
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007 
 

 

179

Manuscript received January 5, 2007.  
Manuscript revised  January 25, 2007. 
 
 

 
 

 
A Conceptual Framework for Assessing Password Quality 

 
Wanli Ma, John Campbell, Dat Tran, and Dale Kleeman 

  
School of Information Sciences and Engineering 

University of Canberra, Australia

Summary 
Password authentication is the most widely used authentication 
mechanism, and it will still be with us for many years yet to 
come. It is effective, simple, and accurate, with no extra cost. The 
strength of password authentication relies on the strength of the 
passwords. Good (or strong) passwords are essential for high 
level security. End user education and computerized proactive 
password checking play vital roles in ensuring good passwords. 
However, both demand clear, simple, and concise rules on what a 
good password is. It is not hard to find guidelines and advices on 
good passwords; but it is not so easy to find a clear, simple, and 
concise rule to be used for end user education and computer 
programs for proactive password checking. In this paper, we 
develop a theoretic framework on measuring password quality – 
password quality indicator (PQI). A PQI of a password is a pair 

),( LD=λ , where D is the Levenshtein's edit distance of the 
password to the base dictionary words, and L is the effective 
password length. Based on PQI, we further simplify the rule for a 
good password to at least 8 characters long, with at least 3 
special characters plus other alphanumeric characters. 
Key words: 
Password, Password Quality, Password Cracking, Computer 
Security, Levenshtein's Edit Distance, 

1. Introduction 

Authentication and authorization are the foundation of 
information security. Authentication is responsible for 
verifying that the person is really who he/she claims, and 
authorization is about assigning appropriate privileges to 
the person after the verification of his/her identity. 
Authentication is the first defense of the security operation 
of any information system. 
 There are 3 types of authentications [1, p 209]: (i) 
something the user knows, for example, password and PIN 
(personal identity number), (ii) something the user has, for 
example, physical keys, access cards, and smart cards etc., 
and (iii) something the use is – so called biometric 
authentication, such as voice recognition [2], fingerprints 
matching, and iris scanning etc. 
 Password authentication is simple, accurate, and 
effective. Although there are some concerns about weak 
passwords which lead to weak security; however, the 
weakness is not within the password authentication itself, 
but the choice of the passwords by human users.  

Physical keys or other physical devices, such as smartcards 
and access cards etc., are actually activated by passwords 
or PINs. They can be regarded as a hybrid authentication 
mechanism. Biometrics are useful to establish authenticity 
and for non-repudiation of a transaction. There has been a 
significant surge in the use of biometrics for user 
authentication in recent years because of the threat of 
terrorism and the Web-enabled world [3]. However, 
biometric authentication is a lot more expensive to 
implement, and yet not so accurate as password 
authentication. Furthermore, biometric features can be 
counterfeited, and they cannot 100% ensure authenticity or 
offer a guaranteed defense against repudiation. It is a good 
approach that different types of authentication systems 
working together to enhance security and performance [4, 
5]. In summary, password authentication still is and will 
continue to be the working horse of information security. 
According to Saita [6], who reported the panel discussion 
at RSA 2005 conference,  “Password will be with us 
forever”, because “We've got to make security simpler to 
use if it's going to be effective”, as suggested by the panel 
members. 
 The strength of password authentication relies on the 
strength of the passwords. We all understand the 
importance of choosing good or strong passwords 1 .  
Education and technical help are the keys for ensuring 
strong passwords [7]. Both education and technical help 
demand a clear and concise definition on what a good 
password is, in other words, a simple method of measuring 
password quality. 
 It is not hard to find guidelines or advices on choosing 
good passwords. For example, Yan et al [8] summarized 
that “[A good] password should consist of mixed 
characters or special characters, and should not consist of 
words found in the dictionary”. Pfleeger and Pfleeger [1, 
pp 218-219] have these advices on choosing a good 
password “Use characters other than just A-Z”,  “Choose 
long passwords”,  “Avoid actual names or works”, and 
“Choose an unlikely password”. Similar advices can be 
found almost everywhere on security operation manuals, 

                                                  
1 In this paper, we use good passwords and strong passwords 
interchangeably, and bad passwords and weak passwords 
interchangeably as well. 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007 
 

 

180

policy papers, password security papers, and many web 
sites – e.g., [9]. After reading all these guidelines and 
advices, one may still not have a clear idea on what a good 
password is. Table 1 has 5 password examples. How do we 
judge these passwords? We know that Password 1 is not 
good because it is a dictionary word. How about the rest? 
Is Password 2 good or not? What about Password 3. And 
finally, how do we compare the quality of Password 4 and 
Password 5? Which one is better? 
 

