
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

313

Manuscript received January 5, 2007.
Manuscript revised January 25, 2007.

Performance of a Publish/Subscribe Middleware for the Real-
Time Distributed Control systems

Summary

There’s a world of opportunity for distributed embedded and
real-time applications. The list of applications goes on and on:
military systems, telecommunications, factory automation, traffic
control, financial trading, medical imaging, building automation,
consumer electronics, and more. These applications must find the
right data, know where to send it, and deliver it to the right place
at the right time. The publish-subscribe paradigm according to
DDS is the best fit to such complex distributed applications that
require a powerful communications model.

Thus, the goal idea of this paper is to study the defaults
within a network of publish-subscribe nodes occurring in a
clustered middleware, in order to calculate the loss rates while
allowing for the caching size. A simulator has been developed in
order to fix metrics chosen in the theoretical part.
Key words:
publish/subscribe, data-centric, Real-Time Middleware,
Distributed Control Systems, caching, clustering, scalability

1. Introduction

Today’s embedded software applications are
increasingly distributed; they communicate data between
many computing nodes in a networked system. This
includes applications in aerospace, defence, industry,
robotics, and telecom equipments.

These systems need new inter-object communication
patterns. Several network middleware designs have arisen
to meet the resulting communications need, including
client-server, message passing, and publish-subscribe
architectures. These later matches well with these patterns
that need to send data from one producer to many
consumers.

This paradigm is extremely attractive for structuring
object-oriented Distributed Control Systems (DCS). It is a
key enabler of the new distributed architecture. Data
sources publish their data to the network; data users
subscribe to the data to receive real-time updates.

The new Object Management Group (OMG) Data
Distribution Service (DDS) standard is the first
comprehensive specification available for “publish-
subscribe” data-centric designs.

In this way, this paper tries to prove how Publish-
subscribe mechanism is the best choice. It first provides an

overview of DDS’s functionality and compares it to other
available technologies and standards. Then it predicts
general design which show when DDS is the best
networking solution when nodes are clustered. The
caching problem has to be resolved to achieve the
predictability for such applications.

The remainder of this paper is organized as follows:
Section 2 outlines the advantages and the inconvenient of
other middleware technologies that have emerged to meet
the need of communication in DCS.

Section 3 illustrates the arguments in favour of the use
of the publish-subscribe paradigm according to the DDS
specification and we summarise several advantages of
DDS’s functionality that will be the focus of considerable
research activities in the next few years;

Section 4 presents an overview of the architecture
design of a middleware based on a publish-subscribe
model and Section 5 gives the simulation results for the
performance evaluation of a clustered publish-subscribe
middleware using the caching techniques.

2. The Handicap of the Client-Server Model for such
Architecture

In addition of the Publish/Subscribe paradigm, client-
server paradigm is another model of communication which
works well for object-centric applications.

2.1 The characteristics of Client-Server
Communications

Client-server communications is characterized by a
network resource (the server) that other network nodes
(clients) access to get data or perform functions.
Communications begin with a request by the client and
end when the server replies. This is a popular model for
enterprise applications that can rely on a rich set of
processing and memory resources. It also fits well in
applications where information or object services are
naturally centralized.

Examples of client-server communications models
include DCOM—Microsoft’s Distributed Common and
Object Model—and CORBA—the Object Management

Mohamed Anis MASTOURI and Salem HASNAOUI

SYSCOM Laboratory, National School of Engineering of Tunis TUNISIA

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

314

Group’s (OMG) Common Object Request Broker
Architecture. The OMG has updated the CORBA standard
over the years to include real-time extensions and
embedded versions of the specification.

The client-server model is best for applications where
the service provider can be located anywhere on the
network and, in fact, its location may change over time.
The benefit is that the client and server code is separated
so that each can be developed for different platforms and
still be reusable. Client-server is an object-centric or
service-centric view of a distributed system.

2.2 Drawbacks of Client-Server Communications

However, client-server has some drawbacks. Indeed,
for the developers, while building their distributed real-
time applications [2], the server represents a bottleneck
and potential single point of failure. So, it cannot be fit for
DCS. In addition, the request-reply semantics required two
messages to get the data for each client. For those systems
with many-to-many communication requirements, this
resulted in high bandwidth load.

In addition, client-server architectures are often based
around a remote method invocation or “object-centric”
design. But in distributed real-time control applications,
the information that needs to be communicated is quite
often just data, not objects. Attempting to implement these
“data-centric” systems with a client-server
communications model frequently led to unnecessarily
complex system designs and significantly degraded
networking performance.

