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Summary 
Radio Frequency Identification (RFID) systems can be found in 
wide spread applications – from simple theft prevention over 
multi-bit transponders up to complex applications involving 
contactless smartcards. This paper shows that the security gap 
between low-cost RFID Tags and contactless smartcards can be 
filled. It is examined how much power a passive tag can gain 
from a magnetic field and which amount of energy is needed by 
elliptic curve (EC) computations. The values are merged in a 
diagram giving the minimum timings possible to calculate and 
verify elliptic curve cryptography (ECC)-signatures. 
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1. Introduction 

Modern automatic identification (Auto-ID) systems have a 
long technological history and multiple roots. The most 
widely recognized Auto-ID system is the bar code system 
developed during the early 1970’s [1] but the technology 
which is more related to the actual one is even older. 
During the 2nd World War, allied planes were equipped 
with devices that allowed a friend or foe recognition [2]. A 
civil variant is able to detect friends and foes inside a shop: 
the electronic article surveillance (EAS) system. More 
sophisticated systems also found their way in public life 
and people are using ID technology for entering a ski-lift 
or to disable the immobilizer of their car. In the last couple 
of years there has been done lot of work to map all those 
″root-technologies″ to one inheritor: Radio Frequency 
Identification (RFID). Some of them just had to be 
renamed to the term RFID, others had to be reinvented like 
the EPC tag (Electronic Product Code) to replace EAN bar 
codes (Electronic Article Number) [3]. The major task in 
this sector is to downsize the costs of a tag, so that it is 
lower than the monetary benefit that the RFID-System is 
able to gain. This still seems to be hard because the ink 
which is needed for bar codes is nearly free. 
Another fact is that there are rising concerns about the 
technology that provides information and can be read 
wirelessly and without any notice of its owner. People are 
afraid (or aware) that they can loose their privacy [4]. A lot 

of suggestions have been made to maintain privacy by 
adding extra functionality to the RFID tags but they all add 
more circuitry and higher costs. One basic method is to 
introduce a kill-command that disables a tag [5] – but the 
question is: who will be authorized to issue such a 
command? It is clear that this function has to be protected 
by a key or password. It must be secured. Applying even 
simple means against unauthorized tag access introduce 
the problem of key management. It is necessary to find a 
trade-off between the relative gain in security and the costs 
that come with them. When we talk about costs in this 
paper we do not only mean increasing chip sizes and 
increasing monetary costs, in the scope of this paper we 
especially address the increasing power consumption. 90% 
to 95% of the RFID devices are passive [7] which implies 
that they have to be powered by inductive coupling. 
Chapter 2 will show that increasing power consumption 
leads to a lowered maximum read range. 
 
Developers of smartcards already had to face and solve 
most of the questions and problems that occur when 
adding security functions in embedded systems in the last 
decade. Smartcards have become very powerful and are 
able to process various symmetric cryptographic protocols 
such as 3DES, AES and strong asymmetric computations 
by RSA and on Elliptic Curves (ECC) [6]. They are 
designed to fulfill high demanding security requirements 
and are evaluated up to Common Criteria EAL5. Most 
RFID tags also need electronic circuitry inside. Therefore a 
tag can be seen as the same embedded system with 
wireless interface. It was just a logic step to add the 
wireless RF interface to existing smartcard controllers. The 
result is a very secure RFID tag with state of the art 
cryptography. But the resulting device will also be only 
able to operate close to a reader and the monetary cost for 
a smartcard is 20 times higher than for a simple tag. 
This research was driven by the fact that the authors could 
not find products offering standardized asymmetric 
cryptography and the full functionality according to 
ISO15693 ″Identification cards – Contactless integrated 
circuit(s) cards - Vicinity cards″ that operate at distances 
up to a meter. 
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2. Transmittable Power 
 
Passive RFID tags gain their energy form the alternating 
magnetic field that is radiated by the antenna of the reader. 
This chapter will present results for the maximum power 
that can be used by the logic of an RFID tag. 
Inductive coupling is only possible in the so called ″near 
field″, whose dimension is mainly conditioned by the used 
frequency [9][10]. A good approximation of the maximum 
distance is determined by equation (1). 
 

