
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

205

Manuscript received January 5, 2007

Manuscript revised January 25, 2007

A Hybrid Approach for Improving Concurrency of Frequently

Disconnecting Transactions

Carmine Cesarano†, Angelo Chianese†, Vincenzo Moscato†, Antonio Picariello† and Antonio d’Acierno††

Dipartimento di Informatica e Sistemistica, University of Naples Federico II, Italy†; ISA-CNR, Avellino, Italy††

Summary
Transaction management in different contexts, such as a mobile
environment, is still a challenging task. In this paper we propose
an efficient integrated method in order to improve concurrency
of long lived transactions. Differently from other techniques
presented in the literature, we design a hybrid approach between
optimistic and pessimistic models.
From one hand, our basic idea consists in the modification of the
well known 2PL protocol, in order to take into account frequent
disconnections or inactivity periods of mobile devices and, from
the other one, we consider the semantic related to operations
produced by transactions. The first condition is necessary in
order to avoid an indefinite or long resource locking, by
disconnecting (or idle) transactions or a high rate of preventive
aborts; in the opposite, a transaction “semantic compatibility” is
exploited in order to increase the concurrency of reconcilable
operations on the same resources. We have implemented a
middleware with the aims of emulating a classical transactional
scheduler, and several experiments have been carried out.
Key words:
Mobile environments, ,Long lived transaction, 2PL protocol

1. Introduction

Specific characteristics of mobile environments (e.g.
variable bandwidth, frequent disconnections, limited
resources on mobile hosts) make traditional transaction
management techniques (necessary to ensure ACID
properties) no longer appropriate [1], [2], [3]. In particular,
the lengthy transmission delay, frequent and unpredictable
disconnections or long inactivity periods of mobile
devices affect transaction duration, procreating Long Lived
Transactions. In this framework several problems, such as
low concurrency rate, deadlocks and starvation, handling
of disconnections, and so on, have to be solved [7].
Traditional approaches, such as Two Phase Locking (2PL),
are not efficient for this kind of transactions. The usual
long life of mobile transactions forces a long time resource
locking by disconnecting (or idle) transactions, or, in the
opposite, a high rate of preventive aborts. To avoid a low
concurrency rate, optimistic approaches allow to different
transactions to immediately and concurrently operate on
the various resources or by relaxing DBMS locking

policies or by replicating the shared data on mobile
devices. Anyway such approaches could cause the

management of a high number of rollback operations on
updated data when a high rate of transaction conflicts
occur. More in general, in the last years several models for
managing transactions in a mobile environment have been
proposed.
As underlined in [4] the proposed approaches can be
subdivided in two groups of models. The first group
includes proposals where transactions are completely or
partially executed on mobile hosts. The second group
considers transactions requested by mobile hosts and
executed on the wired network.
In first class of methods (e.g., Clustering, Two-Tier
replication, HiCoMo, IOT, Pro-Motion, Reporting,
Prewrite) the main problems are related to ACID
properties support and data replication, reconciliation or
synchronization techniques are requested. In the second
class (e.g., Kangaroo, MDSTPM, Moflex, Pre-
serialization), ACID properties are not compromised and
focus is on supporting mobile host movements during
transaction execution and managing disconnections.
In this paper we propose an efficient integrated method in
order to improve concurrency of long lived transactions.
Differently from other techniques presented in the
literature, we design a hybrid approach between optimistic
and pessimistic models by supposing that transaction
execution takes place entirely on fixed hosts.
From one hand, our basic idea consists in the modification
of the well known 2PL protocol, in order to handle
frequent disconnections or inactivity periods of mobile
devices and, from the other one, we consider the semantic
related to operations produced by transactions.
The first condition is necessary in order to avoid long time
resource locking or a high rate of preventive aborts; in the
opposite, a transaction “semantic compatibility” is
exploited in order to increase the concurrency rate. More
in details, in a similar manner to some optimistic
approaches [8] and to different techniques diffused in
distributed real time database systems realm [5], [6]. In
this work we consider that in a lot of application scenarios
it is not always necessary to exactly know the actual value

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

206

of data for performing special kinds of operations and
propose a transaction management model based on the
concept of “similarity or compatibility” among mobile
transactions in order to reduce the possibility of lock
conflicts and improve concurrency of reconcilable
operations on the same resources.

