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Summary 
Transaction management in different contexts, such as a mobile 
environment, is still a challenging task. In this paper we propose 
an efficient integrated method in order to improve concurrency 
of long lived transactions. Differently from other techniques 
presented in the literature, we design a hybrid approach between 
optimistic and pessimistic models. 
From one hand, our basic idea consists in the modification of the 
well known 2PL protocol, in order to take into account frequent 
disconnections or inactivity periods of mobile devices and, from 
the other one, we consider the semantic related to operations 
produced by transactions. The first condition is necessary in 
order to avoid an indefinite or long resource locking, by 
disconnecting (or idle) transactions or a high rate of preventive 
aborts; in the opposite, a transaction “semantic compatibility” is 
exploited in order to increase the concurrency of reconcilable 
operations on the same resources. We have implemented a 
middleware with the aims of emulating a classical transactional 
scheduler, and several experiments have been carried out. 
Key words: 
Mobile environments, ,Long lived transaction, 2PL protocol 

1. Introduction 

Specific characteristics of mobile environments (e.g. 
variable bandwidth, frequent disconnections, limited 
resources on mobile hosts) make traditional transaction 
management techniques (necessary to ensure ACID 
properties) no longer appropriate [1], [2], [3]. In particular, 
the lengthy transmission delay, frequent and unpredictable 
disconnections or long inactivity periods of mobile 
devices affect transaction duration, procreating Long Lived 
Transactions. In this framework several problems, such as 
low concurrency rate, deadlocks and starvation, handling 
of disconnections, and so on, have to be solved [7]. 
Traditional approaches, such as Two Phase Locking (2PL), 
are not efficient for this kind of transactions. The usual 
long life of mobile transactions forces a long time resource 
locking by disconnecting (or idle) transactions, or, in the 
opposite, a high rate of preventive aborts. To avoid a low 
concurrency rate, optimistic approaches allow to different 
transactions to immediately and concurrently operate on 
the various resources or by relaxing DBMS locking  

policies or by replicating the shared data on mobile  
devices. Anyway such approaches could cause the  
 
management of a high number of rollback operations on 
updated data when a high rate of transaction conflicts 
occur. More in general, in the last years several models for 
managing transactions in a mobile environment have been 
proposed. 
As underlined in [4] the proposed approaches can be 
subdivided in two groups of models. The first group 
includes proposals where transactions are completely or 
partially executed on mobile hosts. The second group 
considers transactions requested by mobile hosts and 
executed on the wired network. 
In first class of methods (e.g., Clustering, Two-Tier 
replication, HiCoMo, IOT, Pro-Motion, Reporting, 
Prewrite) the main problems are related to ACID 
properties support and data replication, reconciliation or 
synchronization techniques are requested. In the second 
class (e.g., Kangaroo, MDSTPM, Moflex, Pre-
serialization), ACID properties are not compromised and 
focus is on supporting mobile host movements during 
transaction execution and managing disconnections. 
In this paper we propose an efficient integrated method in 
order to improve concurrency of long lived transactions. 
Differently from other techniques presented in the 
literature, we design a hybrid approach between optimistic 
and pessimistic models by supposing that transaction 
execution takes place entirely on fixed hosts. 
From one hand, our basic idea consists in the modification 
of the well known 2PL protocol, in order to handle 
frequent disconnections or inactivity periods of mobile 
devices and, from the other one, we consider the semantic 
related to operations produced by transactions. 
The first condition is necessary in order to avoid long time 
resource locking or a high rate of preventive aborts; in the 
opposite, a transaction “semantic compatibility” is 
exploited in order to increase the concurrency rate. More 
in details, in a similar manner to some optimistic 
approaches [8] and to different techniques diffused in 
distributed real time database systems realm [5], [6]. In 
this work we consider that in a lot of application scenarios 
it is not always necessary to exactly know the actual value 
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of data for performing special kinds of operations and 
propose a transaction management model based on the 
concept of “similarity or compatibility” among mobile 
transactions in order to reduce the possibility of lock 
conflicts and improve concurrency of reconcilable 
operations on the same resources. 
 