π
λ

2
=d .                  (1) 

 
The interested reader can find more details in [2][15]. 
 
RFID Systems according to ISO14443 or ISO15693 
operate at a frequency of 13.56MHz [8] which leads to a 
maximum operational radius of 3.5 m. 
The maximum strength of the magnetic field an 
RFID-reader is allowed to emit is limited to 7.5 A/m. This 
value marks an upper constraint under which all 
RFID-Systems have to operate. 
The power-relation between the reader and the tag can 
basically be seen as a transformer with a big gap between 
primary and secondary side. This implies that the well 
known electronic equations can be used. 
The way in which the magnetic field behaves in order by 
the distance of its origin is highly dependent on the size of 
its emitting antenna. If the current and the number of 
windings is kept constant, small antennas produce a high 
initial field strength, that starts to decline very closely. A 
large antenna has a relative small initial field, but it will 
stay constant for a longer distance. 
 
The optimum diameter of a reader’s antenna is found at 

2 -times of the designated reading range. It is then 
possible to adjust the current and the windings of the 
reader’s coil to match the upper strength of 7.5 A/m. 
In order to achieve realistic values, the diameter of the 
supplying antenna was set to 1 m and the antenna of the 
RFID-tag was chosen to have a radius of 2.5 cm in order to 
fit inside a sticker or card. The inductive coupled system 
was simulated with MATLAB and the relation between an 
ohmic load and the induced voltage was shown. Vice versa, 
it was possible to derive the maximum load (minimum 
ohmic resistance) Rmin that can be applied, when a fixed 
voltage has to be preserved. In the following context, the 
behavior of three different CMOS-technologies with 
supply-voltages VL of 3.3 V, 2.5 V and 1.8 V will be 
examined. This leads us to the following three curves 
presented in figure 1. They show the corresponding 
maximum power Pmax = VL/Rmin in dependence on the 
distance between the RFID-reader and the RFID-tag. 

The curves therefore define the upper bound of the power 
that can be consumed if the tag operates at a given distance. 
The complete derivation of the curves is found in [15]. 

 
Fig. 1 Available Tag Power in dependence of range 

 
3. Energetic consumption of digital signature 
schemes 
 
The circuitry of most RFID tags is based on CMOS 
(complementary metal oxide semiconductor) technology. 
CMOS technology has the great advantage that it is 
possible to design electronic circuits with only relevant 
power consumption when the transistors change their 
operational state. 
 
In order to estimate the energy needed for calculating a 
signature, the digital signature schemes ECDSA, ECGDSA, 
ECMR and ECNR [20][21] are traced back to their 
underlying operations in the finite field and the integrated 
circuits needed for executing those operations: 
 

 
Fig. 2 Hierarchical composition of arithmetic execution layers 

 
3.1 Arithmetic in the finite field 
 
The “layer” of the finite field arithmetic will be executed 
on a dedicated hardware. It is designed according to the 
operand length of the field elements and it is supposed that 
the size of the field stays fixed during the life-cycle of the 
RFID tag. This work is focused on realizations that are 
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based on Galois fields defined by primes or/and extension 
fields of characteristic 2. The finite field operations 
supported by this layer are listed in the following figure: 
 
 

 
 Fig. 3 Diversification of finite field arithmetic 

 
The functionality can be divided in hardware-based and 
function-based operations. Addition, subtraction and – just 
in case of GF(2m) – also squaring. The other operations are 
performed as an algorithm-controlled sequence of the 
mentioned hardware functions. The related dependencies 
are shown by the solid arrows in figure 3. 
 