The paper is organized as follows. Section 2 describes a
motivating example that will be used as a case study
trough the rest of the paper. Section 3 describes the
proposed model for transaction management. The aim of
section 4 is to demonstrate, in according to the motivating
example, the possible advantages of our approach, and,
some implementation details. Open problems, on going
work and concluding remarks are discussed in section 5.

2. Motivating Example

Let us consider the case of a classical e-commerce system
selling several products on the WEB.
During a purchase, a user ui in general performs the
following actions using a mobile device browser:

1. she reads the quantity of available products from the
 related list AQui and the price of a product;
2. she specifies the requested quantity of the selected
 product RQui for buying;
3. after the visualization of total price amount, she
commits
 the related transaction Ti.

From the DBMS point of view, this process is schematized
as follows:

1. Begin Transaction Ti
2. Select AvailableQuantity AQui from ProductTable
3. Select ProductPrice from ProductTable
4. Update ProductTable set AvailableQuantity =
 AvailableQuantity - RTui
5. Commit Ti
6. End Transaction Ti

In a realistic environment, during transaction execution,
we have to deal with concurrency problems and the
isolation property has to be ensured. In a mobile scenario,
the transactions could easily become very long due to
variable bandwidth, frequent and unpredictable
disconnections, limited resources on mobile hosts as
already discussed.
Using a 2PL strategy, in a first hypothesis, we can assume
that Ti requests a read-lock on AvailableQuantity and then
promotes such lock to a write-lock when the user sets the
number of requested products. In this case, if another user
starts a transaction Tj that acquires the read-lock on

AvailableQuantity, a deadlock situation can be verified
(see Fig. 1) and it has to be solved by Aborted Ti and/or Tj.
When the number of request increases, the number of
aborted transactions could become unacceptable.

Fig. 1. Deadlock Example

Alternatively, using a strict-2PL, we can assume that we
know the semantic of the transactions: in this case we can
grant the write-lock to Ti on AvailableQuantity. If the user
does not quickly decide to commit or abort the whole
operation (e.g., due to network disconnection, inactivity
periods, etc...), a long time lock may occur, and, another
user transaction that wants to access to the same resource
has to wait the end of all previous transactions.
Another widely adopted strategy consists of imposing
precise constraints on AvailableQuantity (i.e., it has to
be≥ 0) and assuming that each user operation works in the
“auto-commit” mode. Using such a strategy, no deadlocks
are possible because both read and write locks are released
at each step and the system exploits the highest possible
concurrency level among users. A main drawback of this
method is that there is no standard way to hold locks
during transactions execution, so a user can find boring,
and sometimes dramatic, changes to several attributes (e.g.,
the product price).
Eventually, optimistic approaches assume that each mobile
device is provided with a “light DBMS” and purchase
transactions are partially or entirely executed on mobile
hosts. In this case, after local executions, data replication
and reconciliation algorithms are necessary to guarantee
ACID properties.
These kinds of problems are avoided in the proposed
strategy. In particular, the main features of our approach
are: (i) to consider the semantic of operations generated by
mobile transactions (ensuring a high degree of
concurrency among users for a certain types of
operations); (ii) to introduce the concept of disconnected
or idle transaction in the 2PL formulation, where a
disconnected transaction is not a transaction to be aborted
but a transaction that could reconnect and try to end its
work.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

207

3. The Proposed Solution

In the following the proposed model for long lived
(mobile) transaction management is described. In the first
subsection some preliminary definitions are provided, the
second part is dedicated to the model description.

3.1 Preliminary Definitions

Definition 3.1 (Mobile Transaction) Let us define Mobile
Transaction MT each transaction generated by a mobile
device and entirely executed by devices located on wired
network.

Definition 3.2 (Transaction Operating Data) Let

)(Xop j
i be the i-th operation of j-th transaction on the

data resource X, let us define:
• j

readX the value of X as retrieved from the database
before any kind of modifications operated by the
transaction itself;

• j
tX a replica of X on which all operations)(Xop j

i

(∀ i) of MT j will operate;
• j

oldX the value of X stored in the database when MT j
tries to perform the commit;

• j
newX the value of X that has to be stored in the

database if the commit of MT j is accepted.

Now we are in the position of introduce the concept of
compatibility among transaction operations.

Definition 3.3 (Transaction Operations Compatibility)
A set of operations)}(),...,({ XopXop k

h
j

i on the
resource X and belonging to one or more different
transactions are said to be compatible if:
1. assuming no constraint on X, its final value does not

depend on the order in which transaction operations
are executed;

2. there exists a reconciliating algorithm able to
determine, given the transaction operating data

j
readX , j

tX , j
oldX values, the final correct value

j
newX to be stored in the database at the commit

moment
3. all transactions are assumed to be committed or

aborted..