The paper is organized as follows. Section 2 describes a 
motivating example that will be used as a case study 
trough the rest of the paper. Section 3 describes the 
proposed model for transaction management. The aim of 
section 4 is to demonstrate, in according to the motivating 
example, the possible advantages of our approach, and, 
some implementation details. Open problems, on going 
work and concluding remarks are discussed in section 5. 

2. Motivating Example 

Let us consider the case of a classical e-commerce system 
selling several products on the WEB. 
During a purchase, a user ui in general performs the 
following actions using a mobile device browser: 
 
1. she reads the quantity of available products from the 
    related list AQui and the price of a product; 
2. she specifies the requested quantity of the selected 
    product RQui for buying; 
3. after the visualization of total price amount, she 
commits 
    the related transaction Ti. 
 
From the DBMS point of view, this process is schematized 
as follows: 
 
1. Begin Transaction Ti 
2. Select AvailableQuantity AQui from ProductTable 
3. Select ProductPrice from ProductTable 
4. Update ProductTable set AvailableQuantity = 
    AvailableQuantity - RTui 
5. Commit Ti 
6. End Transaction Ti 
 
In a realistic environment, during transaction execution, 
we have to deal with concurrency problems and the 
isolation property has to be ensured. In a mobile scenario, 
the transactions could easily become very long due to 
variable bandwidth, frequent and unpredictable 
disconnections, limited resources on mobile hosts as 
already discussed. 
Using a 2PL strategy, in a first hypothesis, we can assume 
that Ti requests a read-lock on AvailableQuantity and then 
promotes such lock to a write-lock when the user sets the 
number of requested products. In this case, if another user 
starts a transaction Tj that acquires the read-lock on 

AvailableQuantity, a deadlock situation can be verified 
(see Fig. 1) and it has to be solved by Aborted Ti and/or Tj. 
When the number of request increases, the number of 
aborted transactions could become unacceptable. 

 

Fig. 1. Deadlock Example 

Alternatively, using a strict-2PL, we can assume that we 
know the semantic of the transactions: in this case we can 
grant the write-lock to Ti on AvailableQuantity. If the user 
does not quickly decide to commit or abort the whole 
operation (e.g., due to network disconnection, inactivity 
periods, etc...), a long time lock may occur, and, another 
user transaction that wants to access to the same resource 
has to wait the end of all previous transactions. 
Another widely adopted strategy consists of imposing 
precise constraints on AvailableQuantity (i.e., it has to 
be≥ 0) and assuming that each user operation works in the 
“auto-commit” mode. Using such a strategy, no deadlocks 
are possible because both read and write locks are released 
at each step and the system exploits the highest possible 
concurrency level among users. A main drawback of this 
method is that there is no standard way to hold locks 
during transactions execution, so a user can find boring, 
and sometimes dramatic, changes to several attributes (e.g., 
the product price). 
Eventually, optimistic approaches assume that each mobile 
device is provided with a “light DBMS” and purchase 
transactions are partially or entirely executed on mobile 
hosts. In this case, after local executions, data replication 
and reconciliation algorithms are necessary to guarantee 
ACID properties. 
These kinds of problems are avoided in the proposed 
strategy. In particular, the main features of our approach 
are: (i) to consider the semantic of operations generated by 
mobile transactions (ensuring a high degree of 
concurrency among users for a certain types of 
operations); (ii) to introduce the concept of disconnected 
or idle transaction in the 2PL formulation, where a 
disconnected transaction is not a transaction to be aborted 
but a transaction that could reconnect and try to end its 
work. 
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3. The Proposed Solution 

In the following the proposed model for long lived  
(mobile) transaction management is described. In the first 
subsection some preliminary definitions are provided, the 
second part is dedicated to the model description. 

3.1 Preliminary Definitions 

Definition 3.1 (Mobile Transaction) Let us define Mobile 
Transaction MT each transaction generated by a mobile 
device and entirely executed by devices located on wired 
network. 
 