What was ultimately required was having a networking
paradigm that introduced no bottlenecks, offered no single
points of failure and lowered band-width loading for these
mission-critical, data-centric applications. The publish-
subscribe communication model fit these requirements.
They can benefit from using both communication models
as appropriate.

3. The benefit of using the Publish/Subscribe
Paradigm

3.1 Characteristic and Arguments in favor of its use

Publish-subscribe is an ideal communication
mechanism for moving data between distributed nodes of
an application. In fact, a very large number of mission-
critical, real-time control systems fit this model. [9] For
example, distributed command and control systems with
large amounts of periodic data are inherently quite data-
centric. A sensor on the network periodically sends out
data updates to controllers, loggers or other subscribers on

the network. Publish-subscribe is almost a necessity for
these systems.

Publish-subscribe is characterised by a set of data
producers and data consumers. Whereas client-server has
a request-reply form, publish-subscribe is more a push
model. That is, after the publishers and subscribers have
identified themselves on the network, the data is pushed
by the publishers to the subscribers when new data is
produced. There is no request; there is no polling. Like
client-server, it has the similar advantage of making the
system modular so code is highly reusable.

Another advantage is anonymous communications;
publishers and subscribers don’t need to know each
other’s physical network address. The middleware keeps
track of which subscribers want which data from which
publishers. Highly complex data distribution patterns are
quite simple to actually program in this model. This
anonymity also makes it simpler to set up redundant
publishers for fault-tolerant systems. [8]

3.2 New Standard from OMG

The DDS is a new standard for distributed Real-Time
Systems.[11] Its specification is governed by the Object
Management Group (OMG) [14], which is the same
organization that governs the specifications for CORBA,
UML and many other standards. Since DDS is
implemented as an infrastructure solution, it can be added
as the communication interface for any software
application. This DDS solution presents many advantages,
in fact;
- It is based on a simple publish-subscribe communication
paradigm
- It is flexible and adaptable architecture that supports
“auto-discovery” of new or stale endpoint applications
- It produces a low overhead, so it can be used with high-
performance systems
- It is characterized by a deterministic data delivery and a
dynamically scalability.

DDS, and publish-subscribe in general, is already
gaining acceptance, especially in mission-critical,
distributed real-time systems in aerospace, defense and
Telecom.

4. Design of the publish-subscribe model and
the Appropriate middleware

Distributed real-time systems, especially distributed
control and simulation applications are quite often data-
centric. In the past, developers attempted to implement
these data-centric applications using the CORBA client-
server standard. This introduced inefficiencies and
complexity. Thus, Publish-subscribe is a more natural
model for representing and communicating data.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

315

We have chosen to work within a platform of a
Telecom equipment interconnection. This later will be the
application of our conceived middleware based on
publish-subscribe paradigm.

The Architecture of the application [3] is a set of nodes
connected via a Real Time Transport protocol. In each
node is embedded a Real Time Operating System, a
middleware, and a Publish-Subscribe interface according
to DDS specification. This is depicted in the following
figure.

Fig. 1. An architecture of a distributed real time system using a publish-
subscribe paradigm

The communication between nodes will be achieved
due to publish subscribe interface via the Global Data
Space that is represented by a relational data model. The
middleware has to keep track of the data objects instances,
which are considered as rows in a table. Each data object
is identified by the combination of a topic and a topic-
specified key. This is depicted in Figure 2.

Fig. 2. Matching the topic with the adequate data-object via the
middleware

This data-centric middleware allows the application to
identify “data-objects” to the communication. The “data-

objects” are unique in the ‘global data space’ of the
distributed system across all participants.

 Each participant is regarded as having a local cache
of the global data-object. A message on a topic is regarded
as an update to the data-object that can be identified and
managed by the middleware.

Local changes to a data-object are propagated by the
middleware; the middleware can distinguish between
messages or update samples from different data-objects
and manage their delivery to the interested participants on
a per data-object basis. This scenario, in our
implementation, will be achieved by a clustered
distributed database based on ehcache and hibernate
(Figure 3).

In fact the ehcache, in its last version (v1.2.1), will be
used as a java library to speed up the processing time of
the nodes.

Since, most of the processing time is getting data from
a database. Therefore the speed up mostly depends on how
much reuse a piece of data gets. In a system where each
piece of data is used just once, it is zero. In a system
where data is reused a lot, the speed up is large. This later
is the case of our application, which will improve the
performance of the processing thanks to the caching
solution provided by ehcache and hibernate.

5. Performance Evaluation of Defaults within
Clustered Publish-Subscribe Nodes

5.1 The Application Platform

The publish/subscribe communication model is being
the focus of many research in the last few years, notably
with the increase need of the real time Distributed Control
System – DCS in the Telecom applications.

