
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

282

Distributed Parallel Resource Co-Allocation with Load
Balancing in Grid Computing

 Neeraj Nehra 1† , R.B.Patel 2††, V.K.Bhat 3†††

†School of computer Science and Engineering, Shri Mata Vaishno Devi University,Katra(J&K),India.
††Department of computer science and Engineering, M.M.Engg.College, Mullana(Ambala),Haryana,India

†††School of Applied Physics and Mathematcs, Shri Mata Vaishno Devi University,Katra(J&K),India.

Summary
Resource Co-allocation is one of the crucial problems
affecting the performance of the grid. In addition to this if
the system load in each of nodes is nearly equal; it
indicates good resource allocation and utilization. It is
well known that load balancing is a key factor in
developing parallel and distributed applications. Instead of
balancing the load in grid by process migration, or by
moving an entire process to a less loaded node, we make
an attempt to balance load by splitting up processes into
separated jobs and then balance them to nodes. To address
the problem of load balancing, many centralized
approaches have been proposed in the literature but
centralization has proved to raise scalability tribulations.
So in order to get the target, we use mobile agents (MAs)
to distribute load among nodes in the grid.

 Because a quick response time is necessary for need
of users in real grid environment so a real time resource
co-allocation is needed for such type of applications. So a
parallel resource co-allocation using MA is proposed in
this paper which not only balance the load on grid using
proposed architecture but also allocate the resources. It is
concluded with the results of the experiments that parallel
method not only reduces total execution time but also
reduces overall response time small.

Key words:
Load balancing, distributed systems, mobile agent and
parallel resource co-allocation

1. INTRODUCTION

Grid computing has emerged as an important new field
distinguished from conventional distributed computing by
its focus on large-scale resource sharing, innovative
applications, and high-performance orientation [1, 2].
Computational grid which is the most common grid [1]
consists of large sets of diverse, geographically distributed

resources that are grouped for executing specific
applications. As the number of grid system components
increases, the probability of a failure in the grid computing
becomes higher than in a traditional parallel computing
[14,15,16,17]. The basic component of grid is available
resources, so resource managements can encompass not
only a commitment to perform a task but also
commitments to level of performance or quality of service
[18].

The main components of a grid infrastructure are a
security component, resource management services,
information services and data management services [3].
The real and specific problem that underlies the Grid
concept is to coordinate the shared resources and to solve
problems through distributed programs [1]. The sharing
that the grid computing is concerned with is not primarily
file exchange but rather direct access to nodes, software
data, and other resources, as is required by a range of
collaborative problem-solving and resource-brokering
strategies. The Open Grid Services Architecture (OGSA)
enables the integration of services and resources across
distributed, heterogeneous, dynamic, virtual
organizations—whether within a single enterprise or
extended to external resource-sharing and service-provider
relationships [2]. Various grid services can be offered
under the grid environment, which is defined as a web
service that provides a set of well-defined interfaces and
that follows specific conventions [4, 5]. Many services
offered by the Grid need to access data from a certain
source (database), such as the BioMap service using the
grid system to identify the genes from open databases [6].
In [5] author presented an example for a web-based grid
service in which the grid resources need to access
visualization data from another remote server running on
the grid.

The relational database management system (RDMS),
the computational resources and the data source constitute
a general model that can cover most grid services. The
partition of a service task into subtasks and their

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

283

distribution among available resources are of great
concern because they significantly affect the grid service
reliability, cost and profits [7].

We will use the concept of mobile agent (MA) for
resource management in grid because MA technology
offers a new computing paradigm in which an autonomous
program can migrate under its own or host control from
one node to another in a heterogeneous network. In other
words, the program running at a host can suspend its
execution at an arbitrary point, transfer itself to another
host (or request the host to transfer it to its next
destination) and resume execution from the point of
suspension is called MA [21]. MA technology provides a
new solution to support load balancing with resource
management [22]. This approach consists of a number of
different types of MAs in a cooperative way to fulfill the
task of load balancing instead of single centralized
component managing all load-balancing activities. Each
type of agent implements one of the predefined policies of
load balancing. Moreover, the MA paradigm supports the
disruptive nature of wireless links and alleviates its
associated bandwidth limitations. The migration of MA is
associated with different movement costs viz, transmission
time, round trip time, number of hops, etc. MA research
evolved over the past few years from the creation of many
monolithic MA systems (MASs), often with similar
characteristics and built by research groups spread all over
the world for optimization and better understanding of
specific agent issues [22, 23]. To improve the performance
of MAs means to optimize their paths on the network.
Furthermore, the agent uses a path through a network
based upon known infrastructure characteristics. An agent
optimizes its transmission between Agent hosts (AHs)
[23] with the help of several migration strategies described
in [24].