Definition 3.2 (Transaction Operating Data) Let 

)(Xop j
i be the i-th operation of j-th transaction on the 

data resource X, let us define: 
• j

readX  the value of X as retrieved from the database 
before any kind of modifications operated by the 
transaction itself; 

• j
tX  a replica of X on which all operations )(Xop j

i  

(∀ i) of MT j will operate; 
• j

oldX the value of X stored in the database when MT j 
tries to perform the commit; 

• j
newX  the value of X that has to be stored in the 

database if the commit of MT j  is accepted. 
 
Now we are in the position of introduce the concept of 
compatibility among transaction operations. 
 
Definition 3.3 (Transaction Operations Compatibility) 
A set of operations )}(),...,({ XopXop k

h
j

i on the 
resource X and belonging to one or more different 
transactions are said to be compatible if: 
1. assuming no constraint on X, its final value does not 

depend on the order in which transaction operations 
are executed;  

2. there exists a reconciliating algorithm able to 
determine, given the transaction operating data 

j
readX , j

tX , j
oldX   values, the final correct value 

j
newX  to be stored in the database at the commit 

moment 
3. all transactions are assumed to be committed or 

aborted.. 
 
For example, addition/substraction or multiplication 
/division of X for constant value (i.e., X = X ±  c,  X = X 

∗  c, or X =
c
X

 with c ≠ 0) are example of compatible 

operations. A reconciliation algorithm for the first class of 
operations is the following: 
 

realoldtnew XXXX −+=                      (1)  
 
 

Table 1. Mobile Transaction State 

MT State Description 

Active 

a mobile transaction is in such a state if 
it acquires a lock and goes on with its 
execution(e.g. related mobile device is 
still connected)) 

Waiting a mobile transaction is in such a state if 
it is waiting for a lock 

Disconnected 
a mobile transaction is in such a state if 
it has been inactive for a period of time 
greater than a defined threshold 
(maximum allowed inactivity time)

Committed 
a mobile transaction is in such a state if 
it has performed a commit of its 
operations 

Aborted 
a mobile transaction is in such a state if 
it has performed an abort of its 
operations 

 
In the opposite a reconciliation algorithm for the second 
class of operations is: 

old
real

t
new X

X
X

X ⋅=                           (2) 

It easy to observe that assignment operation (i.e., X = c) is 
not compatible with any kind of operations. Moreover, for 
the compatible operations, we are considering that the 
locked data by a given transaction can be modified by 
other compatible transaction operations and we will 
assume no differences between read that are finalized to 
update and write operations (i.e., we will not consider read 
and write locks, but just locks). 
 
Definition 3.4 (Mobile Transaction Conflicts) Let MTj, 
MT j be two mobile transactions. They are said in conflict 
on a given resource X, if a transaction has the lock on X 
and the other one performs a lock request on the same 
resource. 
 
Definition 3.5 (Mobile Transaction Compatibility) Let 
MTj, MTj be two mobile transactions in conflict on a given 
resource X and let Opi(X) and Opj(X) be the two set of 
related generated operations. The two mobile transactions 
are said to be compatible if the operations belonging to 
the set Op = Opi(X) ∪ Opj(X) are compatible.  
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In general a mobile transaction MT can assume different 
states during its life cycle. In particular, we consider that 
the set of possible states that a mobile transaction can 
assume is: SMT ∈ {Active; Waiting; Disconnected;  
Committed; Aborted}. A short description of each state is 
reported in table 1. 
 

Table 2. Resource States 
Resource 
State Description 

Free 
 

no transaction is using such a 
resource 
 

Busy 

one or more transactions are 
operating on such a resource, and at 
least one transaction is not in the 
Disconnected state 

BusyDisc each transaction operating on the 
resource is in the Disconnected state

 
In the same vein, a given resource can assume different 
states SX respect to the transaction operations. The set of 
possible states that a resource can assume is: SX ∈{Free, 
Busy; BusyDisc}. A short description of each state is 
reported in the table 2. 
For each resource X, we also consider the set of operations 
Op(X) that transactions perform on X itself, so a resource 
is identified by the triple 