For example, addition/substraction or multiplication
/division of X for constant value (i.e., X = X ± c, X = X

∗ c, or X =
c
X

 with c ≠ 0) are example of compatible

operations. A reconciliation algorithm for the first class of
operations is the following:

realoldtnew XXXX −+= (1)

Table 1. Mobile Transaction State

MT State Description

Active

a mobile transaction is in such a state if
it acquires a lock and goes on with its
execution(e.g. related mobile device is
still connected))

Waiting a mobile transaction is in such a state if
it is waiting for a lock

Disconnected
a mobile transaction is in such a state if
it has been inactive for a period of time
greater than a defined threshold
(maximum allowed inactivity time)

Committed
a mobile transaction is in such a state if
it has performed a commit of its
operations

Aborted
a mobile transaction is in such a state if
it has performed an abort of its
operations

In the opposite a reconciliation algorithm for the second
class of operations is:

old
real

t
new X

X
X

X ⋅= (2)

It easy to observe that assignment operation (i.e., X = c) is
not compatible with any kind of operations. Moreover, for
the compatible operations, we are considering that the
locked data by a given transaction can be modified by
other compatible transaction operations and we will
assume no differences between read that are finalized to
update and write operations (i.e., we will not consider read
and write locks, but just locks).

Definition 3.4 (Mobile Transaction Conflicts) Let MTj,
MT j be two mobile transactions. They are said in conflict
on a given resource X, if a transaction has the lock on X
and the other one performs a lock request on the same
resource.

Definition 3.5 (Mobile Transaction Compatibility) Let
MTj, MTj be two mobile transactions in conflict on a given
resource X and let Opi(X) and Opj(X) be the two set of
related generated operations. The two mobile transactions
are said to be compatible if the operations belonging to
the set Op = Opi(X) ∪ Opj(X) are compatible.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

208

In general a mobile transaction MT can assume different
states during its life cycle. In particular, we consider that
the set of possible states that a mobile transaction can
assume is: SMT ∈ {Active; Waiting; Disconnected;
Committed; Aborted}. A short description of each state is
reported in table 1.

Table 2. Resource States
Resource
State Description

Free

no transaction is using such a
resource

Busy

one or more transactions are
operating on such a resource, and at
least one transaction is not in the
Disconnected state

BusyDisc each transaction operating on the
resource is in the Disconnected state

In the same vein, a given resource can assume different
states SX respect to the transaction operations. The set of
possible states that a resource can assume is: SX ∈{Free,
Busy; BusyDisc}. A short description of each state is
reported in the table 2.
For each resource X, we also consider the set of operations
Op(X) that transactions perform on X itself, so a resource
is identified by the triple

XS Op(X), X,

Each mobile transaction migrates from a given state to
another one in correspondence of some input events. A
state transition can be schematized by means of the
following function:

MTMT SIS →×:δ (3)

being asyncsunc III ∪= the set of admissible inputs

(synchronous and asynchronous respect to transaction
execution). In particular:

}Re,Re),),(,,(Re{ qAbortqCommitSxOpXopqLockI X
j

isunc =
 (4)

},Re,,,,{ AbortconDisconUnlockDWI touttoutasync = (5)

A short description of each input is reported in the table 3.

3.2 Transaction Management

Our transaction management model can be seen as a
generalization of the 2PL protocol. Our purpose is to

handle asynchronous events, such as transaction
disconnections and reconnections, timeout ends or
resource unlocks and to exploit transaction semantic and
compatibility between transaction operations to improve
concurrency. To better understanding the proposed
method, we show in table 4 the function δ that describe
transaction state transition by means of some algorithms.

The lock manager uses the lock policies defined in table 5
to manage lock assignments in function of the state of a
resource. In the following, the lock manager behaviour is
described referring to the various possible state transitions.

Cases 21 ,αα
A transaction MTj performs a lock-request

)),(,,(Re X
j

i SXOpXopqLock on a given resource X

that is free or locked by a set of transactions (SX = Free V
Busy) which operation are compatible with)(Xop j

i . In
this cases the lock manager grants the lock to MTj by
performing the actions expressed by algorithm 1.