In this paper, we propose a load balancing mechanism
with resource management using MA. Each MA executes
predefined policy and has a task to be performed. Rest of
the paper is organized as follows: Section 2 presents an
overview of PMADE. Section 3 gives system architecture
for load balancing along with policy selection and agent
selection. Section 4 describes resource co-allocation using
MA. Section 5 presents Implementation and performance
study. Section 6 gives related work and finally article is
concluded in Section 7.

 2. OVERVIEW OF PMADE

Figure 1 shows the basic block diagram of PMADE
(Platform for Mobile Agent Distribution and Execution).
Each node of the network has an Agent Host (AH), which
is responsible for accepting and executing incoming

autonomous Java agents and an Agent Submitter (AS) [25],
which submits the MA on behalf of the user to the AH. A
user, who wants to perform a task, submits the MA
designed to perform that task, to the AS on the user system.
The AS then tries to establish a connection with the
specified AH, where the user already holds an account. If
the connection is established, the AS submits the MA to it
and then goes offline. The AH examines the nature of the
received agent and executes it. The execution of the agent
depends on its nature and state. The agent can be
transferred from one AH to another whenever required.
On completion of execution, the agent submits its results
to the AH, which in turn stores the results until the remote
AS retrieves them for the user.

The AH is the key component of PMADE. It consists
of the manager modules and the Host Driver. The Host
Driver lies at the base of the PMADE architecture and the
manager modules reside above it. It is the basic utility
module responsible for driving the AH by ensuring proper
co-ordination between various managers and making them
work in tandem. Details of the managers and their
functions are provided in [25]. PMADE provides weak
mobility to its agents and allows one-hop, two-hop and
multi-hop agents [25]. PMADE has focused on Flexibility,
Persistence, Security, Collaboration, and Reliability [26].

Mobile Agent’s Result

Mobile Agent with Task

User Agent
Submitter

Manager Modules
Host Driver

Agent Host

Fig. 1 Block architecture of PMADE

3. SYSTEM ARCHITECTURE FOR LOAD BALANCING

System architecture for load balancing is shown in Figure
2 which contains agents along with associated policies.
Each agent executes a predefined policy. Each agent also
cooperates with each other for valuable information
sharing for update information. Each component of the
architecture is as follows:

3.1 POLICY SELECTION
• Information gathering policy (IGP): It maintains the

information about the workload at the servers. The

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

284

policy is made up of two components: frequency of
information exchange and the method for
dissemination of the information. There is a tradeoff
between having accurate information and minimizing
the overhead. It also includes the estimation and
specification of workload, e.g., processor load, length
of queue, storage utility, etc.

• Initiation policy (PI): It determines who initiates the
process of load sharing. The initiator can be the
source server, the destination server, or both
(symmetric initiations). The process can be initiated
by an overloaded server (called sender-initiated) or by
an under-loaded server (called receiver-initiated).
Sender initiated policies are those where heavily
loaded nodes search for lightly loaded nodes while
receiver initiated policies are those where lightly
loaded nodes search for suitable senders. These
policies can be executed either centralized manner or
distributed fashion. We presents the comparative
performance of both the policies in coming section.

• Job transfer policy (JTP): It decides when the initiator
should consider re-allocate some requests to other
servers. The decision can be made based on only local
state or by exchanging global processor load
information. Job reallocation is activated by a
threshold-based strategy. In a sender-initiated method,
the job transfer is invoked when the workload on a
node exceeds a threshold. In a receiver-initiated
method, a node starts the process to fetch jobs from
other nodes when its workload is below a threshold.
The threshold can be a pre-defined static value or a
dynamic value that is assessed at runtime based on the
load distribution among the nodes. When job
reallocation is required, the appropriate job(s) will be
selected from the job queue and transferred to another
node.

• Location policy (LP): It determines to which servers
the jobs should be re-allocated. The simplest location
policy is to choose a server at random. More
complicated policies use negotiation, where the
initiator negotiates with each member in a subset of
servers.

