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Summary 
The Least-Squares (LS) acoustic source location estimation 
technique is reported for the application in a wireless sensor 
network. The technique uses acoustic signal energy 
measurements taken at individual sensors of a wireless sensor 
network to estimate an acoustic source location. In this paper, an 
improved formulation of this localization problem, which 
clarifies the LS estimation errors, is firstly presented. Then two 
weighted solutions, weighted nonlinear LS and weighted linear 
LS, are given. The weighting coefficients are derived from the 
energy measurements, which directly relate the energy strength 
with the estimation errors. Compared with existing LS methods, 
the weighted LS solutions deliver more accurate results and offer 
flexible implementation to reduce computational load. Extensive 
simulations are conducted to confirm the performance 
advantages. 
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1. Introduction 

Efficient collaborative signal processing algorithms that 
consume less energy for computation and less 
communication bandwidth are highly important for the 
applications of the wireless sensor network [1], [2]. Source 
localization is one of the important collaborative signal 
processing tasks. Its objective is to estimate the positions 
of one or more targets within a sensor field monitored by 
the sensor network. The existing acoustic source 
localization techniques are typically based on three types 
of sensor measurements from physical variables: time 
delay of arrival [3]-[6], direction of arrival [7]-[9] and 
received sensor signal strength or energy [10]-[12]. It is 
found that the energy-based methods derived from the 
received signal energy are much appropriate for the 
application to sensor networks [11]. In this paper, we focus 
on collaborative source localization of a single target with 
acoustic sensors.  

Let there be N sensors deployed randomly but with 
known positions in a sensor field in which a target emits 
omnidirectional acoustic signal from a point source. It has 
been shown that the acoustic energy in ground surface will 
attenuate at a rate that is inversely proportional to the 
square of the distance from the source [11]. The energy 

measurement iy  at the thi  sensor can be modeled as 

2i i i
i

sy g n
r r

= ⋅ +
−

, 1,2,i N= L      (1) 

where ig  is the gain factor of the thi  sensor , s  is the 
signal energy radiated by the acoustic source, r and ir  
are the 1p×  coordinates of the source and the thi sensor 
(p=2 or 3), in  ( 1,2,i N= L ) are measurement noise 
approximated well as Gaussian noise with 2~ ( , )i i in N μ σ  
and independent at different sensors. The problem is to 
estimate the source coordinate from the measurements.  

In [10], starting from the acoustic energy decay model, 
the authors formulate the source localization as a 
maximum-likelihood (ML) estimation problem. By 
introducing the concept of energy ratio and approximating 
the measurement noise as its mean value, the estimation 
problem is further formulated respectively as solutions of 
nonlinear and linear least-squares (LS) ones (in [11], they 
are named as ER-NLS and ER-LS methods, respectively). 
Simulation and field experiments show that these LS 
methods yield promising results. Fundamental is the 
concept of the energy ratio, which eliminates the 
estimation of source energy in the ML estimation. In 
addition, the energy ratio also gives us elegant geometric 
explanation of the source localization. As shown in [10], 
the source location can be restricted to a hypersphere (a 
circle in 2-D coordinates) whose center and radius are 
functions of the energy ratio and the two sensor locations. 
If more sensors are used, more hyperspheres can be 
determined. If all sensor measurements contain no noise, 
the corresponding hyperspheres will intersect at a 
particular point that corresponds to the source location.  

However, it should be noted that the LS estimation 
formulations of source location assume additive white 
Gaussian noise (AWGN). In practice, although it is 
reasonable to assume that the sensors have AWGN, the LS 
model error may not be AWGN. In this paper, we 
reformulate the LS estimation problems by incorporating 
the measurement noise into estimation models and find 
that weighted LS approaches are more appropriate for 
estimating the source location. Keeping in mind that the 
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less energy for computations is needed in sensor network 
applications, we derive simple weighting matrices from 
the sensor measurements. The resulting weighted LS 
approaches (denoted as ER-WNLS and ER-WLS) take a 
bit more computational load than the LS ones in [10], 
however, the estimation accuracy is greatly improved. 
Another advantage of the weighted LS methods is able to 
choose those hyperspheres or hyperplanes, which have 
great contributions to the accurate estimation of the source 
location, according to the weighting coefficients. In this 
sense, the ER-WNLS and ER-WLS can be implemented in 
smaller size of LS estimators than the ER-NLS and ER-LS 
can do.      