XS Op(X), X,   

Each mobile transaction migrates from a given state to 
another one in correspondence of some input events. A 
state transition can be schematized by means of the 
following function: 
 

MTMT SIS →×:δ                          (3) 
 
being asyncsunc III ∪= the set of admissible inputs 

(synchronous and asynchronous respect to transaction 
execution). In particular: 
 

}Re,Re),),(,,(Re{ qAbortqCommitSxOpXopqLockI X
j

isunc =
          (4) 

 
},Re,,,,{ AbortconDisconUnlockDWI touttoutasync =        (5) 

A short description of each input is reported in the table 3. 
 

3.2 Transaction Management 

Our transaction management model can be seen as a 
generalization of the 2PL protocol. Our purpose is to 

handle asynchronous events, such as transaction 
disconnections and reconnections, timeout ends or 
resource unlocks and to exploit transaction semantic and 
compatibility between transaction operations to improve 
concurrency. To better understanding the proposed 
method, we show in table 4 the function δ that describe 
transaction state transition by means of some algorithms. 
 
The lock manager uses the lock policies defined in table 5 
to manage lock assignments in function of the state of a 
resource. In the following, the lock manager behaviour is 
described referring to the various possible state transitions. 
 
Cases 21 ,αα  
A transaction MTj performs a lock-request 

)),(,,(Re X
j

i SXOpXopqLock on a given resource X 

that is free or locked by a set of transactions (SX = Free V 
Busy) which operation are compatible with )( Xop j

i . In 
this cases the lock manager grants the lock to MTj by 
performing the actions expressed by algorithm 1. 
 

 
 
Case 3α  
A transaction MTj performs a lock-request 

)),(,,(Re X
j

i SXOpXopqLock  on a given resource X 

that is locked by a set of disconnected transactions 
(SX=BusyDisc) which operations are not compatible with 

)( Xop j
i . In this cases the lock manager grants the lock to 

MTj and causes the abort of disconnected transactions 
MT1,..., MTw by performing the actions expressed by 
algorithm 2. 

 
 
Case 4α  
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A transaction MTj performs a lock-request 
)),(,,(Re X

j
i SXOpXopqLock  on a given resource X 

that is locked by a set of active transactions (SX = Busy) 
which current operations are not compatible with )( Xop j

i . 

In this cases the lock manager denies the lock to MTj and 
causes its migration in a waiting state by performing the 
actions expressed by algorithm 3 

Table 3. Inputs 
Input type  
 

Description 

)),(,,(Re X
j

i SXOpXopqLock   a transaction MT j performs a lock-request on XS Op(X), X,   by specifying the 

operation to be executed )(Xop j
i  

CommitReq a transaction requests the commit of its execution 
AbortReq a transaction performs the abort of its execution 
Wtout asynchronous input due to the transaction stay in the Waiting state for a time greater 

than a fixed timeout 
Dtout asynchronous input due to the transaction stay in the Disconnected state for a time 

greater than a fixed timeout 
Unlock asynchronous input due to the lock release by a mobile transaction on a given resource 
Discon asynchronous input due to the disconnection of a mobile transaction 
Recon asynchronous input due to reconnection of a mobile transaction 
Abort asynchronous input due to a lock request of a active transaction MTk on a resource X 

locked by a disconnected transaction MTj and such that )(Xop j
i ,  )(Xop k

h  are not 
compatible operations. 

 
 

Cases 65 ,αα  
An active transaction MTj performs a commit request 
CommitReq. In this cases the lock manager generates a 
particular transaction, called System Transaction, 
containing the correct values for each involved resource 
X1…Xn to be updated on the database, by using if necessary 
the reconciliation algorithms. Eventually, the system 
transaction is committed or aborted (for example if some 
integrity constraints are violated) on the database using a 
classical 2PL. 
 

 
Case 7α  
A transaction MT j performs an abort request AbortReq. In 
this case the lock manager forces the abort of MTj by 
performing the actions expressed by algorithm 5. 
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Cases 118 ,αα  
A transaction MTj migrates in a disconnected state. In this 
case the lock performs the actions expressed by algorithm 
6. 