Table 1: password examples 
 password 
1 constitution 
2 c0nstitution 
3 c0ns+itution 
4 akjuwfg 
5 D$f9 

 
 Password quality is decided by the time required to 
crack the password. The longer time it requires, the 
stronger the password is. In this paper, we propose a 
means of measuring password quality – password quality 
indicator (PQI). The PQI of a password is a 
pair ),( LD=λ , where D is the Levenshtein's edit 
distance of the password to the base dictionary words, and 
L is the effective password length. The effective password 
length is the equivalent length of the password in the 
standard password format, which consists of only the 10 
digit characters (0-9). From PQI, to avoid the costly 
operation of proactive password checking [10-12], we 
further develop a concise rule for choosing a good 
password: a good password should be at least 8 characters 
long, with at least 3 special characters plus other 
alphanumeric characters. The rule is easy to remember 
and easy to be checked by a computer program. 
 The paper is organized as follows. We first study 
password cracking strategies in Section 2, and then in 
Section 3, we develop the rationale of our password 
quality indicator theory. We conclude the paper with our 
future work in Section 4. 
 
2. Cracking Passwords 
 
There are many different types of password attacks, e.g., 
through remote logon, local logon, intercepting password 
hash on the network, and stealing password hash via 
SpyWare etc. [13, 14]. The goal of the attacks is the same: 
to gain unauthorized access by guessing the password. 
Regardless the types of password attacks, in essence, 
password cracking is about trying different character 
combinations until getting a match to the right password. 
In other word, password cracking is a trial and error 
process. 

 To effectively crack a password, some strategies have 
to be in place. The obvious combinations should be tried 
before the brute force enumeration of all possible 
password candidates. 
 Let’s first list the cost of the brute force attack as the 
bench mark. Without the knowledge of the password 
makeup, the length of the password, and the character set 
used in the password, trying the combinations of all 
possible characters in all possible lengths is very costly. 
There are 93 printable characters2, which can be used in 
passwords.  These characters are: 

• 26 lower case letters, 
• 26 capital letters, 
• 10 digit characters, and 
• 31 special characters: ~!@#$ %^&*( )_-+= 

{}|[] ¥:”<> ?;’,. / 
 There are n93  possible password candidates for the 
password length of n. Table 2 gives the number of possible 
password candidates for n from 3 to 10. From the table, we 
can see that combination explosion makes the trial and 
error process infeasible after the password length goes 
beyond 7 characters. 
 Instead of starting from this hard approach, dictionary 
words can be tried first. In this paper, we use dictionary 
words to stand for all common words, which include 
ordinary dictionary words, the names of people and places, 
commonly used phases, and movie names etc. There are 
many dictionary collections available, for example [15]. In 
this paper, for illustration purpose, we use the Fedora Core 
5 English spell-checking dictionary as the example. The 
dictionary has 479,625 words. The shortest words are just 
1 character long, and the longest word is 
“pneumonoultramicroscopicsilicovolcanokoniosis”, 45 
characters long. The average word length is 9.3 characters. 
Testing all these words by trial and error method only 
takes the effort at the same magnitude of enumerating all 
possible passwords of 3 characters long (Table 2), but we 
have more chances to succeed, as research suggested that 
dictionary words account for a large portion of passwords 
due to the memorability reason [13, 16]. 
 If the dictionary words based cracking is not 
successful, the next best bet would be the variations to the 
dictionary words. Human beings are notoriously bad in 
handling meaningless random character strings. Passwords 
are for human beings to use. Therefore, a password has to 
be easily remembered. Small changes to the dictionary 
words fit perfectly into the situation. 
 
