
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

147

Manuscript received January 5, 2007

Manuscript revised January 25, 2007

Application Presence Information based Source Address
Transiton Detection for Edge Network Security and

Management

Jun Bi and Jianping Wu,

Tsinghua University, Beijing 100084, China

Summary
Source address transition technologies, such Network Address
Translation and Proxy, can be used to provide unauthorized
private address space. The source address of packets originated
in the private address space will be changed by NAT gateway or
proxy server, which is hard for service providers to manage the
edge network and trace source of attacks. This paper presents the
source address transition detection methods based on application
presence information to enhance the edge network security.
Key words:
Source address transition, Application presence Information,
Edge network

Introduction

Today, Internet is an important information infrastructure
worldwide. Internet provides a low-cost and open data
transmission approach for various applications. However,
it is realized that the security and management of the
Internet is very weak to meet security requirements, due to
the problem of network architecture. At the initial stage of
Internet when the users and sub-networks can be trusted
within the academic community, it was assumed that most
network problems came from the link breaking or node
failure. However, such situation changed in middle of
1990s when Internet was commercialized. The edge
network is not managed by ISPs, so users are no longer
trusted. ISPs need to know the source of attacks, need to
know who is using the Internet for accounting and
management purposes. Because the Internet is a huge
distributed system, security and management problems
have to be resolved distributely and locally in the edge
network.
Source Address Transition technologies, such as NAT
(Network Address Translator) [1] and Proxy, change the
source address of packets in the middle of communication.
They can be used to provide private address space.
However the unauthorized private address space brought
serious problems in past years:

(1) Management Issues. NAT and Proxy break the end-to-
end model of Internet. ISPs need to know the real
topology, which is hidden by private address space. The
deployment of p2p applications will be accelerated and the
performance will be enhanced without NAT and proxy.
(2) Security issues. IP source address, which is an
important identifier to trace end users, is changed by NAT
and proxy. Therefore it’s hard to accurately trace attackers
inside the private address space.
(3) Billing issues. Some service providers that charge
fixed monthly fees on each authorized IP address can not
bill to hosts in unauthorized private address space. An
unauthorized proxy server could be used to access
restricted network resources.
Therefore, monitoring the usages of NAT gateways and
proxy servers are helpful for service providers to
administer private address space according to their
policies, and enhance the network management and
security of edge networks.
The existing detection approaches mainly use network
layer or transport layer information; therefore, those
methods could be undermined by modifying
implementations of gateways or the TCP/IP stacks in hosts
inside the private address space. In this paper, NAT and
Proxy detection methods are proposed based on passively
monitoring application presence information, which is
usually not easily modified by NAT gateways or hosts
having private addresses.
The rest of this paper is organized as follows: Section 2
discusses related works. Section 3 presents the NAT
detection algorithm based on instant messaging
information. Section 4 presents passive proxy detection
method based on application fingerprints. Section 5
introduces experiments and Section 6 summarizes the
paper.

2. Related Work

The current NAT detection methods can be summarized as
follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

148

(1) To find some characteristic from a packet that
forwarded by a NAT gateway;
(2) To find out the number of users on one IP address.
There were four major methods proposed: checking the
TTL field in IP header [2]; checking IPid field in the IP
header [3]; checking OS fingerprints [4][5][6]; and
checking Clock skew [7].
The basic assumption of TTL method is: for a specific
operating system, the initial TTL value is determined.
After an IP packet passing a NAT gateway, the TTL value
is decreased by 1. This method is quite simple but it is
easy to be avoided if NAT gateway ignores the processing
of TTL field.
The basic assumption of IPid method is: the IPid value is
increased by 1 for every IP packet sent out from a host. So
if there are multiple hosts behind a NAT gateway, then
multiple IPid sequences will be observed. So we can know
not only the existence of NAT gateway, but also the
number of private hosts behind the NAT gateway.
However it has to check every packet and setup IPid
sequence for each potential host, so it is unrealistic for a
larger network or a high-speed link.
The basic assumption of OS fingerprinting method is that
different OS has different fingerprints. The available
fingerprints include TTL field, initial TCP window size,
DF field in IP header, etc. This method counts the number
of hosts in a private address space by counting the number
of different OS fingerprints in packets coming from the
same source address. However, if all users have the same
operating systems, then this method will fail.
The clock stew method counts the number of hosts in a
private address space by partitioning packets that coming
from the same source address into sets corresponding to
different sequences of time-dependent TCP or ICMP
timestamps and applying a clock skew estimation
technique on the sets. One possible way to defeat this
method is to make modification on NAT gateway to delete
the timestamp option in TCP SYN packets. Then both side
of the TCP would not use TCP timestamp option any more
and thus this method fails.
The common drawback of the above methods is that they
rely on network layer, or transport layer information,
which are possible for NAT vendors or users inside
private address space to elude these detection methods by
making modification on NAT gateways or TCP/IP stacks
on hosts.
In this paper, we propose to use application presence
information for NAT detection.
There are many studies and tools on proxy detection. This
paper focuses on unauthorized proxy inside an edge
network. There are four situations:
(1) External Client accesses external Server via an internal
proxy.