Case 3α
A transaction MTj performs a lock-request

)),(,,(Re X
j

i SXOpXopqLock on a given resource X

that is locked by a set of disconnected transactions
(SX=BusyDisc) which operations are not compatible with

)(Xop j
i . In this cases the lock manager grants the lock to

MTj and causes the abort of disconnected transactions
MT1,..., MTw by performing the actions expressed by
algorithm 2.

Case 4α

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

209

A transaction MTj performs a lock-request
)),(,,(Re X

j
i SXOpXopqLock on a given resource X

that is locked by a set of active transactions (SX = Busy)
which current operations are not compatible with)(Xop j

i .

In this cases the lock manager denies the lock to MTj and
causes its migration in a waiting state by performing the
actions expressed by algorithm 3

Table 3. Inputs
Input type

Description

)),(,,(Re X
j

i SXOpXopqLock a transaction MT j performs a lock-request on XS Op(X), X, by specifying the

operation to be executed)(Xop j
i

CommitReq a transaction requests the commit of its execution
AbortReq a transaction performs the abort of its execution
Wtout asynchronous input due to the transaction stay in the Waiting state for a time greater

than a fixed timeout
Dtout asynchronous input due to the transaction stay in the Disconnected state for a time

greater than a fixed timeout
Unlock asynchronous input due to the lock release by a mobile transaction on a given resource
Discon asynchronous input due to the disconnection of a mobile transaction
Recon asynchronous input due to reconnection of a mobile transaction
Abort asynchronous input due to a lock request of a active transaction MTk on a resource X

locked by a disconnected transaction MTj and such that)(Xop j
i ,)(Xop k

h are not
compatible operations.

Cases 65 ,αα
An active transaction MTj performs a commit request
CommitReq. In this cases the lock manager generates a
particular transaction, called System Transaction,
containing the correct values for each involved resource
X1…Xn to be updated on the database, by using if necessary
the reconciliation algorithms. Eventually, the system
transaction is committed or aborted (for example if some
integrity constraints are violated) on the database using a
classical 2PL.

Case 7α
A transaction MT j performs an abort request AbortReq. In
this case the lock manager forces the abort of MTj by
performing the actions expressed by algorithm 5.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

210

Cases 118 ,αα
A transaction MTj migrates in a disconnected state. In this
case the lock performs the actions expressed by algorithm
6.

Case 9α

A transaction MTj in waiting state, after an Unlock event,
obtains the lock manager on a given resource. In this cases
the lock manager grants the lock to MT j by performing
the actions expressed by algorithm 7.

Table 4. State Transition
Case SMT I SMT

1α Active),,(,(Re FreeXopqLock j
i − Active

2α Active ..,),,,(Re compOpopBusyOpXopqLock j
i

j
i Active

3α Active),,,(Re BusyDiscOpXopqLock j
i Active

4α Active ..,),,,(Re incOpopBusyDiskOpXopqLock j
i

j
i Waiting

5α Active CommitReq Committed

6α Active CommitReq Aborted

7α Active AbortReq Aborted

8α Active Discon Disconnected

9α Waiting Unlock Active

10α Waiting Wtout Aborted

11α Waiting Discon Disconnected

12α Disconnected Recon Active

13α Disconnected Dtout Aborted

14α Disconnected Abort Aborted

Cases 141310 ,, ααα
A transaction MTj stays in a waiting state for a time greater
than Wtimeout or stays in a disconnected state for a time
greater than Dtimeout, or a disconnected transaction MTj has
the lock on a resource X for the execution of an operation

)(Xop j
i and an other active transaction request the lock

for the execution of an not compatible operation)(Xop k
h .

In this case the lock manager forces the abort of MTj by
performing the actions expressed by algorithm 8.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

211

Case 12α

A transaction MTj migrates in a reconnected state. In this
case the lock performs the actions expressed by algorithm
9.

In our approach when a mobile transaction is instanced, it
is in an active state. After a lock request on a given
resource, the transaction can stay in the same state o
migrate in an another state depending on the following
factors:
• current state of the resource;
• transaction operations to be executed;
• operations of mobile transactions that have locked the
• resource;
• current state of the mobile transaction.

Obtained a lock on a given resource, a generic transaction
will use the replicated data Xt to perform its operations.
Only at commit event, the reconciliated data will be
updated on the database. It is clear how in this model a
Disconnected transaction can reconnect (we suppose that
the disconnection was due to user inactivity or to a
temporary network fault) and tries to finish its work if
there were not compatible operations that have requested

Table 5. Lock Management
Resource State Free

Busy

BusyDisc

LockReq Y Y/N Y

the lock on the same resources and operated on the same
data.