 
 

                                                  
2 We ignore the possibility of using non-printable characters, 
such as white space, back space, and tab etc., in passwords. 
Using these characters or not does not change the validity of the 
argument in this paper. 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007 
 

 

181

Table 2: The number of possible password candidates of 
different password length 

n no of passwords cracking time3

3 804,357 8.04 sec
4 74,805,201 12.47 min
5 6,956,883,693 19.32 hr
6 646,990,183,449 2.5 mon
7 60,170,087,060,757 19.34 yr
8 5,595,818,096,650,401 1,799.07 yr
9 520,411,082,988,487,296 167,313.23 yr

10 48,398,230,717,929,316,352 15,560,130.76 yr
 
 For a word of n characters long, suppose that the 
derived words only have 1 character difference from the 
original word: 

• There are n+1 insertion positions: before the first 
character, in-between every 2 neighbor characters, 
and after the last character. For each position, 
there are 93 possible insertions (the 93 printable 
characters). All together, there are 93*(n+1) 
possibilities. 

• There are n deletions, which makes other n 
possibilities. 

• There are n modifications. Each modification can 
take 92 possible choices – 93 printable characters 
minus the to-be-modified character itself. The 
operation gives the last 92*n possibilities. 

 Putting the 3 operations together, for a word of n 
characters long, we have 
 

9329392)1(93 +××=×+++× nnnn       (1) 
 
possible derived words. Each of the words is only 1 
character different from the original word. If each of the 
derived words is 2 characters different from the original 
word, we can work out the total number of possibilities 
based on Formula (1): 

• There are 93*(n+1) words obtained by inserting 1 
character into the original word. Each of the word 
is n+1 character long. By Formula (1), 93*(n+1) 
words give [93*(n+1)]*[93*2*(n+1) + 93] 
possible words, which are 2 character different 
from the original word. 

• There are n words obtained by deleting 1 
character from the original word. Each of the 

                                                  
3 In this paper, we assume that the encryption algorithm is 
crypt(3) on a standard Unix platform. The password cracking 
performance data is from a desktop computer (an Intel Pentium 4, 
2.4 GHz, with Hyper-Threading turned off) running Fedora Core 
5 Linux operating system. The platform can complete a crypt 
function call in approximately 10 microseconds. This 
performance implies a capacity to test up to 100,000 different 
passwords per second. The data will be different in different 
settings, but the assumption does not void the validity of the 
argument in this paper. 

word is n-1 characters long. Again, from Formula 
(1), they give n*[93*2*(n-1) + 93] possible 
words. 

• There are 92*n strings obtained by modifying 1 
character from the original word. Each of the 
word is exactly n character long. They give 
93*n*[93*2*n + 93] possible new words, 
according to Formula (1). 

 All together, the number of password candidates 
which are 2 characters different from the original word is: 
 

393)93693(2)93932( 2222 ×+×−×+××+× nn
                                         (2) 
 
 We still use the Fedora Core 5 Linux dictionary as the 
example. The dictionary has 479,625 words with average 
length of 9.3 characters. Using formula (1) and (2) on the 
average word length, we have Table 3. 
 

Table 3: The number of possible password candidates 
by varying the dictionary words 
no of diff no password candidates cracking time

0 479,625 4.79 sec
1 874,260,450 2.42 hr
2 1,686,357,413,595 6.51 mon

 
 From Table 3, it is still hopeful to try 1 and 2 
character’s variations to the dictionary words, but there is 
no point to try 3 character’s variations, as it is not as good 
as to start another round of enumeration from small 
character sets (below), for example, all lower case 
characters (26 characters), all upper case characters (26 
characters), all lower case characters with digit characters 
(36 characters), or all upper case characters with digit 
characters (36 characters) Table 4. 
 
Table 4: The number of password candidates of different 
password length (smaller character set) 

26 characters 36 characters n 
no passwords time no. passwords time 

3 17,576 0.18 
sec 

46,656 0.47 
sec

4 456,976 4.57 
sec 

1,679,616 16.8 
sec

5 11,881,376 1.98 
min 

60,466,176 10.08 
min

6 308,915,776 51.49 
min 

2,176,782,336 6.05 hr

7 8,031,810,176 22.31 
hr 

78,364,164,096 9.07 
day

8 208,827,064,576 24.17 
day 

2,821,109,907,456 10.88 
mon

9 5,429,503,678,976 1.74 
yr 

101,559,956,668,416 32.65 
yr

10 141,167,095,653,376 45.39 
yr 

3,656,158,440,062,976 1175.46 
yr

 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007 
 

 

182

 In summary, a likely path to crack a password will be, 
in the order of, 

1. trying dictionary words, 
2. trying 1 (and 2) character variations to the 

dictionary words, 
3. trying to enumerate all possible password 

candidates which consist of a smaller character 
set, say just lower case characters or all lower 
case characters plus digit characters, 

4. brute force enumeration of all possible password 
candidates with the full character set (93 
characters). 