Addition 
In GF(p), the underlying adder has to support integer 
operations with carry propagation e.g. a carry-ripple-, carry 
save or a von Neumann-adder, which was chosen because 
it offers the best trade-off between area and latency. If the 
elements are represented in their binary complement, the 
hardware doesn’t have to distinguish between an addition 
and a subtraction. Since the maximum result is 2p-2 and 
the resulting element has to be < p, it might be necessary to 
reduce the result by the modulus. 
In case of GF(2m), there is even no logical difference 
between an addition and subtraction and the result is again 
an element of GF(2m). The 2nd advantage is that the 
operation is performed by a simple XOR of the binary 
coefficients. The energy focused comparison of both 
arithmetic units shows that an addition in GF(2m) is about 
eleven times cheaper then in GF(p). 
 
Modular squaring 
Modular squaring in GF(2m) can be done by a specialized 
squaring unit, unique for every generating polynomial of a 
finite field. The square of any element is built by 
interleaving zeros in its binary representation: 
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Since the size of the resulting element is at most 2m-2 bits, 
it can be reduced in an inexpensive way due to the fact that 
the hamming weight of the used reduction polynomials is 
low (three or five). Secondly, no reduction is required for 
half of the higher order bits because they are always zero. 
The squarer can therefore be implemented as a hard wired 
XOR circuit as shown in the following example for GF(24) 

with f(x) = x4 + x + 1: 
 

 
Fig. 4 Modular Squarer for GF(24) 

 
The complexity of the modular squarer is only related on 
the size of the finite field and the hamming-weight of the 
generating polynominal. Table 1 shows the resulting 
number of XOR gates and their related energy 
consumption, needed to build a modular square in the 
examined fields GF(2113), GF(2163) and GF(2193): 

 
 
Table 1: Hardware and energetic complexity of GF(2m) squares 

 
Modular Multiplication 
The authors analyzed the two different schemes, known as 
Montgomery-multiplication (MM) and interleaved- 
modular-multiplication (IMM). Both algorithms are 
iterative multipliers that reduce the intermediate results in 
each round and thus keep them smaller than 3p-3. 
The IMM is a binary iterative MSB-first multiplier that 
doubles the result Z=X⋅Y mod M in each calculation step 
and additionally adds the value of Y < p if the actual bit of 
the factor X is set to “1”. The reduction is done with at 
most 2 subtractions per iteration.  
The Montgomery-multiplier performs the same operation 
Z=X⋅Y mod M starting with the LSB of X. It does not 
compute Z=X⋅Y mod M directly, but X⋅Y⋅R-1 mod M 
where R-1 is a special fixed element of the finite field. 
Usually, R is chosen to be 2⎡ld(p)⎤. Calculations are therefore 
not done in the finite field itself, but in a mirrored 
Montgomery-domain(R). The transformation of X to X(R) is 
performed by one MM of X⋅R2. The multiplication is done 
as follows: If the actual bit of X(R) is set to “1”, Y(R) is 

 
CMOS-Technology

GF(2113) 
56 XOR 
Energy 

GF(2163) 
246 XOR 
Energy 

GF(2193) 
96 XOR 
Energy 

 
0.35 µm 
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37,66 pWs 

 
14,69 pWs
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added to Z(R). If the result is odd, the algorithm 
additionally adds M to Z(R). Since all M are even and 
X(R)+M mod M = X(R) mod M, Z(R) will be also be even 
and the modular result is not altered. Z(R) is now dividable 
by 2, which is done by a very simple and energy-efficient 
right shift. When the iterative multiplication is completed, 
the final result will always be smaller than 2p and can be 
corrected with one subtraction. The result is still a 
representation in the Montgomery-domain and has to be 
transformed with another MM of Z(R)⋅1. The advantage of 
calculating modular multiplications in the 
montgomery-domain relies on the fact, that a reduction 
done by shifting the operand is a cheaper operation than 
performing a subtraction. But this fact only counts for 
calculations in GF(p), since the energy-consumption and 
delay of the underlying adder is high. In GF(2m), 
subtractions are cheap enough and there is no advantage 
using the montgomery multiplication. Furthermore, the 
transformation and retransformation can be saved. 
 