This paper is organized as follows. In Section 2, an 
improved estimation model of target location is formulated. 
The weighted solutions (ER-WNLS and ER-WLS) are 
presented in Section 3. In Section 4, extensive simulations 
are performed to show superior performance of the 
weighted solutions over ER-NLS and ER-LS methods. 
Section 5 is the conclusion.  
 
2. Estimation Model 
 
Instead of using model (1) directly, we consider a 
mean-removed one. Define ( )i i i ih y gμ= −  as 
normalized and mean-removed sensor measurement. Then 
(1) can be expressed as  

2i i
i

sh
r r

ε= +
−

, 1,2,i N= L          (2) 

where 2 2~ (0, )i i iN gε σ . From (2), the source energy is 
related with any sensor measurement ih  as 

2 2
ii i is r r h d ε= − − , 1,2,i N= L         (3) 

where i id r r= −  is the distance between the source and 

the thi  sensor. For any two sensors, we have 

2 22 2
j j j j i i i ir r h d r r h dε ε− − = − −  

1, 2, 1i N= −L  and 1, ,j i N= + L        (4) 

Define the energy ratio [10] ijκ of the thi  and thj  
sensors as 

1 / 2

i
ij

j

h
h

κ
−

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

For 0 1ijκ< ≠ , (4) can be reexpressed as1 

2 2
ij ij ijr c ρ ζ− = + , 

1,2, 1i N= −L  and 1, ,j i N= + L        (5) 

where ijc  and ijρ  are the center and the radius of the 
hypersphere defined in [10], 

2
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and  
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i i j j

ij
i j

d d
h h
ε ε

ζ
−

=
−

              (6) 

is a composite noise twisting the hypersphere. The noise is 
a zero-mean variable depending on measurement noise, 
sensor reading and distance between source and sensors. 
Its variance is different from one (i,j) to another (i,j).   

Equation (5) is the estimation model of the source 
location we will use in the following discussions. A great 
difference between (5) and (8) in [10] is that (5) clearly 
defines the estimation error, which depends on the sensor 
measurement noises, sensor measurements and distances 
from source to sensors. For N acoustic sensors, there will 
be 2

NC  equations similar to (5). For the brevity of 
notations, suppose that 2

NM C≤  hyperspheres are used 
for locating the source and let us denote these hypersphere 
equations as 

2 2
i i ir c ρ ζ− = + ,  1, 2, ,i M= L       (7) 

3. Energy Ratio-Based Weighted Least 
Squares Solutions 

Based on (7), two least squares formulations can be 
defined. In [10], the noise terms iζ  are assumed to be 
linear, independent Gaussian random variables with zero 
mean and identical variance. Obviously, such an 
assumption may not be true as revealed in (6) and hence 
may cause some performance degradation. In this sense, as 
is well-known, weighted least-squares formulations [13] 
will give improved solutions. Parallel to the development 
in [10], we derive two weighted least-squares solutions. 

3.1 Energy ratio-based weighted nonlinear least 
                                                  
1 For 1ijκ = , Eq. (5) is reduced to the twisted hyperplane equation 
between ir  and jr . For simplicity of presentations, we will only 
discuss the case of 0 1ijκ< ≠  in the following development. 
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squares solution (ER-WNLS) 

Define three 1M ×  vectors ( )a r , 1b  and 1n  with 
2

ir c− , 2
iρ  and iζ  as their elements, respectively. 

Then (7) is given in matrix form as  

1 1( )a r b n= +                 (8) 

The weighted nonlinear least-squares solution to (8) is 
given by minimizing 

( ) ( )1 1 1 1( ) ( ) ( )TJ r a r b W a r b= − −          (9) 

where 1W  is an arbitrary M M×  positive definite 
weighting matrix. The ER-NLS method [10] assumes that 
the noise terms iζ  ( 1,2, ,i M= L ) in the noise vector 1n  
are independent and identically distributed, and therefore 
the unit weighting matrix is used. As expected, the optimal 
weighting is the inverse of the noise covariance matrix 

{ }1 1 1
TQ E n n=  if the matrix is nonsingular [14]. However, 

as indicated in (6), the noise term iζ  in the noise vector 

1n  is due to the composition of the two sensor noises. Any 
sensor noise may be used to formulate several noise 
elements in the vector 1n . Therefore, the noise terms iζ  
are generally not independent and thus results in singular 
covariance matrix 1Q . To overcome this, we still assume 
that the noise terms are independent, but not identically 
distributed. Then the noise covariance matrix will be 
diagonal one with the variance of iζ  as its elements. This 
assumption will sacrifice some estimation performance but 
can save computational resources, which is highly desired 
in energy-saving sensor networks.  

