
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

320

Manuscript received January 5, 2007

Manuscript revised January 25, 2007

Efficient Cookie Revocation for Web Authentication

Ruopeng Ye, Agnes Chan, Feng Zhu

College of Computer and Information Science, Northeastern University, Boston, MA, USA

Summary
Many web-based services use persistent cookies to store user
authentication information on the disk. In these services, when a
web browser connects to the server, it sends the persistent
cookies to automate the authentication process so that the user
does not need to type in the username or password. However,
current web authentication architecture does not have a proper
expiration mechanism. As a consequence, a hacker can use an
expired cookie to gain unauthorized access to the web services.
To fix this problem, we propose two schemes for the web servers
to efficiently store and verify cookie state information. We show
that these schemes can effectively stop the replay-attack from
expired cookies and can be easily implemented.
Key words:
Cookie revocation, Web authentication.

1. Introduction

The HTTP cookie [5] is a text string generated by a web
server when responding to a HTTP request from a web
browser. It is sent to the browser via the Set-Cookie
header in the HTTP response. The cookie is identified by
its name as well as the domain and path of the server that
generates it. When a browser connects to a web server, it
will put all cookies with a matching domain and path in
the Cookie header of the HTTP request. Thus although
HTTP is a stateless protocol [6], a web server can use
cookies to store state information such as registration and
authentication, user preferences, and other information in
a web browser and can retrieve it at a later time.

Many web sites hold protected content which requires user
authentication, such as web mail services, e-commerce
services, and online subscription services. These web sites
usually require a user to sign in by supplying an account
name and password. After the user is authenticated
successfully, the web server puts an authentication cookie
in the browser so that when the user accesses the protected
content the server can retrieve the cookie for
authentication verification. It improves usability as the
account name and password do not need to be typed in
every time an access to some protected content is made.

However, the authentication cookie needs to be revoked
and expired in a timely manner, to guard against

impersonation. Currently, the expiration is usually done by
removing the authentication cookie from the web browser.
In the simple case, if the cookie does not have the
EXPIRES attribute, it will be stored in the memory only,
so by closing the web browser the cookie will be deleted
and the authentication will expire. In the general case,
many web sites provide a logout button to terminate the
authentication. When the button is clicked, the browser
sends a logout request and the server responds with a Set-
Cookie header to set the authentication cookie to a null
string. In both cases, the authentication expiration process
solely depends on the browser, the web server does not
have any record of which authentication cookie has been
expired. If an authentication cookie is stolen and replayed
by a malicious user, who can then gain access to the
protected web content. Thus the current authentication
expiration mechanism gives users a false sense of security.

The goal of our work is to provide authentication
expiration methods that can be depended on. Our main
contribution is to devise efficient methods for web servers
to maintain cookie state for web authentication sessions.
We propose two schemes, the “Simple scheme” and the
“M/K scheme”. They are both efficient, and guarantee
immediate authentication expiration, which cannot be
offered by current web authentication system that uses
cookies. Our methods require the server to maintain a
small amount of information per user so that once the user
requests an authentication expiration, the server can
update and remember the validity state of the
authentication cookie. We have implemented and tested
both authentication expiration mechanisms on Apache
[13] web server, the result shows that the performance
impact on the web server due to extra processing is
insignificant.

2. Related Work

Using persistent cookies (these are the cookies which have
the EXPIRES attribute explicitly specified, and have not
yet expired) to store authentication information is known
to be vulnerable to attacks. Usually such cookies have
their SECURE attributes marked so that they will be
transmitted only in the encrypted communication channel
using HTTPS. But because most browsers save persistent

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

321

cookies in a plain text file which is not protected at all, it
can be easily stolen and replayed [17]. Kormann and
Rubin [1] provided a session hijacking attack where an
attacker can impersonate a user by stealing the
authentication cookie from the victim's computer. Fu et al.
[3] showed a poisoned cookie attack where an attacker can
gain unauthorized access to a web site by modifying a
cookie which is not cryptographically protected. In [4], a
cross-site scripting attack is discussed, where a malicious
web server is able to steal a user's cookie from the web
browser. To prevent replay attack using stolen cookies, in
[19], Liu et al. proposed to use the SSL session key as a
keying material for the web server, to generate a key to
protect the cookies. This solution is only suitable for
protecting session cookies, it cannot be used for persistent
cookies, as the SSL session key is changed over multiple
sessions