3.2 AGENT POOL
Agent pool consists of various agents each having its own
role. These agents are:

• Local Scheduler Agent (LSA): Its main function is to
schedule the incoming jobs. Whenever a request for
load comes from any node it will schedule the
corresponding request to appropriate node in the
network. The request may be of information about

system resources, load information, number of
processes currently running etc.

• Grid Dispatcher Agent (GDA): It is a mandatory
component of architecture. The GDA provides
services to other agents. Agents may register their
services with the GDA or query the GDA to find out
what services are offered by other agents. GDA is a
mobile agent that implements the location policy.
When the server is overloaded, a clone of the GDA
will be created. When GDA is activated, using the
global loading snapshot stored at the local server, it
will carry the jobs in the job reallocation list to the
appropriate remote servers for execution. Initially,
the GDA will use the global load information stored
at the local server site to decide which node to go for
load distribution. The GDA presents itself at the
receiver site and negotiate with the receiver server
locally. There is no need for the sender site to wait for
acknowledgement from the receiver as the GDA gets
the acknowledgement on behalf of it. In the case
where the GDA carries the job to a destination server
and finds that the server became overloaded, the GDA
can make decision on the fly to find another suitable
server by using the current system state information
collected while it travels through the destination
servers.

• Load Information Agent (LIA): This is a mobile agent
that implements the information gathering policy
component of the load-sharing mechanism. It
continuously travels through the servers to collect the
global information about the workload and resource
utilization at the participated servers. Each server site
stores its own copy of the global workload
information which will be used for the GDA to make
decisions on job reallocation. The global load
information will be maintained by the LIA shared by
all the servers in the system. An LIA presents itself at
a server site and obtains in real time, the accurate,
current load information at that site. A single LIA
traveling from one site to another continuously,
carrying updated load information of previously
visited server sites. At each site it visited, an LIA
synchronizes itself with the global load information
stored at the server. When it arrives at a server site, it
will first update its knowledge about the local
workload at the site. Then it will retrieve the local
copy of the global load information stored at the site,
which is in the format of a table containing one entry
for each server in the group, and synchronize it with
the information collected from the sites it previously
visited. Using only one LIA to move among all server
sites to collect and maintain global workload

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

285

information may result in delay in updating the load
information tables at individual server sites. This
delay will have impact on the effectiveness of load
sharing because the timeless and information
coverage of the global workload snapshot are the
most critical factors in determining the system
performance. Without up to date global load
information, it is unlikely that an accurate decision
can be made for sharing the heavy workload of an
overloaded server. To overcome this difficulty, we
can deploy multiple LIAs, each propagates through a
portion of the network.

• Resource Management Agent (RMA): The resources
are managed by RMA the resource management is
responsible for gathering information concerning the
process nodes on which tasks may execute and pass
this information to GDA. There is a proper
coordination among the mobile agent for information
exchange using mobile group approach [14]. This
information includes availability, load average and
idle time. Resource management is also responsible
for organizing the GDA scheduling and Task
execution.

 3.3 INTER- AGENT COMMUNICATIONS

The framework for load balancing consisting of multi-
agents with each agent has a specific role to play and
have facility for inter agent communication as shown in
Figure 2. Each agent is implemented for managing hosts
processors of a Cluster resource and scheduling
incoming tasks to achieve load balancing. The function
of various layers is as follows:

• Communication and Coordination Layers: Agents
in the system communicate with each other or with
users using mobile group approach for coordination
of MAs. The request an agent receives from the
communication layer should be explained and
submitted to the coordination layer, which decides
how the agent should act on the request according to
its own knowledge. We assume a distributed system
as a collection of agents, locations, and
communication channels. A location represents a
logical place in the distributed environment where
agents execute. When a mobile agent migrates, it
moves from a location to another. Agents
communicate by exchanging messages through
reliable communications channels, i.e., transmitted
messages are received uncorrupted and in the
sequential sent order, as long as the message sender
does not crash until the message is received (reliable
channels can be implemented over unreliable

channels by tagging transmitted messages with
sequential numbers, delivering such messages
according to the sequential order and asking for
retransmission in case of missing messages). As
implied by reliable channel assumption, we assume
that network partitions do not occur or, when they
occur, they are repaired within a finite amount of
time and communication reestablished.