 
3. Measuring Password Quality  
 
The quality of a password depends on how long it takes, 
by trial and error method on possible password candidates, 
to find out the right match. The longer it takes, the better 
the quality is. Based on the analysis of the previous 
Section, we can measure the quality of a password by how 
different it is from the dictionary words, how long it is, and 
how big the password character set is. In this Section, we 
will first discuss these 3 measurements in details and then 
reduce them into 2 parameters of the password quality 
indicator (PQI). Finally, we develop a simple and concise 
rule on choosing good passwords. 
 
How different is a password from the dictionary 
words? Levenshtein's edit distance [17] can accurately 
measure how different two strings are. This metric 
calculates the distance between two strings by counting the 
minimal number of single character manipulations 
required, such as an insertion, deletion, or modification, to 
make the 2 strings the same [18]. Table 5 gives some 
examples of Levenshtein's edit distances. 
 

Table 5: Levenshtein's edit distances 
string 1 string 2 distance 

constitution constitution 0
constitution c0nstitution 1
constitution constitutio 1
constitution c0ns+itution 2
constitution akjuwfg 11
constitution D$f9 12

 
 Levenshtein's edit distance can be used to measure 
how different a password is from all the base dictionary 
words: first, we line up all the dictionary words, and then, 
we check the Levenshtein's edit distance of the password 
against every single word on the line. The minimum 
distance is the distance of the password to the base 
dictionary words. Table 6 has some examples of the 
passwords we collected [13, 14] and their Levenshtein's 
edit distances against the Fedora Core 5 Linux dictionary. 
 

Table 6: Levenshtein's edit distances of some sample 
passwords 

password closest dict word distance 
billabong billabong 0

Basketball basketball 1
phoenix09 phoenix 2

-boogie- boogie 2
pass_word11 password 3

4dbabes1! babes 4
Th1$1$$tup1d chaetopod 8

 
How long is it? The length of a password is the number of 
characters in the password. The length plays a vital role in 
deciding how long it takes to crack the password. Table 2 
and Table 4 list the number of all possible password 
candidates with different lengths and the time required to 
test all these candidates. 
 
How big is the password character set? A password is 
made of characters. These character are called composing 
characters. There are from certain groups, e.g., all 
characters, low case alphabet characters, or digit characters. 
We call these groups character sets. From a computer’s 
point of view, every character is the same; so is every 
character set. However, due to human preference, some are 
more preferred than the others. We artificially group the 93 
printable characters into 4 sets: 

• Character Set 1: 26 lower case letters – 
abcdefghijklmnopqrstuvwxyz 

• Character Set 2: 26 upper case letters – 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 

• Character Set 3: 10 digit characters – 
01234567890 

• Character Set 4: 31 special characters – 
~!@#$ %^&*( )_-+= {}|[] ¥:”<> ?;’,. 
/ 

 
Character Set 1 is the most popular choice for passwords, 
and a significant portion of passwords only have 
characters from Character Set 1 [1, pp 214-216]. 
 To measure the character sets used in a password, we 
propose password complexity index (PCI). We assign PCI 
value 26 to Character Set 1, 26 to Character Set 2, 10 to 
Character Set 3, and 31 to Character Set 4. If a password 
contains a character from Character Set 1, the value 26 is 
added to the PCI of the password, so long and so forth. 
However, the value of each Character Set is only used 
once, i.e., the second and the subsequent character in the 
same Character Set do not add any extra value to the 
password PCI. Table 7 gives some examples of passwords 
and their PCIs. 
 