Many researches have been performed to evaluate
performances of distributed systems. Some of them are
interested to study the publish/subscribe communication

Fig. 3. Use of caching in the middleware design

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

316

model notably in the mobility context. [10] Other studies
are interested to the data distribution in the real-time
system, [17] but research of performance evaluation taking
into account Distributed Control Systems including DDS
and communication link failures for DCS systems have
not been treated yet.

Our solution is based on the distributed caching among
DDS nodes connected by a real time transport protocol
(Figure 4). The caching will be useful to preserve the
recent events for a given period of time.

Fig. 4. The network of DDS nodes that will be evaluated

The analysis will be interested to the publish/subscribe
paradigm according to DDS specification which is
generally preferred for real-time DCS systems. Thus, the
performance of this solution will be evaluated by:

• The analyses of the influence of errors in DDS
nodes within the network simulated.

• Estimation of the average number of lost events
per subscriber.

• Estimation of the cache size.
• Fixation of the failure level.

5.2 Theoretical analysis

In the performance analyses section we are fixed the
following assumptions:

• When the link is disconnected during the
publish/subscribe process, the data transfer is delayed
until the link is reconnected, Thus publishers and
subscribers wait until the recovery procedure is
completed.
• When a subscriber fails, the lost events will be

preserved in persistent logs managed by the Data Base
Management System – DBMS. The subscriber can
access events occurred during failure using theses
persistent logs.
• When a publisher fails, another will replace it and

the exchange of data won't be interrupted.

In order to measure the influence of errors to the

clustered DDS architecture, we fixed the following
metrics:
λ pub : The publication rate,

λ sub : The subscriber's access rate of published events.

λL
fail : The failure rate of the communication link

t p and t s : time delay for subscribe and publish. (t = tp+ts)

λ sub
covRe and λL

covRe : The recovery rate of the subscriber
and the link

In the subscriber side, we suppose that i events are
occurred during failure. When a DDS subscriber recovers
from a failure it obtains its data from the DBMS which
conserves persistent data. The probability that i events
occurred between failure and recovery is:

 (1)

We note NL the maximum number of events that
DBMS can store. If i> NL the events are lost. Thus, the
average number of lost events by subscriber is:

 (2)

In case of subscriber failure, the system will be in an
unknown state. Thus, on behalf of the subscriber, the loss
of pursuit of the system's evolution is occurred during the
following average time:

 (3)

Likewise, in case of the failure link we could measure
the cost of the model in a pulish/subscribe process on
behalf of the subscriber. It is calculated by the addition of
the publish subscribe delay (tp+ts) with the lost average
delay which is multiplied by the probability to have a
disconnection and the probability that a subscriber reaches
events.

 (4)

Ultimately, to show the influence of the caching size
and the rate of publication, we fixed the recovery rate of
the subscriber to 0.5 and we measured the variation of the
average number of the lost events according to the
publication rate. We have increased at every time the size
of the caching. This is depicted in the figure below. This
later confirms the analysis conducted above.

The curve for NL=0 represents a publish/subscribe
system without durable database. This shows the

λλ
λ

λλ

λ
sub
repub

sub
re

sub
repub

pub
i

p
cov

cov

cov +⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

()

λ

λ

λλ
λ

λλ
λ

λλ

λ

subre

pub
subrepub

subre

Lsubrepub

subre

N Li subrepub

pub
i

NE

NiNE

covcov

cov
N L

cov

cov
1 cov

)(

)(

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=⇒

−
+

∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

∞

+=

λ

λ

λλ

λ
subre

pub
subrepub

subre
ss tNEtT

covcov

cov
NL

)(⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
==

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

+
+⎟
⎠
⎞

⎜
⎝
⎛ −−

+
+=

λλλ
λ

λλ

λ
ε λ

λλ

λ
sub
re

sub
re sub

sub
sub
re

L
Fail

L
FailL

Fail
sub
re

L
Fail

L
Fail ttT

covcovcovcov

11

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

317

Publication rate

A
ve

ra
ge

 n
um

be
r o

f t
he

 lo
st

 e
ve

nt
s

importance of the caching in such publish subscribe
architecture.

Simulator description

In the case of link failure, we have to fix the failure

rate, to obtain the best performance for a fixed number of
nodes.

In this way, the idea is to measure the ratio of failed
connections according to the number of publishers and the
frequency of establishing a new subscription. This permits
to evaluate the unavailability of the system for the
Subscriber in case of a link error with the publisher. This
will be occurred in case of wired network.