(2) External Client accesses internal Server via an internal
proxy.
(3) Internal Client accesses external Server via an internal
proxy.
(4) Internal Client accesses internal Server via an internal
proxy.
Sometimes, the administration policy of an edge network
restricts external users to access internal network
resources (e.g. the internal library server) or external
resources (e.g. a purchased service provided by an
external server) by the unauthorized internal proxy.
Sometimes, administration policy of an edge network
restricts internal users to use the unauthorized internal
proxy to access internal or external servers to avoid billing
or access control.
Currently, network administers can use active detection
method to scan proxy servers, such as the tool proxycheck
[8]. The main problems of active detection method are:
(1) It will take a long time to scan a large network.
(2) It brings extra detection packets into the network by
consuming the bandwidth.
(3) It will fail if the proxy servers are configured with
access control.
In this paper, we propose a passive Proxy detection
method based on application layer information.

3. Detection on Network Address Translator

3.1 Application Presence Information

Some network applications are user-oriented and designed
to be used by an individual on one host. Therefore,
normally users run only one application instance on one
host. If there is more than one instance of such
applications (we call it application presence information)
running on one IP address, it is likely that there is a NAT
gateway on this IP address.
From the prevalent network applications, such as Web,
Email, FTP, IM (Instant Messaging), etc., we choose IM
as the application for detection, for the following reasons:
(1) Usually, only one instance of one type of IM
application runs on a host. Some IM applications (e.g.,
Microsoft MSN Messenger) have the limitation that only
one instance can be running on one desktop. It is also
reasonable that people usually do not run two or more
instances of each type of IM at the same time.
(2) Popular IM applications (e.g., MSN Messenger, Yahoo
Messenger and Google Talk) have a large number of users.
(3) IM users often keep the IM clients running for a
relatively long period.
Those characteristics make the IM based information can
be used for detection, and make detectors have more
chance of detecting the private address space. In this paper

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

149

we choose Google Talk, Microsoft MSN Messenger, and
Tencent QQ (a popular IM tool in China) as the IM
applications for NAT detection.

3.2 Typical IM Presence Information

Google Talk client sets up a TCP connection to the Google
Talk servers at service port 5222 to transfer instant
messages and presence information. This TCP connection
will last the whole session.
The MSN Messenger client will connect to three kinds of
servers: Dispatch Server (DS), Notification Server (NS)
and Switchboard Server (SS). MSN Messenger servers use
port number 1863 as service port. The MSN Messenger
client periodically sends the ``PNG'' command to NS. This
command is used to ensure that the TCP connection to be
alive. The format of the command is:
PNG\r\n
Tencent QQ has a majority of Instant Messaging users in
China. A client of QQ can use either TCP or UDP to
communicate with the server. QQ also has a keep-alive
mechanism: the client sends a keep-alive packet to the
server every 60 seconds.

3.3 Detection Algorithm

Definition 1: Presence Packet. Presence Packet denotes
the packets that carry the application presence information.
Definition 2: Presence Channel is defined by a 5-tuple
<source IP address, destination IP address, source port,
destination port, payload characteristic>. Given the
payload characteristic, the source IP (the suspicious target
address i we observing) and the destination port number
(service port number of a specific IM application IMj),
then the presence channel cijkl can be determined by
destination IP k and source port number l.
Definition 3: A timer tijkl is set for each cijkl to denote the
final updated time of that presence channel.
Definition 4: TMAXj is set for the maximum idle time of
the presence channel for each IM application IMj.
Definition 5: A threshold THj is set for the maximum
number of allowed concurrent presence channels for each
IM application IMj.
Figure 1 shows the list of IM presence channel records in
NAT detector. For each target IP address in the edge
network, a list of presence channels is maintained for each
kind of IM application. A presence channel record
contains destination IP address, source port, and a
timestamp set for each channel to denote the latest update
time for that channel.