No bounds on message transmission or relative
agent execution times are assumed. Agents and
locations are assumed to fail only by crashing
(without producing any further action), and the
agents of a faulty location are assumed to have
crashed. The failure of a given location is not
directly handled. Instead, it is only detected when the
associated agents are detected faulty. An agent that
never crashes is named correct [27]. Let L denote the
set of all possible locations. Let P be the set of all
possible agents. A mobile group is denoted by the set
of agents g = {p1, p2, … pn}, g ⊂ P. On a mobile
group, five operations are defined:

• Join (g): issued by an agent, when it wants to join
group g.

• Leave (g): issued by an agent, when it wants to leave
group g.

• Move (g, l): issued when an agent wants to move from
its current location-to-location l.

• Send (g, m): issued by an agent when it wants to
multicast a message m to the members of group g.

• Receive (g, m): issued by an agent to receive a
message m multicast from the group g.

Agents
Agent-Agent Communication

Layers

Management Layer

Coordination Layer

Communication Layer

High Speed Network

Interface

Resource and Data Manager

Agent Execution Environment (PMADE)

Set of
Policies

IGP

PI

LP

JTP

LIA

LSA

RMA

GDA

Fig .2 System Architecture for load balancing

• Management Layer: This layer is responsible for

submitting local service information to the
coordination layer for agent decision-making. This
layer is responsible for management of resources
done by resource and data manger module. RMA is

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

286

responsible for conducting various resource
management activities. It is the overall manager of
all the resources at this layer.

4. RESOURCE CO-ALLOCATION
 Figure 3 shows a typical scenario of load balancing
with resource management with different modules each
has a role to play.

• Agent Management System (AMS) is a mandatory
component of architecture. The AMS exerts
supervisory control over access to, and use of agents.
Only one AMS exists in one local grid. The AMS
maintains a directory of agent identifiers (AID)
which contains transport addresses for agents
registered in local grid. The AMS offers services to
other agents. Each agent must register with an AMS
in order to get a valid AID.

• The resource management is also major component
in the operation of a grid and is controlled by RMA.
The basic function of RMA is to accept requests for
resources from nodes within the grid and assign
specific node resources to a request from the overall
pool of grid resources for which the user has access
permission. A RMA matches requests to resources,
schedules the matched resources, and executes the
requests using the scheduled resources. In
architecture resources are provided by agents as
services and LSA co-operates with RMA for
allocation of local high performance resource in a
grid environment. The high performance computing
capability that a local resource can provide is
modeled as a service. Each LSA is a service provider
of high performance computing and can register its
service information with a GDA in same grid. In a
Local grid, AMS is the manager of the local agent
system and offers services to other agents. LSA may
register their services with the GDA or query the
GDA to find out what services are offered by other
agents.

In this resource management architecture, Local Grid
is organized in a hierarchical manner. A local grid can
register its service to another local grid. Here the services
of a local grid means all the services provided by the LSA
are registered in it. And its registration with other local
grid is achieved through interaction between their
respective GDA. For examples, if a local grid x will
register its service with another local grid y, and then
GDA in x will send registration information to GDA in y.

The scheduling on a local grid resource is a ‘‘multiple
applications on multiple processors’’ problem.
Applications arrive at the resource at different times with
different requirements. Resource scheduling in a local

resource manager is responsible for deciding when to
start running an application, and how many processes
should be dispatched to an application. Scheduling method
can be divided into centralized and decentralized. The
centralized scheduling means- the system has a single
scheduler to schedule the entire resources. We adopt the
decentralized scheduling. In this architecture agents co-
operate with each other to schedule applications that need
to utilize the available resources. LSA in the same local
grid can interact with each other to schedule the local
resources in this local grid; local grid also can interact
with each other to scheduling resources in different local
grid. In grid computing, there are different types of
resources to be shared. Basically resources can be shared
in two categories: computing resources, such as network
of workstations or personal nodes, and non-computing
resources such as data repositories or input/output devices.
Non-computing resources are further divided into sharable
or non-sharable.