3.3 Model Evaluation

In this subsection we report several experiments finalized
to theoretically evaluate the transaction execution time and
the abort percentage of disconnected transactions of our
model respect to the classical 2PL.
In particular, the first parameter has been evaluated at the
variation of: (i) number of transaction conflicts, (ii)
number of not compatible transaction operations.
Let c and tex be respectively the number of transaction
conflicts and the execution time in the ideal condition (no
conflicts are verified) of a single transaction, we assume
that the 2PL average execution time is given by the
following formula:

n

t
tctcn

c
ex

exex

PL

)
2

()(
)(2

+⋅+⋅−
=τ (6)

being n the number of total transactions. In fact, we
suppose that the arrival time of a conflicting transaction
occurs in half of execution time of the previous one. Note
that no multiple conflicts are considered.
In our model we take into account both the number of
transaction conflicts c and the number of not compatible
transaction operations i. We can model the probability of
having k not compatible conflicts among transactions as:

cn

kcinki

C
CC

KP
,

,,)(
)(−−⋅
= (7)

being . mz
m
z

C mz ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,, , 0 if mz ≥

Considering such probability, the execution time (which
behavior is reported in Fig. 2 by fixing tex = 1) in our
approach is:

∑
=

⋅=
),min(

0
2)()(),(

ci

K
PLour exkPic ττ (8)

It is possible to observe that the 2PL execution time does
not depend on the number of not compatible operations
and grows in a linear manner as respect to the number of
conflicts. In our approach, we observe an increase of times

Fig. 2. Average Transaction execution Time

as respect to the number of transaction conflicts and the
number of not compatible transaction operations.
However the times are lower than 2PL ones because we do
not take into account the overhead due to the
reconciliation operations. Our method is more suitable as
respect to 2PL when we have medium-high percentage of
conflicts and medium-low percentage of incompatibilities.
In our best case (c = 100%, i = 0) the proposed approach

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

212

presents a theoretical time improvement of 50% respect to
2PL: such enhancement is significant for high values of tex,
in other terms for long lived transactions. In the opposite
the abort percentage of disconnected transactions has been
analyzed at the variation of: (ii) number of transaction
conflicts, (i) number of not compatible transaction
operations, (iii) percentage of disconnected transactions.
In the 2PL approach we can simply consider the abort
percentage as function of disconnecting timeout. Instead,
in our approach such percentage can be computed by
product of the probabilities (percentage) of having a
disconnection P(d), a conflict P(c) and an incompatibility
P(i):

P(i) P(c) P(d) P(Abort) ⋅⋅= (9)

In Fig. 3 the abort percentage is reported in function of the
percentage of transaction conflicts and the percentage of
disconnected transactions for increasing value of the
number of not compatible transaction operations.

Fig. 3. Abort Percentage of disconnected transactions

4. Implementation and Use Examples

In this section some implementation details about our
transaction manager middleware are reported. The
developed prototype (which multi-layers infrastructure is
schematized in Fig. 4) offers a set of services to manage
mobile transactions and is based on the following
components:
• a set of LDBS (Local DataBase Systems): they

contain applications data and offer the functionalities
to manage and store such data, working like a
traditional DataBase Management System.

• a centralized GTM (Global Transaction Manager):
it is the core part of the architecture. Such

componentrepresents our transactional scheduler
middleware. It accepts user requests in terms of
mobile transactions, generated by mobile devices and
then processes them in according to the previous
transaction management model. In particular, it allows
to manage:

1. transaction concurrency on the base of their
semantic;

2. possible transaction deadlocks or starvation;
3. disconnections of user clients;

Moreover, this module is wired connected to the
different LDBS servers in order to manage data on the
local databases.

• a set of Base Stations: they allow to connect the
mobile device to the GTM server. Due to the
centralized approach, the management of the user
mobility is totally solved, because a given base station
is not delegated to track the operations executed by
the users, but the mobility is directly managed by the
GTM.

Fig. 4. System Architecture

• a Mobile Units: They are the set of mobile devices
from which the users have access to the system.