Thus, the basic structure of the network comprises a
set of publishers and subscribers containing a cache that
will store a limited number of lost events.

In addition, we implemented a thread that is running
continuously. Its task is to correct the failed links and to
fail a random link between the subscriber and the
publisher after a random period time. This is ensured with
a class which extends TimerTask. This later is an abstract
class that serves as the base class for the scheduled task.
The failure process is implemented in the run method of
the subclass. We also acted on the node class while
assigning it a state of failure. This later represents the
failure of the link between the publisher and the subscriber.
The test of the link will be occurred every request for a
new connection to the publisher. While the link is failed,
the Subscriber repeats the request until the link is
corrected. Moreover, the implementation will generate a
file for each simulation time, in which we save the trace of
the failed reconnections per subscriber according of the
total number of connection. In addition we save the rate of
failure for each connection number in another file. This
rate will be evaluated according to the rate of the new
subscriptions.

5.3 Simulation Results

In every iteration we vary two parameters, the new
subscription rate and the number of publishers and
subscribers, and we measure the failure rate.
• New subscription rate: it is the percentage of
subscribers that establish new subscriptions (0.05
represents only 5% of subscribers that establish
subscriptions).
• Number of publishers and subscribers: the number of
publishers is chosen proportional to the number of
subscribers.
• The Failure rate: this parameter represents the ratio of
failed connections to the total number of connections. It
represents an average for a fixed number of iterations.

The total number of connections depends on the two
parameters "New subscription rate" and "Number of
publishers and subscribers" (it is incremented for every
establishment of a new connection: demands of
connection are first piled in a task list and thereafter
activated by the scheduler of the simulator).

The table 1 depicts the ratio of failure according to the
number of publishers in the network.

∑
∑=

iterationper sconnection of
iterationper failures of

rate Failure

The failure rate is calculated as follows (For new

subscriptions =0, 05):

Table 1: The variation of the failure rate
Number

of
Publishers

Number
 of

Subscribers

Number
of

Failures

Total
Number of
connections

Failure
rate

4 40 21 49 0.42857
16 160 17 195 0.08717
36 360 5 400 0.0125
64 640 10 737 0.01356

The values obtained from the simulation tests permit to

fix the ranges of the values used in the analytical section.

5.4 Interpretation of the results

The results deducted from the simulation are logically
expected. They confirm the theoretical analysis conducted
above. The graphics, depicted in Figure 5, show
effectiveness of durable database which logs events for the
failure of subscriber or link. In fact without logging, a
subscriber loses events occurred during its failure. Thus,
the loss of pursuit of system's evolution can be reduced by
increasing the size of caching.

Fig. 5. The variation of the average number of lost events
according to the caching size)(5.0cov =λ sub

re

The variation
of the caching
size

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

318

6. Conclusion

Publish/subscribe is a widespread communication
paradigm for asynchronous messaging that naturally fits
the decoupled nature of real-time distributed systems,
allowing simple and effective development of distributed
applications. Thus, following this theoretical and practical
survey, we are convinced that the use of clustered
middleware based on publish/subscribe infrastructures is
necessary to build efficient real-time DCS notably for the
Telecom equipment. This can be a stimulus for discussion,
and possibly a starting point for providing an efficient
architecture for the new generation of the network
interconnection equipments [18] [19].

References

[1] Vida Kianzad and Shuvra S.Bhattacharyya. “Multiprocessor
Clustering for Embedded System Implementation”. Technical
Report UMIACS-TR-2001-52, Institute for Advanced
Computer Studies, University of Maryland at College Park,
June 2001.

[2] Paul Pop, PhD Thesis on “Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-Time Systems.
Institute of Technology, Linköping, 2003.

[3] Mohamed Anis Mastouri, Salem Hasnaoui, “Design of

Switch Architecture According to the MSF Framework Using
the VSI Interface and the CAN-IOP Protocol”, ACIDCA-
ICMI’2005 conference proceedings, p 13.

[4] Roberto Baldoni and Antonino Virgillito. “Distributed Event

Routing in Publish/Subscribe Communication Systems”. A
Survey, Technical Report 15-2005.

[5] Rajgopal Kannan, Sudipta Sarangi, S.S.Iyengar and Lydia

Ray. “Sensor-Centric Quality of Routing in Sensor Networks”.
Proceedings of IEEE INFOCOM 2003.

[6] Yanyong Zhang, Mark S.Squillante, Anand Sivasubramaniam,

Ramendra K.Sahoo, “Performance Implications of Failures in
Large-Scale Cluster Scheduling”. jsspp 2004.