Noting all these problems, the authors in [3] recommended
that authenticator should not be stored in persistent cookie.
We argue that an authentication cookie does have its
advantage and should be used and not be discarded
entirely. First, authentication cookie reduces the number
of manual sign-in and hence makes the web site more user
friendly. Second, as the HTTP is stateless, cookie is
currently the most widely deployed mechanism for
maintaining client state [3]. Some largest web mail
services, such as Gmail (including the mobile Gmail) and
Hotmail (see Figure 1) are using authentication cookies to
improve the usability. In Kerberos [11], the authenticator
(authentication ticket) is encrypted by a user-specific
master key and stored in a locally trusted workstation. The
problem with authentication cookies is that most web
browsers do not provide strong encryption protection to
the cookie file, resulting in authentication cookies easily
stolen and replayed [18].

Fig. 1 Gmail and Hotmail Sign-in Page.

In [14], Schneier pointed out the importance of
terminating authentication and argued that users should be
given the opportunity to delete their usernames and
passwords and terminate the accounts. In [15],
Stubblebine presented a general method for specifying
authentication revocation with any desired degree of
immediacy. The work is based on public-key cryptosystem.

It defines several properties that a revocation service
should provide, such as being definite and fail-safe; that is,
revocation should remain effective under unreliable
communication. ASP.NET [16] uses a session object for
state management, this can be used to for authentication
revocation. However, this technology is platform
dependent, and cannot be used in all web servers. In this
paper, we propose two efficient authentication expiration
mechanisms that operate on any web servers. Our schemes
are very lightweight ― the first one takes a constant space,
the second uses approximately one bit for each cookie. We
show that both schemes are resilient to replay attacks.

The remainder of the paper is organized as follows. In
section 3 we describe a commonly used web
authentication architecture. Base on this architecture, we
show a replay attack on authentication expiration in
section 4. In section 5 we present two authentication
expiration methods that are definite and immune to the
replay attack described in section 4. The security
properties of these schemes will also be discussed in
section 5. The implementation and performance results of
our schemes will be presented in section 6. We conclude
the paper in section 7.

3. Web Authentication Architecture

The web authentication architecture we describe here is
derived from the authentication framework which is
defined by HTTP protocol [7]. It consists of a web
authentication server, a web content server, and a client
web browser, as shown in Figure 2. This is a very flexible
authentication architecture, where the authentication
server and the content server can run either jointly or
separately. For example, in web servers such as Apache
[13], where the authentication server is run as a module
(mod_auth) of the web content server, the authentication
and the content servers run jointly. On the other hand, in
single sign-on systems such as Passport [10], the servers
run separately.

Fig. 2 Web Authentication Architecture (Fresh Login).

The web content server can define some of its documents
as protected (this is done by putting the documents under a

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

322

protected realm). For instance, in Figure 2 the secret.html
is a protected document. When a browser sends a request
to the content server to retrieve a protected document, it
needs to present a credential (for example, a persistent
authentication cookie generated by the authentication
server) to be authenticated by the content server. In the
case where the content server and authentication server are
running jointly, this authentication is usually done with the
help from the authentication server (for example, in
Apache, the authentication is done by mod_auth). If the
authentication is successful, the content server will return
the document to the browser. If it fails, a 401 unauthorized
response will be sent back to the browser. To protect the
authentication credential from eavesdropping attack, the
communication between the browser and the servers is
transmitted through encrypted channels protected by
HTTPS protocol.