Now some use cases are provided to show the behaviour
of our system referring to different transaction data sets
and to the motivating example described in section 2. The
actors of the systems are two kinds of user: (i) clients that
can perform purchases of different products specifying the
desired quantity; (ii) administrators that can set the price
or increment the available quantity of the various products.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

213

4.1 Example 1

In this case we suppose the presence of four users: three
clients that want to buy the same product p and one
administrator that wants to increment its available quantity.
No disconnections are supposed. The table 6 schematized
the described situation in terms of initial and final product
quantities (Qi, Qf) seen by the users (t1 and t2 are
respectively the commit/abort time and the arrival time of
each transactions). Because all mobile transactions
generated by the different users are compatible (operations
are additions or subtraction), the lock manager grants the
lock to all transactions and they can operate in a
concurrent manner.
At each transaction commit a system transaction is
generated to update the reconciliated data on the database
following the algorithm 4.

Table6. Example 1
User t1 t2 p Qi Op Qf
Client1 4+γ 1 1 100 Read(Q),Q=Q-1 100
Client2 4+2γ 2 1 100 Read(Q),Q=Q-2 100
Client3 4+3γ 3 1 100 Read(Q),Q=Q-3 100
Admin1 4+4γ 4 1 100 Read(Q),Q=Q+

6
100

Table 7. Example 2
User t1 t2 p Qi Op Qf
Client1 2+γ 1 1 100 Read(Q),Q=Q-1 94
Client2 3+γ 2 1 100 Read(Q),Q=Q-2 94
Admin1 4+γ 3 1 100 Read(Q),P=110 94
Client3 5 4 1 100 Read(Q),Q=Q-3 94

P=110

4.2 Example 2

In this case we suppose the presence of four users: three
clients that want to buy the same product and one
administrator that wants to set its price. No disconnections
are supposed. The table 7 schematized the described
situation in terms of initial and final product quantities
seen by the users.
In the proposed scenario, the lock manager grants the lock
to the first two client transactions, while administrator
transaction has to wait the client operations termination for
performing its task. The last client transaction operates
after administrator and buys the product at new set price P.

4.3 Example 3

In this case we suppose the presence of four users: two
clients that want to buy the same product, one
administrator that wants to set its price and another client
that want to buy a different product. A disconnection of
the second client is supposed. The table 8 schematized the
described situation in terms of initial and final product
quantities seen by the users.
In the proposed scenario, the lock manager grants the lock
to the first two client transactions, while administrator
transaction has to wait the client operations termination for
performing its task. Because the second client is
disconnected, at the reconnection time, the lock manager
forces his abort due to the execution of an not compatible
transaction (administrator operation) on the same
resources. The last client transaction operates after
administrator and buys the different product.

Table 8. Example 3
User t1 t2 p Qi Op Qf
Client1 2+γ 1 1 100 Read(Q1),Q1=

Q1-1
99(Q
1)

Client2 3+2γ 2 1 100 Read(Q1),Q1=
Q1-2

99(Q
1)

Admin1 3+γ 3 1 100 Read(Q1),P=11
0

Client3 4+γ 4 2 100 Read(Q2),Q2=
Q2-50

50(Q
2)

Table 9. Example 4
User t1 t2 p Qi Op Qf
Client1 2+γ 1 1 100 Read(Q),Q=Q-1 94
Client2 4+2γ 2 1 100 Read(Q),Q=Q-2 94
Client3 3+γ 3 1 100 Read(Q),Q=Q-1 94
Client41 4+γ 4 1 100 Read(Q),Q=Q-2 94

4.4 Example 4

In this case we suppose the presence of four users: all
clients want to buy the same product, but the second client
has a disconnection. The table 9 schematized the described
situation in terms of initial and final product quantities
seen by the users.
In the proposed scenario, the lock manager grants the lock
to all transactions that can perform their operations in a
concurrent manner. Also the second client, at the
reconnection time, can continue this work because only
compatible operations have operated on the data.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

214

5. Conclusions and Future Work

In this work we have proposed a novel approach for
managing concurrency of long lived transactions. We have
shown that such solution presents in precise conditions
different advantages both in terms of execution times and
abort percentage of the disconnected transactions as
respect to the 2PL. A first problem of this model could be
due to possible conditions of starvation for not compatible
transactions that try to access to resources locked by
different compatible transactions. Possible solutions for
this problem are: the introduction of a transaction priority
or the lock-deny on a given resource for compatible
transaction if in the resource queue there are a certain
number of not compatible transactions that are in a waiting
state.
A second problem is connected to the possibility of a high
rate of aborts due to the violation of integrity constraints
on the database during the data reconciliation process. A
possible solution for this problem is to limit the number of
possible concurrent and compatible transaction on a given
resource in function of the current value X of the resource.
References
[1] Action members : EPLF, U. Grenoble, Inria-Nancy, Int-

Evry, U. Montpellier 2, U. Paris 6, U. Versailles, “Mobile
Databases: a Selection of Open Issues and Research
Directions” SIGMOD Record, Vol. 33, No. 2, June 2004.