From (6) and (8), we see that the diagonal elements of 

1Q  will be given by { }ij ijE ζ ζ , which concerns two 

sensor measurements. Note from (2) that the 22
i id r r= −  

can be approximated as 
i

s
h

. Then 

2 2
i i j j ji

ij
i j i j i j

d d s
h h h h h h
ε ε εε

ζ
⎛ ⎞−

= ≈ −⎜ ⎟⎜ ⎟− − ⎝ ⎠
      (10) 

Thus  

{ }
2 22

2
2 2 2 2

ji
ij ij ij

i j i i j j

sE s
h h h g h g

σσ
ζ ζ ω

⎛ ⎞⎛ ⎞
≈ + =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

   (11) 

where 
( )

22

2 2 2 2 2

1 ji
ij

i i j ji j
h g h gh h

σσ
ω

⎛ ⎞
= +⎜ ⎟⎜ ⎟− ⎝ ⎠

. With the double 

indices ij replaced by a single index m for the brevity of 
notations, the weighting matrix 1W  can be selected as 

1
1. , ,

m

W diag
ω

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
L L            (12) 

where m ijω ω= . Discarding 2s  will not affect the 
minimization of (9). If the noise variances at different 
sensors are equal, the noise variance terms can also be 
discarded from mω . 

After finding the weighting matrix, the source location 
can be estimated from (9) by some nonlinear optimization 
methods, such as exhaustive search, multiresolution search, 
and gradient-based steepest descent search methods. In 
Section IV, we will use multiresolution method [11] to 
conduct simulation experiments. 

Finally, we note that the (9) can be transformed into a 
linear LS problem with quadratic constraint, as discussed 
in [16].   

3.2 Energy ratio-based weighted linear least squares 
solution (ER-WLS) 

The optimization objective 1( )J r  is a 4-th order 

nonlinear equation, caused by quadratic term 2r . The 
ER-WLS formulation eliminates the quadratic term and 
has a closed form solution. For any two equations (7), 
subtracting each side and arranging their terms, we get 
hyperplane equations 

( ) ( ) ( ) ( )22 2 22 T T
i j i i j j j ic c r c cρ ρ ζ ζ− = − − − −＋  

1, 2, 1i M= −L  and 1, ,j i M= + L      (13) 

Define a matrix C with ( )2 T T
i jc c−  as each row, an 

observation vector 2b  with ( ) ( )22 2 2
i i j jc cρ ρ− − −  as 

its element, and a noise vector 2n  with ( )j iζ ζ− as its 
element. In matrix form, (13) is rewritten as 

2 2Cr b n= +                 (14) 

Then the ER-WLS solution reads as minimizing 

( ) ( )2 2 2 2( ) TJ r Cr b W Cr b= − −         (15) 
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where 2W  is a positive definite weighting matrix. The 
optimal weighting is the inverse of the noise covariance 
matrix, { }2 2 2

TQ E n n= . 
As in last subsection, we only consider the diagonal 

elements. Referring to (14), (5), and (6), any diagonal 
element of 2Q  will concern four sensor measurement 
noises. There are two possibilities for the generation of 
(13): four different sensors and three sensors with one 
common. Let us denote the diagonal element as 

( )( ){ }ij kl ij klE ζ ζ ζ ζ− − , which can be expanded as 

 
( )( ){ }
{ } { } { }2

ij kl ij kl

ij ij kl kl ij kl

E

E E E

ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

− −

= + −
      (16) 

The last term is given by 

{ }
( )( )

22

2

0,

, ,jij kl

j l ji j k j

i j k l

E s i j k j l
h h gh h h h

σζ ζ

≠ ≠ ≠⎧
⎪

≈ ⎨ ⋅ ≠ ≠ =⎪ − −⎩

 (17) 

Thus, using (10) and (17), we have 

( )( ){ } 2
ij kl ij kl ijklE sζ ζ ζ ζ τ− − ≈         (18) 

where 

( )( )
2

2

,                               (19)

, ,

ij kl

jijkl
ij kl

i j k j j l j

i j k l

i j k j l
h h h h h h g

ω ω

στ
ω ω

+ ≠ ≠ ≠⎧
⎪⎪= ⎨ + + ≠ ≠ =⎪ − −⎪⎩

 

For the first possibility, there are 43 NC⋅  hyperplanes. 
For the second possibility, there need three sensors to 
determine a hyperplane, so there are 3

NC  hyperplanes. 
With the four indices ijkl replaced by a single index p 
for the brevity of notations, the weighting matrix 2W  is 
given by 

2
1. , ,

p

W diag
τ

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭
L L            (20) 

where p ijklτ τ= .  