 Let there are n computing resources and m
computing non-sharable resources and h non-sharable,
non computing resources. Each resource has two
attributes: type and capability. Type attribute represent
type of the attribute and capability specifies available
capability of the resource. Communication cost between
the resources is handled by communication among the
agents. When an application is processed on grid, it is
decomposed into tasks such that every task is executed on
single computing resource. So each task need a single
computing resource and may need some non-computing
resource. Each application requires set of tasks, resource
sharing constraints among the application’s tasks.
Resource sharing constraints arise from the fact that tasks,
which may belong to same or different applications, may
require use of same non sharable non computing resources.

 In this case G=(V,E) is to represent the applications,
where nodes represents both tasks and their requirements,
directed edges represent the communication requirement
and weight of the edge represent the amount of data
communications required. For allocating the resources
MA executes a parallel resource co-allocation algorithm
[28].

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

287

GDA GDA GDA

 GDA

Pool of Resources

A
M

S GDA

Pool of Resources

A
M

S

 Fig. 3 Typical load balancing with resource management scenario in

Grid Computing

The purpose of the algorithm is to minimize the

overall scheduling length for a given set of applications.
First all the applications are united into single node. Then
this node is further partitioned into levels in terms of order
of execution determined by precedence. Tasks within a
single level are not executed simultaneously due to
resource sharing constraints. Finally for each level the
maximal independent sets are selected and tasks in each
independent set are allocated their required resources.
Resource allocation for each level is independent and
same method for each level is taken at each level, so that
resource allocation processes of all the levels can be
executed concurrently. More on parallel resource co-
allocation algorithm can be found in [28].

5. PERFORMANCE STUDY AND RESULTS
OBTAINED
We have carried out a preliminary study to evaluate the
performance of the proposed architecture for load
balancing. Performance measures such as the average
queue length at each server and the average throughput are
used for the evaluation. Random number generators are
used to generate the job inter-arrival time and the job
service time, both follow an exponential distribution. In
the preliminary simulation, for simplicity, workload at a
server is defined as the length of the job queue, which
represents the number of jobs in the queue. The threshold
for dispatching a job by GDA was pre-defined between
each experiment.

Figure 4 and Figure 5 show the effect of load sharing
on queue length and throughput with and without load
sharing, which reflects variance of load. Experiment is
conducted with different inter arrival time and
performance is compared using load balancing and
without load balancing. As shown in Figure 4 for same

inter arrival time queue length decreases with load
balancing compared to without load balancing. This is due
to the job dispatching by MA to corresponding node and
consequently queue length decreases. Similarly in Figure 5
for different values of inter arrival time throughput is
measured with respect to load balancing and without load
balancing. As shown in Figure 5 throughput increases with
load balancing compared to without using load balancing.

0
1
2
3
4
5
6
7
8
9

2 3 4 5 6
Inter Arrival T ime

Q
ue

ue
 L

en
gt

h

Without Load Sharing With Load Sharing

Fig. 4 Effect of load sharing on queue length

0

50

100

150

200

250

300

2 3 4 5 6
Inter Arrival T ime

Th
ro

ug
hp

ut

Without Load Sharing With Load Sharing

Fig. 5 Effect of load sharing on throughput

Figure 6 compares the relative comparison of policies

Sender Initiated (S-I), Receiver initiated (R-I),
Symmetrical Initiated (Sy-I) and Central. As shown in
Figure 6 S-I policy improves the average response time
significantly under varying system load. Under light load
all policies are almost identical in terms of response time,
but the key difference is under heavy load where S-I
policy outperforms R-I and central.

Figure 7 shows the comparison of execution time for
parallel and serial allocation. As shown in figure execution
time reduces when the resources are allocated parallel
compared to serial allocation. For parallel allocation

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

288

resources are allocated using MA which executes the
predefined parallel resource allocation algorithm defined
earlier. As shown in Figure 7 as the number of tasks
increases execution time decreases using parallel
algorithm compared to serial one.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Heavy Load Moderate Load Light LoadNo
rm

al
iz

ed
 A

ve
ra

ge
 R

es
po

ns
e

Ti
m

e

S-I R-I Sy-I Central

Fig. 6 Normalized average response time under varying

load

0

10

20

30

40

50

60

70

80

100 200 300 400 500
Number of Tasks

Ex
ec

ut
io

n
Ti

m
es

(s
)

MAPRA MASRA

Fig. 7 Comparison of execution time for parallel and serial

resource allocation using MA

6. RELATED WORK
Load balancing is indispensable for a grid system to assure
even distribution of workload on each node in grid. But
one of the most difficult problems that arise on grid
system is the selection of an efficient load balancing
policy. The load balancing policy should be for evenly
utilized grid and a minimum response time for the
processed requests. In recent times grid computing has
emerged as the attractive computing paradigm for solving
a lot of computation intensive applications. But best
solution to any computing problem is the execution of job
with optimal resource usage.