[7] Antonio Carzaniga and Alexander L.Wolf. “A Benchmark

Suite for Distributed Publish/Subscribe Systems”. University
of Colorado, Department of Computer Science, Technical
Report CU-CS-927-02 April 2002.

[8] Greg Eisenhauer, Karsten Schwan and Fabian E.Bustamante.

“Publish–Subscribe for High-Performance Computing”.
Published by the IEEE Computer Society, FEBRUARY 2006.

[9]Patrick EUGSTER, PhD Thesis on “Type-Based Publish

Subscribe”, EPFL, 2001.
[10] Jinling Wang, Jiannong Cao, Jing Li. “Supporting Mobile

Clients in Publish/Subscribe Systems”. Journal of Parallel and
Distributed Computing, Manuscript Draft, 2005.

[11] OMG, "Data Distribution Service for Real-Time Systems
Specification", March 2004,

[12] T.Kim, K.Kim, G.Jeon and S.Hong. Integration
Subscription-based and Connection-oriented Communication
into the Embedded CORBA for the CAN Bus. In IEEE Real-
Time Technology and Application Symposium, Washington
D.C., USA, May 2000.

[13] Salem Hasnaoui, Proposition d'un protocole CAN-IOP pour
utilisation sur de nouvelles architectures de routeurs IPv6, de
commutateurs ATM et de Réseaux Industriels, Brevet SN
000003148 INNORPI 2003.

[14] Object Management Group- Manufacturing Domain Task,

Data Acquisition from Industrial Systems specification, OMG
document dtc/01-09-03, November 2002.

[15] Mohamed Anis Mastouri, Salem Hasnaoui, “Design of

Switch Architecture According to the MSF Framework Using
the VSI Interface and the CAN-IOP Protocol”, ACIDCA-
ICMI’2005 conference proceedings, p 13.

[16] Roberto Baldoni, Roberto Beraldi, Leonardo Querzoni and

Antonino Virgillito. “Subscription-Driven Self-Organization
in Content-Based Publish/Subscribe”. Proceedings of the
International Conference on Autonomic Computing (ICAC),
2004.

[17] C.Riquier, N.Ricard and C.Rousset. “DES (Data Exchange
System), a publish/subscribe architecture for robotics”. First
National Workshop on Control Architectures of Robots,
Montpellier, April 2006.

[18] Mohamed Anis Mastouri, Salem Hasnaoui, Abdelaziz
Samet, a Virtual Switching Framework Using the CAN-IOP
Protocol, CCCT05 conference proceedings, Vol.2, pp 268-274.

[19] Mohamed Anis Mastouri, Salem Hasnaoui, Abdelaziz

Samet, Proposal of Master/slave Oriented Switching Control
within the Context of Embedded ORB and the CAN-Bus,
CCCT05 conference proceedings, Vol.2, pp 58-63.

Short Biography

Mohamed Anis MASTOURI was
born in 1979. He received the
Engineer diploma degree in
computer science engineering from
National School of Computer
Science of Tunis (ENSI), in 2002,
and the Master degree in
communications systems from
National School of Engineering of
Tunis (ENIT), in 2004. Since this

date he is preparing a PhD thesis on telecom in the Department
of Computer Science and Communication Technologies of the
National School of Engineering of Tunis (ENIT). Actually he
works as assistant in the Faculty of sciences in Sfax, Tunisia. His
research interest includes new generation of Telecom equipment,
Data distribution service, publish/subscribe paradigm and real-
time distributed control systems.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

319

Dr. Salem Hasnaoui
 is a professor at the Department
of Computer and Communication
Technologies at the National
School of Engineering of Tunis.
He received the Engineer diploma
degree in electrical and computer
engineering from National School of
Engineering of Tunis. He obtained
a M.Sc. and third cycle
doctorate in electrical engineering,

in 1988 and 1993 respectively. The later is extended to a PhD.
degree in telecommunications with a specialization in networks
and real-time systems, in 2000. Prof. Salem Hasnaoui is author
and co-author of more than 40 refereed publications, a patent and
a book. His current research interests include real-time systems,
sensor networks, QoS control & networking, adaptive
distributed real-time middleware and protocols that
provide performance-assured services in unpredictable
environments. Prof. Salem Hasnaoui is the responsible of the
research group "Networking and Distributed computing" within
the Communications Systems Laboratory at the National School
of Engineering of Tunis.

He served on many conference committees and journals
reviewing processes and he is the designated inventor of the
Patent "CAN Inter-Orb protocol- CIOP and a Transport Protocol
for Data Distribution Service to be used over CAN, TTP ,
FlexCAN and FlexRay protocols".