 

 
Case 9α  

A transaction MTj in waiting state, after an Unlock event, 
obtains the lock manager on a given resource. In this cases 
the lock manager grants the lock to MT j by performing 
the actions expressed by algorithm 7. 
 
 
 
 
 
 

Table 4. State Transition 
Case SMT I SMT 

1α  Active ),,(,(Re FreeXopqLock j
i −  Active 

2α  Active ..,),,,(Re compOpopBusyOpXopqLock j
i

j
i  Active 

3α  Active ),,,(Re BusyDiscOpXopqLock j
i  Active 

4α  Active ..,),,,(Re incOpopBusyDiskOpXopqLock j
i

j
i  Waiting 

5α  Active CommitReq Committed 

6α  Active CommitReq Aborted 

7α  Active AbortReq Aborted 

8α  Active Discon Disconnected 

9α  Waiting Unlock Active 

10α  Waiting Wtout Aborted 

11α  Waiting Discon Disconnected 

12α  Disconnected Recon Active 

13α  Disconnected Dtout Aborted 

14α  Disconnected Abort Aborted 

 

 
Cases 141310 ,, ααα  
A transaction MTj stays in a waiting state for a time greater 
than Wtimeout or stays in a disconnected state for a time 
greater than Dtimeout, or a disconnected transaction MTj has 
the lock on a resource X for the execution of an operation 

)( Xop j
i and an other active transaction request the lock 

for the execution of an not compatible operation )( Xop k
h . 

In this case the lock manager forces the abort of MTj by 
performing the actions expressed by algorithm 8. 
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Case 12α  

A transaction MTj migrates in a reconnected state. In this 
case the lock performs the actions expressed by algorithm 
9. 
 

 
 
In our approach when a mobile transaction is instanced, it 
is in an active state. After a lock request on a given 
resource, the transaction can stay in the same state o 
migrate in an another state depending on the following 
factors: 
• current state of the resource; 
• transaction operations to be executed; 
• operations of mobile transactions that have locked the 
• resource; 
• current state of the mobile transaction. 
 
Obtained a lock on a given resource, a generic transaction 
will use the replicated data Xt to perform its operations. 
Only at commit event, the reconciliated data will be 
updated on the database. It is clear how in this model a 
Disconnected transaction can reconnect (we suppose that 
the disconnection was due to user inactivity or to a 
temporary network fault) and tries to finish its work if 
there were not compatible operations that have requested  

Table 5. Lock Management 
Resource State Free 

 
Busy 
 

BusyDisc 
 

LockReq Y Y/N Y 
 
the lock on the same resources and operated on the same 
data. 

3.3 Model Evaluation 

In this subsection we report several experiments finalized 
to theoretically evaluate the transaction execution time and 
the abort percentage of disconnected transactions of our 
model respect to the classical 2PL. 
In particular, the first parameter has been evaluated at the 
variation of: (i) number of transaction conflicts, (ii) 
number of not compatible transaction operations. 
Let c and tex be respectively the number of transaction 
conflicts and the execution time in the ideal condition (no 
conflicts are verified) of a single transaction, we assume 
that the 2PL average execution time is given by the 
following formula: 

n

t
tctcn

c
ex

exex

PL

)
2

()(
)(2

+⋅+⋅−
=τ         (6) 

being n the number of total transactions. In fact, we 
suppose that the arrival time of a conflicting transaction 
occurs in half of execution time of the previous one. Note 
that no multiple conflicts are considered. 
In our model we take into account both the number of 
transaction conflicts c and the number of not compatible 
transaction operations i. We can model the probability of 
having k not compatible conflicts among transactions as: 

cn

kcinki

C
CC

KP
,

,, )(
)( −−⋅
=                      (7) 

being . mz
m
z

C mz ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,, , 0 if mz ≥  

Considering such probability, the execution time (which 
behavior is reported in Fig. 2 by fixing tex = 1) in our 
approach is: 