The most significant attempts can be found in meta-
schedulers such as Nimrod-G [29, 30], software execution
environments such as GRADS [31] and task brokers such
as Condor-G [32]. The latter is a product of a much more
complicated entity that consolidates scheduling policies
which comprised specialized workload management
systems. Additionally, AppLeS [33] is a scheduling
system which primarily focuses on developing scheduling
agents for individual applications on production. Other
interesting works on scheduling and meta-scheduling are
presented in [34] and [35] where, in the former, the
authors present a heuristic scheduling of bag-of-tasks with
QoS constraints, while the latter handles the problem of
distributed job scheduling in Grids using multiple
simultaneous requests. However, in coherent, integrated
Grid environments (such as Globus [36] and Unicore [37])
there are also scheduling and resource management
techniques applicable in a more standard manner. Finally,
other studies have also addressed resource management in
Grids, such as the knapsack formulation problem [38]. In
this work the resource allocation in a Grid environment is
formulated as a knapsack problem and techniques are
developed and deployed so as to maintain the QoS
properties of a schedule and at the same time, to maximize
the utilization of the grid resources.

In [8] authors described a common grid service model
that allowed agents representing various grid resources,
which were owned by different real world enterprises. The
grid task agents buy resources to complete tasks. Grid
resource agents charge the task agents for the amount of
resource capacity allocated. In the meantime, the grid task
agents charge users who requested the service. In [9]
author presented the economical opportunities and
realizations through Grid services. They identified the
challenges and requirements of economy-based Grid
systems, and discussed various representative systems. In
[8, 10] authors introduced the optimal task/resource
scheduling problems and showed the significant
improvement by a good schedule strategy. Some other
optimization schemes, proposed for grid are described in
[11, 12, 13].

7 Conclusions and Future work
Parallel computing with load balancing and efficient
resource co-allocation is necessary for high performance
computing. Architecture for load balancing with parallel
resource allocation is presented in this paper. The
experimental results show that execution time is reduced
in parallel algorithm compared to serial one. Throughput
is also measured with and without load balancing. Load is
balanced using MA approach which has a number of
advantages over the existing technology discussed earlier.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

289

Each agent executes a predefined policy and has facility
for inter-agent communication.
 In the future work we will also consider various others
QoS factors to improve the execution time and throughput.

References
[1] Foster, C. Kesselman, The Grid. Blueprint for a New

Computing Infrastructure, Morgan Kaufmann
Publishers, Los Altos, CA, 1998.

[2] Foster, C. Kesselman, S. Tuecke, The anatomy of the
grid enabling scalable virtual organizations,
International J. Supercomputer Applications, 15(3),
2001.

[3] B. Jacob, L. Ferreira, N. Bieberstein, C. Gilzean, J.
Girard, R. Strachowski, S. Yu, Enabling Applications
for Grid Computing with Globus, IBM, 2003.

[4] Foster, C. Kesselman, J.M. Nick, S. Tuecke, Grid
services for distributed system integration, Computer,
35(6): 37–46, 2002.

[5] B. Marovi´c, Z. Jovanovi´c, Web-based grid-enabled
interaction with 3D medical data, Future Generation
Computer Systems, 22(4): 385–392, 2006.

[6] Y.S. Dai, M. Palakal, S. Hartanto, X.Wang, Y. Guo,
A grid-based pseudo cache solution for MISD
biomedical problems with high confidentiality and
efficiency, International Journal of Bioinformatics
Research and Applications, 2006.

[7] L. B¨ol¨oni, D. Turgut, D.C. Marinescu, Task
distribution with a random overlay network, Future
Generation Computer Systems 22(6): 676–687, 2006.

[8] C. Li, L. Li, Competitive proportional resource
allocation policy for computational grid, Future
Generation Computer Systems, 20(6): 1041–1054,
2004.

[9] R. Buyya, D. Abramson, S. Venugopal, The grid
economy, in Proceedings of the IEEE, 93(3): 698–714,
2005.