With the weighting matrix defined by (20), the 
estimated source location is given by   

( ) 1

2 2 2
T Tr C W C C W b

−
=             (21) 

4. Performance Simulations 

We have conducted extensive simulation experiments to 
assess the performance of the ER-WNLS and ER-WLS 
methods. Two simulation results are presented here. The 
first experiment compares the performance of the 
ER-WNLS and ER-WLS methods to that of the ER-NLS 
and ER-LS methods. The improved performance of the 
ER-WNLS and ER-WLS methods in terms of location 
estimation errors and range estimation errors is apparent in 
the simulation results. The second experiment shows the 
performance variations as the weighting number. It is 
found that the ER-WNLS and ER-WLS methods have the 
advantages to choose important hyperspheres and/or 
hyperplanes for estimations. Therefore, small number of 
hyperspheres and/or hyperplanes can be used to implement 
the source location estimations with undeteriorated 
performance. 

We assume there are N sensor nodes, which are 
randomly scattered in a 2-D (p=2) sensor field of size 
100m by 100m. All the sensor gain calibration is set at 1, 
and the measurement noise at different sensors is assumed 
i.i.d with the variance 2σ . A single source location is also 
chosen randomly from within the sensor field. Equation 
(1) is used to generate the acoustic energy readings and 

10000s = .  
For the ER-NLS and ER-WNLS methods, we use 

multiresolution (MR) search solution with three levels of 
grid sizes at 10 meters, 2 meters, and 0.4 meter, 
respectively. 

A. Performance Comparison for different sensor 
numbers and noise levels 

In this study, we compare the source location estimation 
errors and the range estimation errors for different sensor 
numbers and noise levels with four methods of ER-NLS, 
ER-LS, ER-WNLS and ER-WLS. First, at the noise level 

0.2σ = , we calculate the estimation errors (recorded in x- 
and y-coordinates and ranges, respectively) with sensor 
number N=6, 10, and 25. Then, with N=10, we calculate 
the range estimation errors at different noise levels. For 
each σ  and N setting, we conduct 2000 repeated trials 
which are averaged to obtain the estimation errors.   

Table 1 shows the mean and covariance matrices of 
the location estimation errors. From the table, it is seen 
that the mean values of these four methods do not show 
any statistically significant bias and, hence, the four 
estimates are unbiased. Furthermore, the location errors in 
different dimensions are uncorrelated and the related 
variances are approximately equal. It is also noted that the 
variances in both x- and y-coordinates of all the methods 
decrease as the sensor number increases. The ER-WNLS 
and ER-WLS methods consistently outperform the 
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ER-NLS and ER-LS methods. The superiority of the 
ER-WNLS method to the ER-NLS method is obvious, and 
as sensor number increases, the ER-WNLS method 
performs best.  

The range estimation errors can be further analyzed by 
calculating its probability density distribution. We use the 
histograms of the errors as approximations of the 
distribution. The results are shown in Fig.1, with 5-m 
increment bin. In this figure, each row represents results 
obtained from a particular method. Each column 
represents results from a particular sensor number. The 
mean and the standard deviation of the error are also 
calculated and listed in each subfigure. It is again seen that 
ER-WNLS method performs best among all these 
methods.  

