w[i,j]
 SGA(i,j):
 popsize:=(j-i+1) * popsizepercent / 100
 lchrom:=log j +1
 gen:=0
 initialize(gen)
 repeat
 gen:=gen+1
 generate(gen)
 k:=min(individuals)
 oldpop:=newpop
 until gen=maxgen
 return(k)
generate(gen):
 j:=1
 repeat
 fork mate1:=fitness_and_select(oldpop)
 mate2:=fitness_and_select(oldpop)
 join
 fork newpop[j]:=crossover_and_mutation
 (mate1,mate2,pcross,pmutate)
 newpop[j+1]:=crossover_and_mutation
 (mate1,mate2,pcross,pmutate)
 join
 j:=j+2
 until j > popsize
make_c(i,j,l):

SGA(i,j)

0 1 … j … n

i

…
2

1

…

n

n+1

…

Output Parallel

Masters

Slaves

Seria

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

143

 k:=r[i,j]
 if k<>0 then{
 fork c[k]:=l
 fork make_c(i,k-1,l+1)
 make_c(k+1,j,l+1)}
 t:=a[1,n]
 output(c,t)

Fig. 3 The Genetic Algorithm for the solution of Optimal Binary Search Tree

 In the mentioned algorithm, first the number of keys,
array P include possibilities of keys, and the genetic
algorithm parameters are received from input, and then
some entries of matrixes such as a , r , w are initiated.
This work is done according to second part of equation 2.
The matrix w stores the set of keys possibilities. In next
part of the algorithm, matrixes entries are filled in the form
of diagonal and parallel with the main diameter. This work
is also done according to the first part of equation2. As it is
obvious from Figure1, a master process is created for each
secondary diameter and also main one. These processes
create a worker for each element of diameters. Each
worker process executes a simple genetic algorithm until
the value of optimal k is calculated, and the obtained key
is placed in matrix r . The master processes also are
created as serial and according to the figure2. Finally,
output array C is created according to matrix r , and the
optimal searching time,],1[na , is sent to the output.
 In executing of the genetic algorithm, the binary coding
has been used. Each chromosome shows a value for k ,
and because of this, it's length shouldn't be more than

1+jLog for each process. On the other hand, the
maximum of the genetic population for each process will
be 1+− ij . But for increasing the speed of the algorithm
execution, we only apply a percent of the population.
Here, the type of crossover is the common single point
method. For creating the intermediate population and
selecting the parents, the Roulette wheel has been used.
Since the minimum value should be selected from the
current population, the inverted objective function has
been used. Therefore in the Roulette wheel, the optimal
value allocates itself most of share, and in result the
possibility of its selection will be more. Regarding to the
problem structure, the global method is used. And because
the processes work independently, and only they are
synchronized in end of each stage, so class of this
algorithm is global and semi-synchronous.
Ignoring the part related to the genetic algorithm in the
main body of the program, the algorithm execution has
time cost O(n), because the internal loop is executed in
parallel. Notice in here, a processor is allocated to each
process. If the number of processes is N , so this cost will

be)/(2 NnO . Also in the genetic algorithm, there is a
main loop which creates some generation of
chromosomes, that it's the execution cost is

)(max genO . Creating the primary population and
making the chromosomes depends on the length of
chromosomes. The time cost of creating a chromosome is

)(lchromO , and it's maximum will be happened in last
stage of the algorithm. This value approximately is equal
with nLog

2
. Due to the number of these chromosomes

are equal with the genetic population, so time cost of
creating a population is)(lchrompopsizeO × . The
maximum size of genetic population is also

centpopsizepern× . If the chromosomes are created in
parallel, so this value will be)(popsizeO . In general,
the executing cost of the genetic algorithm will be

)(max popsizegenO × , and finally the total time cost

will be)/max(2 NpopsizegennO ×× . Now if there
are enough processors, and operations are done in parallel,
so the above cost will be simplified as follows :

)max(centpopsizepergennO ××
 If above parameters are suitable, then the algorithm
cost will be decreased, else the cost will be increased. It
means that : popsizegen×max percent n< .
 Of course we should note that suitable performance of
the algorithm depend on communication delay in the
Network, time of creating and synchronizing of the
processors, and the random distribution function used in
the algorithm.
Also the cost of consumed memory will be as follow :

))max()max((2 lchrompopsizenO ×+
 Because the algorithm has applied three matrix of

)1()1(+×+ nn and one record conclude a multi-
chromosomes population.