Modular Inversion 
Finding the inverse of an element a ∈ GF(q) (a⋅a-1 mod q = 
1) is the most expensive operation inside the finite field 
arithmetic. The most popular methods are the extended 
Euclidian algorithm and the inversion by Fermat’s little 
theorem. Another, and very effective, method for GF(2m) is 
the scheme by Itoh and Tsuji [22]. It is based on Fermat’s 
theorem but drastically reduces the number of 
multiplications which are needed for calculating the 
inverse from (m-1) to ⎣ld(m-1)⎦+Hw(m-1)-1. Hw denotes 
the hamming weight of the scalar in its binary 
representation. The number of needed squaring does not 
change significantly (m to m-1), but they are nearly free 
when utilizing the hardware squarer. Using the Itoh-Tsuji 
scheme for inversions in GF(2m) will save up to 90-95 % 
of time and energy. 
 
3.2 EC Arithmetic 
 
Elliptic curves (EC) can be defined over prime or 
extension fields. Based upon the results of the latter 
subchapter, one can see that binary extension fields are the 
most suitable choice for hardware implementation. The 
elliptic curve over GF(2m) in its affine representation exists 
of the set of solutions (points) that satisfy the following 
cubic equation (3): 
 

baxxxyyE ++=+ 232: .         (3) 
 

The shown equation for elliptic curves and all other 
formulas, needed for the point-arithmetic (addition and 
doubling) can be adapted to other coordinates like into 
general projective, Jacobian-projective or Lopez- 
Dahab-projective representation. All ofthem offer the 

advantage that it is possible to avoid the computation of 
field-inverses under most circumstances. The points of the 
elliptic curve and a special point in infinity define an 
abelian group that allows cyclic (finite-field) EC-point 
based computations. Elliptic curve cryptography (ECC) is 
based on the finite set of EC-Points and the fact that it is 
easy to perform a scalar multiplication R=k•P, defined by 
the addition chain R = P+P+P+…+P, but hard to obtain the 
scalar k when only the Points P and R are present. This is 
known as the discrete logarithm problem for elliptic curves 
(ECDLP). 
There are different methods to calculate a scalar 
multiplication. The simplest variant is the “double and 
add” algorithm that performs a point doubling in each step 
of the calculation and additionally a point addition if the 
corresponding coefficient of the binary representation of k 
is “1”. The drawbacks of this method are that this 
algorithm needs to calculate a field inverse in each 
iteration step and that an attacker may obtain knowledge 
about the secret k when analyzing the runtime-behavior of 
the algorithm, as calculating 2P+P takes longer than 
calculating 2P. This attack is known as the simple power 
analysis (SPA). 
A more sophisticated method is the scalar Montgomery 
Multiplication proposed by Lopez and Dahab [18]. It uses 
mixed coordinates and is able to calculate the scalar 
multiplication by only using the y-coordinate. It is 
therefore possible to save most of the power consuming 
inversions. Additionally, point doubles and additions are 
performed independently on the scalar factor k. This makes 
the algorithm resistant against power and timing attacks. 
Table 3 summarizes the computational costs of the three 
scalar multiplications, where the hamming weight of k is 
supposed to be m/2 where m is the length of the factor in 
its binary representation. 
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Fig. 5 Energetic comparison of projective scalar point multiplications 
 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007 
 

 

279

All digital ECC signature schemes have in common that 
they use a secret scalar d (private key) for signing a 
message token (e.g. a Hash) while the point d•P or d-1•P 
(public key) is used for verification. If the message was 
altered or the public key doesn’t correspond to the signing 
key, the verification will fail. There are two classes of 
signature schemes: signatures with appendix (e.g. ECDSA, 
ECGDSA) and signatures giving message recovery (e.g. 
ECMR, ECNR). They offer the possibility to transmit a 
small message within the signature. If a message is longer 
than the capacity to recover the message, the rest of the 
message is treated like it is done by signature schemes with 
appendix. The mentioned representatives of each class 
were analyzed with regard to their energy consumption. All 
of them have in common that a signature generation 
involves one scalar point multiplication of an EC point 
while the verification step takes two scalar multiplications. 
Simply spoken, the schemes only differ in the way in 
which the scalars are computed and processed. To visualize 
this observation, the generation of a signature with 
appendix (eg. ECDSA) is compared to a scheme with 
message recovery (e.g. ECNR):   
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Alg. 1 ECDSA (signing) 
 