.
Fig. 1. Presence channel table.

Based on the IM presence characteristics discussed in
section 2, we assume that there is more than one host
running the same IM application behind a NAT gateway
and there is only one instance for each type of IM
application on one host. A NAT detector captures IM
presence channel packets and counts the number of
presence channels, if the number of presence channels
exceeds a threshold, it will report detection results. The
expired channel records will also be removed, if the
channel record hasn’t been updated in the maximum value
of the time gap between two packets for one presence
channel. Figure 2 shows the NAT detection algorithm.

Step 1: For each target IP address i in the monitored access network,
the detector maintains a presence channel list Cij for each IMj.

Step 2: When a presence packet of IMj coming from target IP address
i is captured, the detector checks destination IP address k and
source port number l to get the presence channel cijkl and determines
whether belongs to an existing channel.
if cijkl ∈Cij, then tijkl = 0 (reset the update time);
else, create a new presence channel cijkl , Cij = Cij ∪{ cijkl}.

Step 3: The detector counts the number of current presence
channels of target i and IMj to make the verdict.
nij = number of members in Cij .
if nij ≧ THij , then makes a verdict that this IP address i is a NAT
gateway address.

Step 4: The detector checks each tijkl to remove expired
presence channel cijkl.
if tijkl ≧ TMAXj , then Cij = Cij - { cijkl}.

Fig. 2 NAT detection algorithm.

To capture the presence channel packets for Google Talk,
we apply IP address and port number of its server as the
packet filtering criteria. Google Talk clients connect to
only one server in the whole log-on process. The total
number of all the Google Talk servers is not large. We
collected the IP addresses of the servers by domain name
“talk.google.com”. When a packet passes through the
detection point, we check whether the destination address
in this packet is one of the Google Talk servers and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

150

whether the destination port is 5222, to judge whether it is
a presence channel packet for Google Talk.
To capture the presence channel packets for MSN
Messenger, we apply port number and payload
characteristic as the packet filtering criteria. From the
observation on MSN Messenger discussed in last section,
we can see that TCP packets between the target and one of
the Notification Servers are what we want to filter out.
Since there are fairly a large number of notification
servers and it is difficult to collect all addresses of NS
servers, we did not use address as a filtering condition. We
filter presence channel data of MSN Messenger by
checking whether the port number is 1863 and whether
there is a string ”PNG” in the payload.
Similarly as MSN messenger, to capture the presence
channel packets for Tencent QQ, we use port number and
the payload characteristic as the packet filtering criteria.
We filter presence channel data of Tencent QQ by
checking whether the port number is 8000 (UDP) or 80
(TCP) and whether there is a keep-alive command in the
payload.
There are some IM applications (such as Tencent QQ) that
use UDP in transmitting presence information. For these
IMs, as long as the client port number is not often changed
and NAT doesn't use different port number to transfer
UDP packets for the same presence channel, their packets
can be treated in the same way as TCP packets.
After capturing an IM presence channel packet, the NAT
detector can find the channel list according to the source
address (target IP address in the edge network under
detection) and IM type (based on the characteristics of
destination address, destination port or payload). Then the
presence channel record is updated by the source port and
destination address information of packet. If the channel
record exists (the source port and destination IP address
can be found in the channel list), change the “latest update
time”. Otherwise, create a new channel record and append
it to the list.

4. Proxy Detection

4.1 Socks and HTTP CONNECT Proxy Detection

Besides NAT, hosts in private network could use the socks
proxy [9] and HTTP proxy in CONNECT mode [10] to
access the Internet. The socks proxy and HTTP
CONNECT proxy act quite like NAT: they all simply
relay the data. If there are many users using IM behind a
socks proxy or HTTP CONNECT proxy, there would also
be many presence channels in existence. Therefore the
NAT detection method based on Instant Messaging can be
also used to detect the presence of socks proxies and
HTTP CONNECT proxies.