5. Experimental Results

 A Multi-Pascal programming language has been used to
implement the presented genetic algorithm. Multi-Pascal
was designed by Bruce P. Lester as a research work in the
computer group of International University of Maharishi
(MIU). The goal of this design was creation a language
with a set of high level instructions, so that we can
simulate parallel algorithms on the multi-computers and
multi-processors. This language consists many of standard
parallel programming instructions. On the other hand, the
instructions of this language are based on the standard
Pascal language, which parallel capabilities added to it,
and therefore it presents a simple high level language to

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

144

user. Multi-Pascal is a machine independent language, and
we can simulate different parallel architectures by it. This
language with two instructions FORK and FORALL,
creates different processes as parallel. Instruction of JOIN
along with FORK cause to join two processes of father and
child in a point. Multi-Pascal uses the global variables as
common, and it uses the internal variables of block (or a
subroutine or a function) as a local case. It uses
CHANNEL variable for sending a message. Also this
language done the calculations related to run-time,
processors number, speed-up and processors utilizations.
 Here, results of different implementations of the
algorithm are presented. Fig.4 shows four different
implementations of the program. These diagrams show the
speed-up and number of processors for different values of
the genetic parameters. As it is seen, for less values of n,
speed-up is small, and when it is increased, so the number
of processors will be increased.

A

popsizepercent=80, maxgen=4,
pcross=0.6, pmutate=0.01, seed=0.2

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Processor
Speed-Up

Evaluations

B

popsizepercent=90, maxgen=5,
pcross=0.8, pmutate=0.1, seed=0.6

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Processor
Speed-Up

Evaluations

C
popsizepercent=80, maxgen=4,

pcross=0.6, pmutate=0.01, seed=0.2

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Processor
Speed-Up

Evaluations

D

popsizepercent=20, maxgen=2,
pcross=0.2, pmutate=0.01, seed=0.5

0
5

10
15
20
25
30
35
40
45

1 2 3 4 5 6 7 8 9 10

Processor
Speed-Up

 Evaluations

Fig. 4 Four different implementations of the Program

 Fig.5 also shows speed-up of these four samples with
each other. As it is seen, when n grows, the speed-up of
sample 4 increase which it's genetic parameters are low,
while the speed-up of sample 2 decrease which it's genetic
parameters values are high.

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10

Speed-Up1
Speed-Up2
Speed-Up3
Speed-Up4

Fig. 5 Speed-up of the four Samples of Program

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

145

 Fig.6 shows outputs of the algorithm execution with the
same input values and different genetic parameters (fig.1
and fig.2). As it is seen, the different executions of this
algorithm with the same inputs produce different outputs.
And the output value decrease when greater genetic
parameters are selected.

0
0.5

1
1.5

2
2.5

3
3.5

1 2 3 4 5 6 7 8 9 10

Output1

Output2

Fig.6 Outputs of the algorithm execution

6. Conclusion and future works

 In this paper, a parallel genetic algorithm was presented
for solution of the optimal binary search tree. To
implement of this algorithm and obtaining the
experimental results, a parallel programming environment
called Multi-Pascal was used. First, a dynamic
programming method was implemented, and then a
genetic algorithm was added to it. Finally, by using of its
parallel model and creating a semi-synchronous
architecture of master/slave shared memory global genetic
algorithm, the problem of optimal binary search tree was
solved.

 In general, we can refer to the following results:

• The simulation results show that speed-up will be
increased when the number of inputs grows.

• The simulation results show that overhead of the
algorithm execution is high when data is less, and
their execution time is equal with usual methods.

• The simulation results show that executing of the
genetic algorithm with the greater input has high
speed.

• Optimizing the dynamic programming method
using parallel genetic algorithms, increases the
speed of the algorithm execution.

The works which can be done in this way are:
• Implementing other parallel genetic algorithms

such as coarse grained and hybrid one.
• Implementing the parallel genetic algorithms on

the different topologies.
• Finding the suitable values for parallel genetic

algorithm parameters so that we reach to an
answer with a high speed.