∑
=

⋅=
),min(

0
2 )()(),(

ci

K
PLour exkPic ττ                (8) 

It is possible to observe that the 2PL execution time does 
not depend on the number of not compatible operations 
and grows in a linear manner as respect to the number of 
conflicts. In our approach, we observe an increase of times  

 

Fig. 2. Average Transaction execution Time 

as respect to the number of transaction conflicts and the 
number of not compatible transaction operations.  
However the times are lower than 2PL ones because we do 
not take into account the overhead due to the 
reconciliation operations. Our method is more suitable as 
respect to 2PL when we have medium-high percentage of 
conflicts and medium-low percentage of incompatibilities. 
In our best case (c = 100%, i = 0) the proposed approach 
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presents a theoretical time improvement of 50% respect to 
2PL: such enhancement is significant for high values of tex, 
in other terms for long lived transactions. In the opposite 
the abort percentage of disconnected transactions has been 
analyzed at the variation of: (ii) number of transaction 
conflicts, (i) number of not compatible transaction 
operations, (iii) percentage of disconnected transactions. 
In the 2PL approach we can simply consider the abort 
percentage as function of disconnecting timeout. Instead, 
in our approach such percentage can be computed by 
product of the probabilities (percentage) of having a 
disconnection P(d), a conflict P(c) and an incompatibility 
P(i): 
 

P(i)  P(c)  P(d)  P(Abort) ⋅⋅=                   (9) 
 
In Fig. 3 the abort percentage is reported in function of the 
percentage of transaction conflicts and the percentage of 
disconnected transactions for increasing value of the 
number of not compatible transaction operations. 
 

 

Fig. 3. Abort Percentage of disconnected transactions 

 

4. Implementation and Use Examples 

In this section some implementation details about our 
transaction manager middleware are reported. The 
developed prototype (which multi-layers infrastructure is 
schematized in Fig. 4) offers a set of services to manage 
mobile transactions and is based on the following 
components: 
• a set of LDBS (Local DataBase Systems): they 

contain applications data and offer the functionalities 
to manage and store such data, working like a 
traditional DataBase Management System. 

• a centralized GTM (Global Transaction Manager): 
it is the core part of the architecture. Such 

componentrepresents our transactional scheduler 
middleware. It accepts user requests in terms of 
mobile transactions, generated by mobile devices and 
then processes them in according to the previous 
transaction management model. In particular, it allows 
to manage:  

1. transaction concurrency on the base of their 
semantic; 

2. possible transaction deadlocks or starvation; 
3. disconnections of user clients; 

Moreover, this module is wired connected to the 
different LDBS servers in order to manage data on the 
local databases. 

• a set of Base Stations: they allow to connect the 
mobile device to the GTM server. Due to the 
centralized approach, the management of the user 
mobility is totally solved, because a given base station 
is not delegated to track the operations executed by 
the users, but the mobility is directly managed by the 
GTM. 

 

 
 

Fig. 4. System Architecture 

• a Mobile Units: They are the set of mobile devices 
from which the users have access to the system. 

 
Now some use cases are provided to show the behaviour 
of our system referring to different transaction data sets 
and to the motivating example described in section 2. The 
actors of the systems are two kinds of user: (i) clients that 
can perform purchases of different products specifying the 
desired quantity; (ii) administrators that can set the price 
or increment the available quantity of the various products. 
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4.1 Example 1 

In this case we suppose the presence of four users: three 
clients that want to buy the same product p and one 
administrator that wants to increment its available quantity. 
No disconnections are supposed. The table 6 schematized 
the described situation in terms of initial and final product 
quantities (Qi, Qf) seen by the users (t1 and t2 are 
respectively the commit/abort time and the arrival time of 
each transactions). Because all mobile transactions 
generated by the different users are compatible (operations 
are additions or subtraction), the lock manager grants the 
lock to all transactions and they can operate in a 
concurrent manner.  
At each transaction commit a system transaction is 
generated to update the reconciliated data on the database 
following the algorithm 4. 
 