 
 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007 
 

 

183

Table 7: Passwords and their PCI values 
password complexity index password 
component value 

billabong 26 26
Basketball 26+26 52
phoenix09 26+10 36

-boogie- 26+31 57
pass_word11 26+31+10 67

4dbabes1! 10+26+31 67
Th1$1$$tup1d 26+26+10+31 93

 
Effective Password Length: both password length and 
PCI have something to do with the number of possible 
password candidates, as shown in Table 2 and Table 4. Are 
they actually measure the same thing? 
 From Table 2 and Table 4, we can see that the number 
of 4 characters-long passwords with PCI 93 (Table 2) can 
be attained by roughly 6 characters-long passwords with 
PCI 26 (Table 4). Similarly, the number of 6 
characters-long passwords with PCI 93 can be attained by 
9 characters-long passwords with PCI 26. The same 
number of candidate passwords means the same level of 
difficulties, in terms of the time required to test all possible 
password candidates, in cracking the password. In a rough 
term, if we have lower PCI, we can choose longer 
passwords. To the theoretical extreme, we can just use a 
single character to make strong passwords, except for that 
these passwords will be extremely long. 
 To unify the measurements of password length and 
PCI, we propose the concept of effective password length. 
First, let’s define standard password format. 
 Definition (Standard Password Format): if the 
characters of a password only draw from Character Set 3, 
i.e., only 10 digit characters (0-9), the password has the 
Standard Password Format. A password in the standard 
password format has PCI 10. 
 For example, passwords “125467” and “98456902” 
are in the standard password format, but “s125467”, 
“8765t”, and “ast+Ugh” are not. Standard formatted 
passwords are the base for measuring effective password 
length. 
 For a password P, which has PCI value C and length 
m, the number of all possible password candidates of the 
same format is mC . To have the same number of 
password candidates in standard password format, which 
has PCI value of 10, we need to find out the length (L) of 
the password candidates in standard password format. 
Thus, we have: 
       LmC 10=                            (3) 
Therefore 
       CmL 10log×=                      (4) 
 We call L the effective length of password P. The 
effective password length provides us a means to compare 

the lengths of passwords with different PCIs. Table 8 gives 
some example of effective password lengths. From the 
table, we can tell that, actually, passwords “akjuwfg” and 
“D$f9” are of the same strength. 
 

Table 8: Effective password lengths 
password length PCI / 

log PCI 
effective 
length 

billabong 9 26/1.14 10.26
Basketball 10 52/1.72 17.20
phoenix09 9 36/1.56 14.04

-boogie- 8 57/1.76 14.08
pass_word11 11 67/1.83 20.13

4dbabes1! 9 67/1.83 16.47
Th1$1$$tup1d 12 93/1.97 23.64

akjuwfg 7 26/1.14 7.98
D$f9 4 93/1.97 7.88

 
Password Quality Indicator: the password quality 
indicator (PQI) of a password is a pair  ),( LD=λ , 
where D is the Levenshtein's edit distance of the password 
to the base dictionary words, and L is the effective 
password length. When D>=3 and L>=14, we have a 
good password. D>=3 means that the password is at least 
3 characters different from the base dictionary words, and 
L>=14 means that there are at least 1410  possible 
password candidates to be tried to crack the password. 
 The easiest way to achieve D>=3 is to have 3 special 
characters (from Character Set 4) in the password. The 
requirement is easy to remember and also easy to 
implement with programs to check if a password meets the 
requirement. Of cause, by using 3 special characters to 
make D>=3, we do miss a number of password candidates 
which are 3 Levenshtein's edit distance units away from 
the base dictionary words. However, this simplified 
solution is justified for several reasons. First, 3 special 
characters guarantee the password has at least 3 units of 
Levenshtein's edit distance to the base dictionary words. 
Second, it is easy to remember for the end users. There is 
no need to explain to an end user on (i) what Levenshtein's 
edit distance is, (ii) how different a password should be 
from the base dictionary words, and (iii), more importantly, 
what all these base dictionary words are. Third, it is also 
easy to implement by computer programs to perform 
proactive password checking. It avoids the costly 
operation of traditional proactive password checking 
[10-12], which devotes most of its time in checking all 
possible dictionary words. As an example, there are  

8102×  words listed at [15]. Finally, by forcing 3 special 
characters in the password guarantees an increase in the 
PCI value, and therefore, the effective length of the 
password.  
 Effective password length L>=14 equals to 8 
characters long for the real password in the suggest format. 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007 
 

 

184

For a password of this format, special characters give the 
PCI of the password value 31. The rest 5 characters of the 
password very likely have alphabet characters. To be on 
conservative side, let’s assume the PCI of the password  

572631 =+ , which is actually underestimated. The 
effective length L=14 converts to the real password length 
m, by Formula (4): 
 

95.7
57log

14
log 1010

===
C

Lm  

 
In summary, as a simple rule for choosing good passwords, 
we propose that a good password should be at least 8 
characters long, with at least 3 special characters plus 
other alphanumeric characters. 
 