[10] R. Buyya, M. Murshed, D. Abramson, S.Venugopal,
Scheduling parameter sweep applications on global
grids. A deadline and budget constrained cost-time
optimization algorithm, Software. Practice and
Experience Journal, 35(5): 491–512, 2005.

[11] J. Schneider, Searching for Backbones—a high-
performance parallel algorithm for solving
combinatorial optimization problems, Future
Generation Computer Systems, 19(1): 121–131, 2003.

[12] V.P. Gergel, R.G. Strongin, Parallel computing for
globally optimal decision making on cluster systems,
Future Generation Computer Systems, 21(5): 673–
678, 2005.

[13] M. Parashar, H. Klie, U. Catalyurek, et al.,
Application of Grid-enabled technologies for solving

optimization problems in data-driven reservoir studies,
Future Generation Computer Systems, 21(1): 19–26,
2005.

[14] N.T. Anh, Integrating fault-tolerance techniques in
grid applications, Ph.D. Dissertation, August 2000.

[15] P. Stelling, I. Foster, C. Kesselman, C. Lee, G. von
Laszewski, A fault detection service for wide area
distributed computations, in Proceedings of 7th IEEE
Symposium on High Performance Distributed
Computing, 1998.

[16] S. Vadhiyar, J. Dongarra, A performance oriented
migration framework for the grid, in Proceedings of
the 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid, 2003.

[17] Foster, C. Kesselman, The Grid 2 Blueprint for a New
Computing Infrastructure, Morgan Kaufmann
Publishers, Los Altos, CA, 2004.

[18] Foster, A. Roy, V. Sander, A quality of service
architecture that combines resource reservation and
application adaptation, in Proceedings of 8th
International Workshop on Quality of Service, 2000.

[19] F. Vraalsen, R. Aydt, C. Mendes, D. Reed,
Performance contracts Predicting and monitoring grid
application behavior, in Proceedings of the 2nd
International Workshop on Grid Computing, 2001.

[20] Waheed, W. Smith, J. George, J. Yan, An
infrastructure for monitoring and management in
computational grids, in Proceedings of the 5th
Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers, March 2000.

[21] Patel, R.B., Design and implementation of a secure
mobile agent platform for distributed computing.
Ph.D. Thesis Department of Electronics and
Computer Engineering, IIT Roorkee, India, 2004.

[22] Chess, D., B. Grosof, C. Harrison, D. Levine, C.
Parris and G. Tsudik, Itinerant agents or mobile
computing. IEEE Personal Commun. Mag., 2, 34-49, ,
1995.

[23] Imielinsky, T. and B.R. Badrinath, Wireless
computing. Challenges in Data management.
Commun. ACM, 37, 18-28, 1994.

[24] Al-Jaroodi, J., N. Mohamed, J. Hong and D. Swanson,
A middleware infrastructure for parallel and
distributed programming models on heterogeneous
systems, IEEE Trans. Parallel and Distributed
Systems, Special Issue on Middleware, 14, 1100-1111,
2003.

[25] Patel, R.B. and K. Garg,, PMADE - A Platform for
mobile agent Distribution & Execution, in
Proceedings of 5th World Multi Conference on
Systemics, Cybernetics and Informatics (SCI2001)
and 7th International Conference on Information

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

290

System Analysis and Synthesis (ISAS 2001), Orlando,
Florida, USA, July 22-25, 2001, Vol. IV, pp. 287-293.

[26] Patel, R.B. and K. Garg, A new paradigm for mobile
agent computing, WSEAS Transaction on Computers,
3. 57-64, 2004.

[27] Raimundo, J., A. Macêdo, F.M. Assis Silva, The
mobile groups approach for the coordination of
mobile agents. J. Parallel Distributed Computing, 65,
275-288, 2005.

[28] Hui-Xian Li, Chun-Tian Cheng, Parallel resource co-
allocation for computation grid, Computer languages,
systems and structures 33, 1-10, 2007.

[29] D. Abramson, R. Sosic, J. Giddy, B. Hall, Nimrod. A
tool for performing parametised simulations using
distributed workstations, in Proceedings of the 4th
IEEE Symposium on High Performance Distributed
Computing, Virginia, August 1995.