[2] D. Barbara’, “Mobile Computing and Databases-Survey”,
IEEE Transactions on knowledge and data enginnering, vol.
11, n. 1, 1999.

[3] P.K. Chrysanthis, “Transaction processing in a mobile
computing environment,” in IEEE Workshop on Advances
in Parallel and Distributed Systems (APADS), Princeton,
USA, October 1993.

[4] P. Serrano, A. C. Roncacio, and M. Adiba “A Survey of
Mobile Transactions” Distributed and Parallel Databases, 16,
193-230, 2004.

[5] GuoQiong Liao, YunSheng Liu, LiNa Wang and ChuJi
Peng, “Concurrency control of real-time transactions with
disconnections in mobile computing environment”,
Computer Networks and Mobile Computing, 2003.
ICCNMC 2003. 2003 International Conference on 20-23
Oct. 2003 Page(s):205 - 212.

[6] Kam-Yiu Lam, Tei-Wei Kuo, Wai-Hung Tsang and Gary C.
K. Law, “Concurrency control in mobile distributed real-
time database systems”, June 2000, Information Systems,
Volume 25, Issue 4.

[7] Nitin Prabhu and Vijay Kumar, “Concurrency control in
mobile database systems”, Advanced Information
Networking and Applications, 2004, Volume 2, pp. 83-86.

[8] S.H. Phatak and B.R. Badrinath, “Conflict resolution and
reconciliation in disconnected databases”, Database and
Expert Systems Applications, 1999.

Carmine Cesarano received the
Laurea degree in Computer
Science and Engineering from
the University of Napoli, Italy,
in 2002. In 2002 he joined the
Dipartimento di Informatica e
Sistemistica of the University of
Napoli “Federico II”, as research
follow and at the end of 2003 he

started a Ph.D. program in Computer Science and
Engineering and in 2006 he received the Ph.D. degree.
Currently he is working with the advanced multimedia
database group of the University of Naples Federico II.
His research interests lie in Information Retrieval,
Multimedia Information Systems, Knowledge extraction
and Mobile Transactions

Angelo Chianese received the
Laurea degree in electronics
engineering from the University
of Naples, Federico II in 1980.
In 1984, he joined the
Dipartimento di Informatica e
Sistemistica of the University of
Naples “Federico II” as an
Assistant Professor. Currently he

is a full professor at the University of Naples Federico II
He has been active in the field of pattern recognition,
optical character recognition, medical image processing,
and object-oriented models for image processing. His
current research interests lie in multimedia data base and
multimedia content management for e-learning.

Vincenzo Moscato received the
Laurea degree in computer
science and engineering from
the University of Naples
“Federico II,” Naples, Italy, in
2002. In 2005 he received the
Ph.D. degree in computer
science and engineering at the
same university and currently he
is working with the advanced

multimedia database group of the University of Naples
“Federico II” His research interests are in the area of
image processing (active vision) and multimedia database
systems (image databases, video databases, and
architectures for multimedia data sources integration).

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

215

Antonio Picariello received
the Laurea degree in electronics
engineering and the Ph.D.
degree in computer science and
engineering, both from the
University of Naples, Naples,
Italy, in 1991 and 1998,
respectively. In 1993, he joined
the Istituto Ricerca Sui Sistemi
Informatici Paralleli, The

National Research Council, Naples, Italy. In 1999, he
joined the Dipartimento di Informatica e Sistemistica,
University of Naples “Federico II,” and is currently an
Associate Professor. He has been active in the field of
computer vision, medical image processing and pattern
recognition, object-oriented models for image processing,
and multimedia database and information retrieval. His
current research interests lie in knowledge extraction and
management, multimedia integration.

Antonio d’Acierno received
the Laurea degree in
electronics engineering from
the University of Naples
Federico II. He is currently a
senior researcher at the ISA-
CNR of Avellino . His current
research interests lie in the
field of mobile transactions,
information retrieval, semantic
web and bioinformatics.