The generation of a ECNR signature starts similar to 
ECDSA but in step 2, Rx - the “whitness” (r)- is modified 
by the recoverable message. The 2nd part of the ECNR 
signature (s) also computed in a different way. 
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Alg. 2 ECNR (signing) 

 
One can see that ECDSA needs invert k in order to 
calculate s, while ECNR doesn’t. The energetic impact of 
this small difference is shown in the following figure 6. 
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Fig. 6 Energetic comparison of signature schemes (signing) 
 
On one hand, Figure 6 shows the energetic influence when 
the signature scheme involves the computation a field 
inverse in GF(p). Inversion free methods like ECGDSA or 
ECNR are so able to sign a message with 40% less energy. 
On the other hand, it shows that the influence of choosing 
a signature scheme with or without message recovery is 
negligible. 
For verification, ECDSA, ECMR and ECGDSA have to 
compute field inverses modulo the order of the base point 
and so they do not differ in their energetic behavior. ECNR 
is the only scheme that offers an inversion free 
verification. 
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Fig. 7 Energetic comparison of signature schemes (verification) 
 
Since it also offers the possibilities of message recovery 
ECNR is supposed to be the most recommended scheme. 
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4. Analysis 
 
In order to determine if und under which conditions the 
cryptographic algorithms can be implemented in RFID 
tags, this paper takes an approach that implies that the 
limiting factor is the straitened power transfer between an 
RFID reader and the tag. The information which was 
obtained in the latter chapters can be used to define 
boundary conditions under which EC based cryptography 
is possible. The minimum calculation time is derived by 
dividing the energy of a signature process by the power 
that is available at a certain distance. 
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The energy needed for signing and verifying a signature of 
length n can be normalized by 1/⎡ld(n)⎤3 and the following 
diagram provides the results that are independent of the bit 
length. 
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Fig. 8 Normalized minimum execution times in dependence of the range 
for 0.35 µm CMOS 

 
5. Conclusions 
 
The amount of power available for a tag at a certain 
distance was given in chapter two. By reducing the 
standardized signature schemes to finite field arithmetic 
and basic logic functions, it was possible to derive the 
energy needed by the different functional steps in chapter 3. 
Within this step, the energy consumption could be 
minimized by choosing the (energetically) best algorithms 
available. The results of chapters 2 and 3 were merged into 
minimum possible timings achievable for different 
signature schemes and steps. It was shown that 
ECNR-signatures are the best option for an RFID system 
because it offers the lowest need of energy and additionally 
provides the possibility of message recovery. 

The authors showed that strong asymmetric cryptography 
is even possible with a relative coarse semiconductor 
process of 0.35 µm. Nevertheless, RFID Tags also have to 
contain other circuitries that handle radio access 
(anti-collision) and other functions. Those were not taken 
into account. Furthermore, the logic that has to control the 
cryptographic unit also will need space and energy – so 
does the memory that will be needed by the algorithms. 
Since the scalar multiplication (next to the GF(p) 
inversion) is the most time and energy consuming 
operation in EC-based digital signature algorithms, it 
should be possible to expand the total tag running time (to 
clock down the logic) to a level where the functionality is 
guaranteed. Furthermore, the semiconductor technology is 
also still under rapid development and the authors predict 
that the capabilities of RFID tags will increase in the same 
way. If the market for RFID providing public key 
cryptography is big enough it should be possible to fill the 
mentioned security gap between AutoID tags and 
Smartcards. 
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