If the browser does not have an authentication credential,
the content server will redirect the browser to the
authentication server. This is called a fresh sign-in and can
be explained in details in Figure 2. Initially, when the
browser requests secret.html (step 1), it has no
authentication credential; so the content server redirects it
to the authentication server (step 2). The browser follows
the redirection (step 3) and gets a user authentication page
(for example, the login.cgi in Figure 2) from the
authentication server (step 4), which asks the user to type
in the account name and password for authentication. The
authentication information is then sent back to the
authentication server (step 5). If the authentication is
successful, the authentication server will send an
authentication credential to the browser and redirect the
browser (step 6) back to the content server. The browser
follows the redirection (step 7). After checking the validity
of the credential, the content server will then provide the
protected document (step 8).

Fig. 3 Web Authentication Architecture (Re-Login/Auto Login).

The above procedure will be much simplified if the
browser already has the authentication credential. This is
called an auto-login (see Figure 3). The browser sends a
request and an authenticator to the content server to get the

secret.html document (step 1). The content server checks
the authenticator; if successful, it sends back the requested
document to the browser (step 2).

To protect the authenticator from being stolen from the
browser, an authentication expiration process is executed
when the user logs out of the server. The authentication
expiration process is depicted in Figure 4. Assume that the
secret.html provides a logout button, which links to a page
named logout.html. When the user clicks the logout button,
the browser sends a request for logout.html (step 1). The
content server verifies the authenticator in the request and
responds with the document if the authentication is
successful (step 2). The header of this response will
instruct the browser to delete the authentication credential
from the browser to expire the authentication. The user
will know the expiration process is finished when the
logout.html is received and shown on the browser.

Fig. 4 Web Authentication Architecture (Logout).

4. Replay Attack

As seen from Figure 4, the authentication expiration is not
reliable ― the content server does not know whether the
authentication credential is successfully deleted or not.
This makes the authentication expiration mechanism
susceptible to replay attack.

To launch a replay attack, first the attacker needs to have a
copy of valid authenticator (authentication cookie).
Although the communication channels between the
browser and the servers (authentication server and content
server) are protected by HTTPS, there are still several
ways through which an attacker can steal the
authentication cookie from a user. One method is to copy
the authentication cookie from the cookie manager of the
web browser. Another method is to copy the cookie
database file from the file system. Because in most
browsers the cookie database file is not encrypted and is
stored in a known location, this method can be used by
both malicious hackers and computer virus. Cross-site

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

323

scripting attack [4] is yet another way to steal the
authentication cookie.

Once the attacker has a copy of the authentication cookie,
he can put it to a browser either through the cookie
manager or by overwriting the cookie database file. When
connecting to the content server, the authentication cookie
will allow the attacker to impersonate the victim user in an
auto-login. Note that this attack works even after the
victim user clicks the logout button. In this case, the
authentication cookie in the victim user's browser is
deleted, but the stolen one remains in the attacker's
browser, and there is no way that the content server can
find out about this. Imagine that a user has a browser
window logged in to view some protected document, then
the user leaves the computer terminal without locking the
screen. When he returns, he realizes the risk that someone
else might have stolen the authentication cookie, so he
clicks the logout button trying to invalidate any
authentication material that is associated with the previous
session. However, due to the faulty authentication
expiration mechanism, the stolen cookie remains valid. It
is this fact that violates the definite property of the current
web authentication expiration mechanism.

One way to mitigate this problem is through limiting the
lifetime of the authenticators [3]. The length of the
lifetime of an authenticator has been a debated topic since
its introduction in 2001. In [12], Kohavi and Parekh
recommended that the lifetime value should be at least 60
minutes for e-commerce sites. A previous version of
Gmail (see Figure 5) set the lifetime of the authenticator to
two weeks. If the lifetime of the authenticator is too short,
it can cause problems for some applications (for example,
loss of shopping cart). In Kerberos [11], the maximum
lifetime of an authentication ticket in V4 is about 21 hours,
this is increased to virtually unlimited in V5. However, no
matter how long or short the lifetime of the authenticator
is, there is always a vulnerability window in which the
replay attack can be launched successfully.

Fig. 5 Previous Gmail Sign-in Page (2005).