4.2 Proxy Detection

Unlike NAT, an HTTP proxy encapsulates forwarded user
data, so we can not directly used the method proposed in
last section.
One method to detect HTTP proxy is to find HTTP proxy
fingerprints. As figure 3 shows, a packet forwarded by
HTTP proxy contains HTTP proxy fingerprints: “Via” and
“X-Forwarded-For”. “Via” is inserted by a HTTP proxy to
indicate that this packet has been forwarded by that proxy
and it is used for avoiding loop. “X-Forwarded-For” is
used by software squid [11] to express this packet is
forwarded for this source address. Although it’s not
standardized, some other software also uses “X-
Forwarded-For”.

GET / HTTP/1.0
Accept: */*
Accept-Language: zh-cn,en-us;q=0.5
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US;
rv:1.8.0.1) Gecko/20060124 Firefox/1.5.0.1
Host: www.google.com
Via: 1.0 proxy.domain:9981

(squid/2.5.STABLE13)
X-Forwarded-For: client.host.name
Cache-Control: max-age=259200
Connection: keep-alive

Fig. 3 A packet example.

We noticed that some applications other than WEB also
support accessing application servers via the HTTP proxy.
The application’s data are encapsulated in HTTP packets.
Therefore another detection method is checking whether
the data carried in HTTP packets is another application’s
data, as shown in figure 3.
In this paper, we still choose Instant Messaging as the
non-WEB application, because IM is the third most
popular application.
In section 3, we analyzed characteristics of an Instant
Messaging application working without a HTTP proxy. In
the HTTP proxy mode, the characteristics of MSN
messenger are:
(1) A MSN Messenger client connects to the server
gateway.messenger.hotmail.com, which acts as a
notification server, at service port 80. A Session ID is
assigned to keep the connection stable. All control
commands are encapsulated in HTTP packets. The client
uses HTTP POST to let the server run a script
“/gateway/gateway.dll”.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

151

(2) The server can only reply requests from MSN
Messenger clients, but can not actively send out
commands. Therefore, the client has to periodically send
empty request to the server so that the server can send out
the command by replying to the empty request.

POST
/gateway/gateway.dll?SessionID=217136341.5271
HTTP/1.0\r\n
Accept: */*\r\n
Content-Type: text/xml; charset=utf-8\r\n
…

Fig. 4. A HTTP request sent by MSN messenger client.

As shown in figure 4, we can use “POST
/gateway/gateway.dll” as the fingerprint of presence
channels and use the algorithm presented in section 3 to
count the number of channels and detect HTTP proxies.
Because the fingerprint contains enough information, even
when we set the threshold as 1, the detection results are
still accurate.

5. Analysis and Comparison

Fig. 5 Experiments on NAT detection.

We implemented the NAT and Proxy detector on Linux.
The captured length of a packet is:

1 2
(....)

nIP TCP IM IM IMLen Len Max Len Len Len+ + + + +

LenIP denotes the length of IP header. LenTCP denotes the
length of TCP header.

iIMLen denotes the length of a type

of IM application payload used for detection. For MSN
Messenger, the length of payload “PNG\r\n” is 5 bytes.
For Tencent QQ, the length of keep-alive command is 7
bytes. For HTTP proxy detection, we need to capture the
whole packet.
The timeout timer and maximum number of presence
channels are set as the value shown in table 1.

Table 1: Parameter value setting

 Timeout timer Threshold

Google Talk 50 seconds 2

MSN Messenger 100 seconds 2

Tencent QQ 180 seconds 3

We did primary experiments with the detector in the
environment shown in figure 5. We ran detector and the
well-known tool p0f [4] on host C and ran MSN
Messenger/Tencent QQ on host A, B, X, Y, and Z (X, Y,
and Z are hosts inside a private address space). The NAT
detection results are shown in table 2. The reason that the
last experiment fails is because the total number of IM
users is below the threshold. We noticed that p0f failed in
all test cases, because host X, Y and Z uses the same
Windows operating system. The experimental results
validate the detection method proposed in this paper.