4. Conclusion and Future Work 
 
Password authentication is effective, simple, and accurate, 
with no extra cost. It is the working horse of information 
security. Although there are growing interests on 
alternative authentication mechanisms, such as smartcards 
and biometrics etc., password authentication is still the 
pivotal of authentication regimes. This is due to the 
complexity and less accuracy nature of the alternative 
authentication methods. It is suggested that better security 
can be achieved by combining password authentication 
with the alternative authentication methods. 
 The strength of password authentication relies on the 
strength of the passwords used. A good password is 
absolutely essential in achieving high level of security. 
However, research shows that there still are many weak 
passwords in daily use on real life systems, although much 
effort has be invested in educating end users and 
computerized proactive password checking. We believe 
this is due to the lack of a simple and concise rule on what 
a good password is. 
 In this paper, we first studied password cracking 
strategies. Based on the study, we developed a theoretic 
framework for measuring password quality – password 
quality indicator (PQI). The quality of a password is in 
proportion to the time required to crack it by the trial and 
error method. Three aspects of the password decide the 
time required: (i) how different the password is from base 
dictionary words, (ii) how long the password is, and (iii) 
how big the password character set is.  The first aspect is 
measured by Levenshtein's edit distance of the password to 
the base dictionary words. The last two aspects are all 
related to the number of possible password candidates to 
be tried by the trial and error method. By introducing the 
concepts of standard password format and effective 
password length, we can unify them into a single metric: 
effective password length.  The PQI of a password is a 

pair  ),( LD=λ ,  where D is the Levenshtein's edit 
distance of the password to the base dictionary words, and 
L is the effective password length. A good password 
should have D>=3 and L>=14. This requirement can be 
simplified as at least 8 characters long, with at least 3 
special characters plus other alphanumeric characters. 
Effective password length 14 (L=14) can be attained by 8 
characters-long password in this good password format. 
Although there are good passwords which cannot be 
included in this format due to the restriction of 3 special 
characters, the simplification is justified for the purpose of 
end user education and computerized proactive password 
checking. In either of the situations, simplicity is the key 
to success. 
 We have 2 tasks to pursue as the next step of our 
research. First, we will test the effectiveness of the 
simplified rule in end user education and also proactive 
password checking, and second, we will study the impact 
of the simplified rule on password memorability. 
 

Acknowledgment 

 
This research work is supported by the divisional grants 
from the Division of Business, Law and Information 
Sciences, University of Canberra, Australia, and the 
university grants from University of Canberra, Australia.  
 
 
References 
 
[1] Pfleeger, C.P. and S.L. Pfleeger, Security in Computing. Third 

ed. 2003: Prentice Hall. 
[2] Tran, D., M. Wagner, et al., Fuzzy Methods for Voice-Based 

Person Authentication. IEEJ (Institute of Electrical 
Engineers of Japan) Transactions on Electronics, 
Information and Systems, 2004. 124(10): p. 1958-1963. 

[3] Bolle, R.M., J. Connell, et al., Biometrics 101, IBM Research 
Report. 2002, IBM: IBM T. J. Hawthorne, New York, USA. 

[4] Namboodiri, A.M. and A. K. Jain. On-line Script Recognition. 
in the Sixteenth International Conference on Pattern 
Recognitio. 2002. 

[5] O'Gorman, L., Comparing Passwords, Tokens, and 
Biometrics for User Authentication. Proceedings of the 
IEEE, 2003. 91(12): p. 2021-2040. 

[6] Saita, A. RSA 2005: Passwords at the breaking point.  2005  
[cited 14 January 2006]; Available from: 
http://searchsecurity.techtarget.com/originalContent/0,2891
42,sid14_gci1059143,00.html. 