• Presenting a method for adjustment of population
with parallel hardware.

References

[1] Chong Fuey Sian,"A Java Based Distributed

Approach to Genetic Programming on the Internet",
University of Birmingham School of Computer
Science, 1999.

[2] David E. Goldberg, "Genetic Algorithms in Search,
Optimization, and Machine Learning",
Addison-Wesley,1989.

[3] Erick Cantu-Paz, "A Summary of Research on
Parallel Genetic Algorithms", University of Illinois
at Urbana-Champaign, Pages 1-12, 1995.

[4] Laurrens Jan Pit, "Parallel Genetic Algorithms",
Master Thesis, Leiden University, 1995.

[5] M. Gorges-Schleuter, "ASPARAGOS : an
Asynchronous Parallel Genetic Optimization
Strategy", in Schaffer, Pages 422-427, 1985.

[6] Marek Obirko, "Genetic Algorithms", 1998.
[7] Markus Schwehm, "Parallel Population Models for

Genetic Algorithms", University of
Erlangen-Nurnberg, Pages 2-8, 1996.

[8] P. C. Chu and J. E. Beasley, "A Genetic Algorithm
for the Set Partitioning Problem", The Management
School Imperial College, Page 1,4-5, 1995.

[9] Ricardo Bianchini and Christopher Brown,
"Parallel Genetic Algorithms on Distributed
Memory Architecture", Prentice-Hall, 1993.

[10] Thomas Bak, "Evolutionary Algorithms in
Theory and Practice", Oxford University, 1996.

[11] John H. Holland, “Genetic Algorithms”, 2005,
http://www.econ.iastate.edu/tesfatsi/holland.GAIntro.
htm
[12] A. Robinson, “Genetic Programming: Theory,

Implementation, and the Evolution of
Unconstrained Solutions”, Division III Thesis,
Hampshire College, 2001.

[13] A. Kalynpur, M. Simon, “Pacman using Genetic
Programming and Neural Networks”, Project
Report for ENEE 459E, 2001.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

146

[14] M. Obitco, “Introduction to Genetic Algorithms”,
Czech Technical University,
http://cs.felk.cvut.cz/~xobitko/ga/, visited in 2006.

[15] J. Fernandez, “Genetic Programming Network”,
http://www.geneticprogramming.com/, visited in
2006.

[16] M. Nowostawski, R. Poli, “Parallel Genetic
Algorithm Taxonomy”, Submitted to Publication to:
KES’99, 1999.

[17] S. Hansen, and L. I. McCann, “Optimal Binary
Search Tree Meet Object-Oriented Programming”,
Computer Science Department, University of
Wisconsin, WI53141, 2002.

[18] M. Schaefer, "Optimal Binary Search Tree"
Department of Computer Science, DePaul
University, Chicago, Illinois 60604, USA, 2006.

[19] S. Baase, and A. Gelder, “Computer Algorithms”,
Introduction to Design and Analysis, Addison-
Wesley, 2000.

[20] T. Budd, “Classic Data Structures in Java”,
Addison-Wesley, 2001.

[21] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,
“Introduction to Algorithms”, 2nd ed, MIT Press,
2001.

[22] M. Goodrich, and R. Tamassia, “Data Structures
and Algorithms in Java”, Wiley, 1998.

[23] R. Sedgewick, “Algorithms”, 2nd ed.
Addison-Wesley, 1998.

[24] R. Bianchini, and C. Brown, “Parallel Genetic
Algorithms on Distributed-Memory Architectures”,
Technical Reports 436, The University of Rochester,
New York 14627,1993.

[25] S. Lin, W. F. Punch, and E. D. Goodman,
“Coarse-Grain Parallel Genetic Algorithms:
Categorization and New Approach”, in Proceedings
of the Sixth IEEE Symposium on Parallel and
Distributed Processing, 1994.

[26] T. Maruyama, T. Hirose, and A. Konagaya, “A
Fine-Grained Parallel Genetic Algorithm for
Distributed Parallel Systems”, in Proceedings of the
Fifth International Conference on Genetic
Algorithms, Stephanie Forrest, Ed., San Mateo, CA,
1993.