Table 2: NAT detection results

Hosts X, Y and Z in
private address space

Normal host
A and B Results

X and Y run Google
Talk, Z runs MSN

M

A and B run Google
Talk

Detectio
n

d
X, Y, and Z run Tencent

QQ (single instance)
A and B run Tencent
QQ (single instance)

Detectio
n

succeeds
X and Y run MSN

Messenger
A and B run MSN

Messenger
Detectio

n
succeeds

X runs Google Talk and
Y runs MSN Messenger

No IM application
running on A or B

Detectio
n fails

We also did some experiments in Tsinghua campus
network. According to the detection results, we found
4254 IM users and 162 NAT gateways out of 33860 active
IP addresses. The max number of IM application used in
one private address space is 75 QQ presence channels and
14 MSN presence channels. Compared with experimental
results we did in the same environment using p0f version
2.06 (threshold is set to 30%), our detector found 54 more
NAT gateways, which p0f could not detect because hosts
in the private address space use the same operating system.
Figure 6 shows the experimental environment for Proxy
detection. We ran both detector and p0f on host D and ran
the socks proxy CCProxy [12] on host C. The detection
results are shown in table 3. The reason that the second
experiment fails is because the total number of IM users is
below the threshold. The reason p0f fails in all test cases is
because it can only observe TCP/IP stack fingerprints of
host C.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

152

Fig. 6. Experiments on proxy detection

Table 3: Socks proxy detection results

Scenarios Results

Host A and B run MSN Messenger
using socks proxy on host C.

detector succeeds,
p0f fails.

Host A runs MSN Messenger using
socks proxy on host C. Host B
runs MSN Messenger without

using socks proxy.

detector fails,
p0f fails.

We installed HTTP Proxy squid on host C and detector on
host D. As shown in table 4, we noticed that even if only
one host runs an IM application, we can still detect the
HTTP Proxy based on the fingerprint.

Table 4: HTTP proxy detection results

Scenarios Results

Host A and B run MSN Messenger using
HTTP proxy on host C.

detector
succeeds

Host A runs MSN Messenger using HTTP
proxy on host C. Host B runs MSN

Messenger without using HTTP proxy.

detector
succeeds

6. Conclusion

This paper presents the detection on unauthorized source
address transition by capturing and analyzing application
presence information to enhance edge network security
and management for service providers. To the best of our
knowledge, it is the first time that application presence
information has been used in NAT and Proxy detection. In
addition to passive method, we are working on the active
methods and the enhancement of algorithm efficiency.

References

[1] P. Srisuresh and K. Egevang, Traditional IP Network

Address Translator (Traditional NAT), RFC3022, Jan 2001.
[2] P. Phaal, Detecting NAT Devices Using Sflow, URL

http://www.sflow.org/detectNAT, 2003.
[3] S.M. Bellovin, A Technique for Counting NATted Hosts.

proc. of 2nd Internet Measurement Workshop, 2002: p. 267-
272.

[4] M. Zalewski, Passive OS Fingerprinting Tool, URL
http://lcamtuf.coredump.cx/p0f.shtml.

[5] W. Kaniewski, Detect NAT Users in Your LAN, URL
http://toxygen.net/misc/.

[6] M. Ulikowski, NAT Detection tool, URL
http://elceef.itsec.pl/natdet/.

[7] T. Kohno, A. Broido, and K.C. Claffy, Remote Physical
Device Fingerprinting, proc. of IEEE Symposium on
Security and Privacy 2005, May 2005.

[8] M. Tokarev, Proxycheck: Open Proxy Checker, URL
http://www.corpit.ru/mjt/proxycheck.html.

[9] M. Leech, SOCKS Protocol V5, RFC 1928, Mar 1996.
[10] R. Khare, S. Lawrence. Upgrading to TLS Within HTTP/1.1.

RFC 2817, May 2000.
[11] Squid, URL http:// www.squid-cache.org/.
[12] CCProxy, URL http://www.youngzsoft.net/ccproxy.

Jun Bi received the B.S., M.S. and
Ph.D. degrees in Computer Science
from Tsinghua University, Beijing,
China. From 1999 to 2003, he worked
for Bell Laboratories Research and Bell
Labs Advanced Technologies, New
Jersey, USA. Currently he is a full
professor and director of Network
Architecture & IPv6 research laboratory,
Network Research Center, Tsinghua

University. His research interests include IPv6 next generation
network architecture and protocols.

Jianping Wu received the B.S., M.S.
and Ph.D. degrees in Computer
Science from Tsinghua University,
Beijing, China. Currently, he is a full
professor in the Computer Science
Department, Tsinghua University. He
is also the director of the China
Education and Research Network. His
current research interests include
computer network architectures, next

generation Internet, and formal methods.