[7] Conlan, R.M. and P. Tarasewich. Improving interface designs 
to help users choose better passwords. in CHI'06: CHI '06 
extended abstracts on Human factors in computing systems. 
2006. 

[8] Yan, J., A. Blackwell, et al., Password Memorability and 
Security: Empirical Results. IEEE Security & Privacy, 
2004. 2(5): p. 25-31. 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007 
 

 

185

[9] Wikipedia. Password strength.   [cited 14 January 2007]; 
Available from: 
http://en.wikipedia.org/wiki/Password_strength. 

[10] Cisneros, R., D. Bliss, and M. Garcia, Password auditing 
applications. Journal of Computing in Colleges, 2006. 
21(4): p. 196-202. 

[11] Blundo, C., P. D'Arco, et al. A novel approach to proactive 
password checking. in International Conference on 
Infrastructure Security (InfraSec 2002). 2002. Bristol, UK: 
Springer. 

[12] Yan, J. A Note on Proactive Password Checking. in ACM 
New Security Paradigms Workshop. 2001. New Mexico, 
USA. 

[13] Campbell, J., D. Kleeman, and W. Ma. Password 
Composition Policy: Does Enforcement Lead to Better 
Password Choices? in 17th Australasian Conference on 
Information Systems (ACIS 2006). 2006. Adelaide, 
Australia. 

[14] Campbell, J., D. Kleeman, and W. Ma, The Good and Not So 
Good of Enforcing Password Composition Rules. 
Information Systems Security (accepted for publication). 

[15] A.R.G.O.N. Word Lists.   [cited 15 January 2007]; 
Available from: 
http://www.theargon.com/achilles/wordlists/. 

[16] Bryant, K. and J. Campbell. An Empirical Study of User 
Practice in Password Security and Management. in 
Australasian Conference on Information Systems. 2005. 
Sydney, Australia. 

[17] Levenshtein, V., Binary codes capable of correcting 
deletions, insertions, and reversals. Problems in 
Information Transmission, 1965. 1: p. 8-17. 

[18] Stephen, G., String Searching Algorithms. Lecture Notes 
Series on Computing. Vol. 3. 1994: World Scientific 
Publishing. 

 
 
 
 
 
 
 
 
 

Dr. Wanli Ma is a Lecturer of School 
of Information Sciences and 
Engineering, University of Canberra. 
His research interests include 
computer security (intrusion detection, 
biometrics, and computer forensics) 
and multiagent system (system 
structure, applications, and agent 
based software engineering). Wanli 
Ma also have 6 year’s first hand 
experience in running IT 

infrastructure and IT security operations. 
 
 

 
 
 
 

 
John Campbell is Associate Professor 
of Information Systems, School of 
Information Sciences and Engineering, 
University of Canberra, Australia. His 
research expertise includes topics in 
information security, IT governance, IT 
investment evaluation, virtual 
communities, and organizational 
communication. A major theme 

throughout his work is how users interact through information 
systems in the social world and, in particular, the ways in which 
organizational decision-making and community interaction are 
enacted through collaborative technologies. 
 
 

Dat Tran received his B.Sc. and 
M.Sc. degrees from University of Ho 
Chi Minh City, Vietnam, in 1984 and 
1994, respectively, and his Ph.D. 
degree in Information Sciences and 
Engineering from University of 
Canberra (UC), Australia in 2001. He 
is currently senior lecturer in 
software engineering at UC. Dr. Tran 
has published about 90 research 
papers in biometric authentication, 

hidden Markov model, fuzzy modelling, spam email detection, 
language identification and cell phase recognition. Dr. Tran has 
been awarded about 10 research grants, and has served as 
reviewer for IEEE Transaction on Fuzzy Systems, IEEE 
Transaction on System, Man and Cybernetics, Pattern 
Recognition and Bioinformatics journals. He is IEEE senior 
member and WSEAS Australia Chapter board member. His 
biography has been included in Marquis Who's Who in the World 
and in Sciences and Engineering. 
 
 
 

 
Dale Kleeman is a Senior Lecturer in 
Information Systems in the School of 
Information Sciences and Engineering, 
University of Canberra.  He has 
extensive experience, both inside and 
outside of academia, in information 
systems audit and information systems 
management, and has been active in 
university governance.  His current 
research interests include information 

security and applications of soft systems methodology. 
 
 

 