 
 
 

Table6. Example 1 
User t1 t2 p Qi Op Qf 
Client1 4+γ  1 1 100 Read(Q),Q=Q-1 100
Client2 4+2γ  2 1 100 Read(Q),Q=Q-2 100
Client3 4+3γ  3 1 100 Read(Q),Q=Q-3 100
Admin1 4+4γ  4 1 100 Read(Q),Q=Q+

6 
100

 

Table 7. Example 2 
User t1 t2 p Qi Op Qf 
Client1 2+γ  1 1 100 Read(Q),Q=Q-1 94 
Client2 3+γ  2 1 100 Read(Q),Q=Q-2 94 
Admin1 4+γ  3 1 100 Read(Q),P=110 94 
Client3 5 4 1 100 Read(Q),Q=Q-3 94 

P=110

4.2 Example 2 

In this case we suppose the presence of four users: three 
clients that want to buy the same product and one 
administrator that wants to set its price. No disconnections 
are supposed. The table 7 schematized the described 
situation in terms of initial and final product quantities 
seen by the users. 
In the proposed scenario, the lock manager grants the lock 
to the first two client transactions, while administrator 
transaction has to wait the client operations termination for 
performing its task. The last client transaction operates 
after administrator and buys the product at new set price P. 
 

4.3 Example 3 

In this case we suppose the presence of four users: two 
clients that want to buy the same product, one  
administrator that wants to set its price and another client 
that want to  buy a different product. A disconnection of 
the second client is supposed. The table 8 schematized the 
described situation in terms of initial and final product 
quantities seen by the users. 
In the proposed scenario, the lock manager grants the lock 
to the first two client transactions, while administrator 
transaction has to wait the client operations termination for 
performing its task. Because the second client is 
disconnected, at the reconnection time, the lock manager 
forces his abort due to the execution of an not compatible 
transaction (administrator operation) on the same 
resources. The last client transaction operates after 
administrator and buys the different product. 
 
 
 

Table 8. Example 3 
User t1 t2 p Qi Op Qf 
Client1 2+γ  1 1 100 Read(Q1),Q1=

Q1-1 
99(Q
1) 

Client2 3+2γ  2 1 100 Read(Q1),Q1=
Q1-2 

99(Q
1) 

Admin1 3+γ  3 1 100 Read(Q1),P=11
0 

----- 

Client3 4+γ  4 2 100 Read(Q2),Q2=
Q2-50 

50(Q
2) 

Table 9. Example 4 
User t1 t2 p Qi Op Qf 
Client1 2+γ  1 1 100 Read(Q),Q=Q-1 94 
Client2 4+2γ  2 1 100 Read(Q),Q=Q-2 94 
Client3 3+γ  3 1 100 Read(Q),Q=Q-1 94 
Client41 4+γ  4 1 100 Read(Q),Q=Q-2 94 

4.4 Example 4 

In this case we suppose the presence of four users: all 
clients want to buy the same product, but the second client 
has a disconnection. The table 9 schematized the described 
situation in terms of initial and final product quantities 
seen by the users. 
In the proposed scenario, the lock manager grants the lock 
to all transactions that can perform their operations in a 
concurrent manner. Also the second client, at the 
reconnection time, can continue this work because only 
compatible operations have operated on the data. 
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5. Conclusions and Future Work 

In this work we have proposed a novel approach for 
managing concurrency of long lived transactions. We have 
shown that such solution presents in precise conditions 
different advantages both in terms of execution times and 
abort percentage of the disconnected transactions as 
respect to the 2PL. A first problem of this model could be 
due to possible conditions of starvation for not compatible 
transactions that try to access to resources locked by 
different compatible transactions. Possible solutions for 
this problem are: the introduction of a transaction priority 
or the lock-deny on a given resource for compatible 
transaction if in the resource queue there are a certain 
number of not compatible transactions that are in a waiting 
state. 
A second problem is connected to the possibility of a high 
rate of aborts due to the violation of integrity constraints 
on the database during the data reconciliation process. A 
possible solution for this problem is to limit the number of 
possible concurrent and compatible transaction on a given 
resource in function of the current value X of the resource. 
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