[30] D. Abramson, R. Buyya, J. Giddy, A computational
economy for grid computing and its implementation
in the Nimrod-G resource broker, Future Generation
Computing System, 18(8): 1061–1074, 2002.

[31] F. Berman, A. Chien, K. Cooper, J. Dongarra, I.
Foster, D. Gannon, L. Johnsson, K. Kennedy, C.
Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon,
R. Wolski, The GRADS Project. Software support for
high-level grid application development, Int. J. High
Perform. Computing Application, 15 (4): 327–344,
2001.

[32] J. Frey, T. Tannenbaum, I. Foster, M. Livny, S.
Tuecke, Condor-G. A computation management agent
for multi-institutional grids, Cluster Computing, 5,
237–246, 2002.

[33] M. Faerman, S. Figueira, J. Hayes, G. Obertelli, J.
Schopf, G. Shao, S. Smallen, N. Spring, A. Su, D.
Zagorodnov, Adaptive computing on the grid using
AppLeS, IEEE Trans. Parallel Distrib. Syst. 14 (4):
369–382, 2003.

[34] C. Weng, X. Lu, Heuristic scheduling for bag-of-
tasks applications in combination with QoS in the
computational grid, Future Generation Computing
System, 21, 271–280, 2005.

[35] V. Subramani, R. Kettimuthu, S. Srinivasan, P.
Sadayappan, Distributed job scheduling on
computational grids using multiple simultaneous
requests, in Proceedings of the 11th IEEE
International Symposium on High Performance
Distributed Computing, Edinburgh, Scotland, July
2002, pp. 359–367.

[36] The Globus project, http.//www-fp.globus.org/hbm/.
[37] The Unicore project,http.//www.unicore.org/forum.htm.
[38] R. Parra-Hernandez, D. Vanderster, N.J. Dimopoulos,

Resource management and Knapsack formulations on

the grid, in Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing,
GRID’04, 2004.

 Neeraj Nehra is pursuing his Ph.D.
(Computer Science and
Engineering) from SMVDU, Katra
(J&K), India. He has received his
M.Tech. (Computer Science and
Engineering) from K.U.Kurukshetra
(Haryana). He is in teaching and

research since 2000. He has published 7 research papers
in International/National Journals and International
/national Conferences. He is in the School of Computer
Science and Engineering), Shri Mata Vaishno Devi
University, Katra (J&K), India. His research is focused
on use of agents, mobile computing, parallel/distributed
computing, multi-agent system and fault tolerance,
resource management. He is a member of various
societies such as International Association of Engineers,
Indian Academy of Mathematics. Prior to joining
SMVDU, Katra he has worked with HEC Jagadhri and
MMEC Mullana, Ambala, Haryana, India.

Dr. R. B. Patel received PhD from
IIT Roorkee in Computer Science &
Engineering, PDF from Highest
Institute of Education, Science &
Technology (HIEST), Athens,
Greece, MS (Software Systems) from
BITS Pilani and B. E. in Computer

Engineering from M. M. M. Engineering College,
Gorakhpur, UP. Dr. Patel is in teaching and Research &
Development since 1991. He has published about 50
research papers in International/National Journals and
Refereed International Conferences. He has been awarded
for Best Research paper by Technology Transfer,
Colorado, Springs, USA, for his security concept provided
for mobile agents on open network in 2003. He has written
6 books for engineering courses. He is member of various
International Technical Societies such as IEEE-USA,
Elsevier-USA, Technology, Knowledge & Society-
Australia, WSEAS, Athens, etc for reviewing the research
paper. His current research interests are in Mobile &
Distributed Computing, Mobile Agent Security and Fault
Tolerance, development infrastructure for mobile & peer-
to-peer computing, Device and Computation Management,
Cluster Computing, etc.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

291

 .
Dr.VK Bhat received his Ph.D.
(Mathematics) from Jammu University,
Jammu (J&K), India. He is a Assistant
Professor, SMVDU Katra, India. His
research is focused on Ring and
modules, Graph theory, and discrete
structure. He has 12 years of teaching
and research experience. He has

published 25 papers in international/national journals and
22 papers in international/national conference proceedings.
He is a recipient of UGC (SRF and JRF) fellowship. He is
a member of various international societies such as
American Mathematical Society, Indian Academy of
Mathematics for reviewing the research papers. He is in
the editorial board of various International Journal.