 
Table 1. Mean covariance matrices of location estimation errors 

 6 sensors 10 sensors 25 sensors

NLS 
[ ]0.52 0.04

270 2
2 294

⎡ ⎤
⎢ ⎥
⎣ ⎦

 [ ]0.16 0.38

245 1
1 259

−

−⎡ ⎤
⎢ ⎥−⎣ ⎦

  [ ]0.02 0.15

225 11
11 226

−

−⎡ ⎤
⎢ ⎥−⎣ ⎦

WNLS 
[ ]0.00 0.33

147 5
5 165

⎡ ⎤
⎢ ⎥
⎣ ⎦

 [ ]0.11 0.12

84 2
2 87

−

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 [ ]0.07 0.04

23 1
1 19

− −

⎡ ⎤
⎢ ⎥
⎣ ⎦

LS 
[ ]0.32 0.07

351 33
33 378

−

⎡ ⎤
⎢ ⎥
⎣ ⎦

 [ ]0.21 0.01

140 3
3 147

⎡ ⎤
⎢ ⎥
⎣ ⎦

 [ ]0.03 0.08

44 1
1 41

−

−⎡ ⎤
⎢ ⎥−⎣ ⎦

WLS 
[ ]0.01 0.20

326 54
54 369

⎡ ⎤
⎢ ⎥
⎣ ⎦

 [ ]0.08 0.02

104 5
5 106

− −

⎡ ⎤
⎢ ⎥
⎣ ⎦

  [ ]0.07 0.00

25 0
0 25

−

⎡ ⎤
⎢ ⎥
⎣ ⎦
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Fig. 1.  Distribution of the range estimation errors of the four methods 

Next, the root-mean-squared errors (RMSEs) of the 
range estimations of the four methods are simulated at 
different noise levels and N=10. Fig.2 gives the variations 
of the RMSEs versus noise levels σ . From this figure, we 

can see that the RMSEs increase as the noise level 
increases. The ER-WNLS and ER-WLS methods yield 
smaller errors than the ER-NLS and ER-LS methods can 
do. Again, the ER-WNLS method outperforms other 
methods.  
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Fig.2. RMSEs of the range estimation at different noise levels σ  

(N=10) 

B. Localization Accuracy with Reduced 
Hyperspheres and Hyperplanes 

If N sensors are used to detect the source, as analyzed 
before, there will be 2

NC  hyperspheres for the nonlinear 
LS solutions and 3 43N NC C+ ⋅  hyperplanes for the linear 
LS solutions. However, in theory, the nonlinear LS 
methods only need 3 hyperspheres, and the linear LS 
methods only need 2 hyperplanes. In another world, there 
will be large redundant hyperspheres/hyperplanes in LS 
estimators. The weighted LS solutions proposed in this 
paper enable us to choose the important (large weighting) 
hyperspheres or hyperplanes for location estimations.  

In this simulation, we study the effect of weighting 
numbers on estimation accuracy. Let N=10. Then there are 
all 2

10 45C =  hyperspheres for the ER-WNLS method 
and 3 4

10 103 750C C+ ⋅ =  hyperplanes for the ER-WLS 
method, i.e., there are equal numbers of weights to be 
computed. We conduct 2000 trials, and in each trial, all the 
weights of the hyperspheres or hyperplanes are computed 
ahead and arranged in descending order. Figs.3 and 4 show 
the variations of the mean values of the weights for 

0.2σ = . As is seen, there are only small numbers of 
weights with large weighting coefficients. The estimation 
accuracy of the source location is largely due to these 
weights.  

Figs. 5 and 6 give the RMSE variations of the location 
estimation errors with ER-WNLS and ER-WLS methods 
as the number of weights. The estimated RMSEs decrease 
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as the number of weighting coefficients increases. When 
the number increases to certain values, the RMSEs do not 
decrease significantly and even ascend slightly for the 
ER-WLS method. For the simulation example, 11 
hyperpheres for the ER-WNLS method or 100 hyperplanes 
for the ER-WLS method are enough to ensure the 
estimation accuracy. The numbers of the 
hyperspheres/hyperplanes are greatly less than those 
required in ER-NLS and ER-LS estimators.   

The advantage of the weighted methods in 
applications is quite obvious. A threshold is set to select 
the weighting coefficients and then the computation source 
can be saved without significantly sacrificing the 
localization accuracy.  
 

0 5 10 15 20 25 30 35 40 45
-4

-3

-2

-1

0

1

2

3

4

Index of sorted weighting coefficients

M
ea

n 
va

lu
es

 (
lo

g1
0)

 
Fig.3. Mean values (

10log ) of the sorted weighting coefficients for the 
hyperspheres 
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Fig.4. Mean values ( 10log ) of the sorted weighting coefficients for the 

hyperplanes 
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 Fig.5. RMSEs of the ER-WNLS method versus the number of 

hyperspheres 
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Fig.6. RMSEs of the ER-WLS method versus the number of 

hyperplanes 

5. Conclusions 

In this paper, an improved energy based acoustic source 
localization estimation model is proposed and two 
weighted least squares solutions are presented. Extensive 
simulations show that these weighted solutions yield 
performance superior to that of the existing least square 
solutions. The weighted formulations enable us to remove 
redundant hyperspheres and/or hyperplanes in original 
formulations and save computational source.  
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