We tested the replay attack on several webmail systems,
such as Hotmail and Gmail. These systems allow
authentication cookies to be stored on a disk, which makes
it simple to carry out the attack. First we launched a fresh
sign-in and saved a copy of the cookie database file. After
clicking the logout button and receiving the logout
confirmation, we confirmed that the authentication cookie
was deleted from the browser by connecting to the
webmail sites, and noticing that we were forced to do new
fresh sign-in. Then we closed the browser and overwrote
the cookie database file with the saved copy. When we
started the browser and returned to the webmail sites, the
saved copy of the authentication cookie enabled us to
auto-login to the mailbox. We repeated the test multiple
times; the result showed that the replay attack would work
as long as it was launched within the vulnerability window.

It is at the webmail systems that we first found that the
web authentication expiration mechanism is susceptible to
the replay attack. We also conducted an online search and
found that many other web sites also offer the option to
remember user's password. Combined with the fact that
these web sites use cookies to store authentication
information, we can infer that these web sites are
susceptible to the replay attack described above.

5. Solution

The replay attack works because when the browser sends a
logout request to the content server with a valid
authentication cookie, the server does not register the state
information of the cookie to indicate its expiration. Hence
if such a cookie shows up again in a replay attack, the
content server will still regard it as a valid authentication
cookie. To prevent such an attack, our solution is to devise
an efficient scheme for the web server to record the
authentication expiration state information of the cookies.

Fig. 6 Authentication Architecture with Stateful Content Server.

We will use the web authentication architecture discussed
in section 3 to explain our authentication expiration

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

324

schemes. For simplicity, we assume that the authentication
server and the content server are running jointly, we will
discuss the case for single sign-on in section 5.4.

The system diagram is depicted in Figure 6. The cookie
state database is managed by both the content server and
the authentication server, each user has an access control
entry in the database. There is a secret key Key which is
used by both servers to generate and verify authentication
cookies. We present two different schemes below.

5.1 Simple Scheme

In the simple scheme, the access control entry (see Figure
7) records the most recent time when a logout request was
made by the user (initially it is set to 0 to indicate that no
logout request was made). When the user executes a fresh
sign-in, the authentication server generates an authen-
tication cookie (see Figure 8) as follows. It constructs a
message Msg consisting of the user name, the IP address
of the user's computer, and the current time. Then it
computes a keyed MAC (for example, HMAC) of Msg
using the server secret key Key. The authentication cookie
is the concatenation of the MAC code and the message
Msg. The authentication server sends this cookie back to
the browser and redirects it to the content server.

Fig. 7 Access Control Entry in Simple Scheme.

Fig. 8 Authentication Cookie in Simple Scheme.

When the browser requests a protected document from the
content server, the content server first validates the cookie
using the MAC code, then it compares the timestamp of
the cookie with the recorded logout time in the access
control entry. If the cookie timestamp is more recent than
the recorded time, then the content server returns the
protected document to the browser.

When the user clicks a logout button to sign out of an
authentication session, the browser sends a request to the
content server for a logout.html (see Figure 4). The
content server first validates the cookie with the MAC
code; if successful then it compares the cookie timestamp
with the recorded time in the access control entry. If the
cookie timestamp is more recent, the content server will
update the access control entry timestamp by setting it to
the cookie timestamp.

In short, if a user has signed out using an authentication
cookie with timestamp t, all cookies with timestamp t′≤t
(A timestamp is the time in seconds since 00:00:00 UTC,
January 1, 1970, so a larger value means more recent.) are
considered expired.

5.2 M/K scheme

The simple scheme described above may not perform well
in parallel sessions. For instance, if a user initiates parallel
sessions from multiple computers, then signing out from
one computer may interfere with sessions initiated from
the other computers. One might use a separate control
entry, or a separate state object (in ASP.NET [16]), to
manage the cookie states for parallel sessions. But for web
mail system where there are a very large number of users,
such solutions do not scale well and may lead to denial-of-
service attack. To solve this problem, we propose a M/K
scheme, which allows the webmail server to keep track of
a maximum of m authentication cookies within k days.
Other time units can be selected in place of day as well,
for simplicity reason we will use day in the discussion that
follows. Our solution uses bounded space and is updated
automatically every day, which alleviates the threat from
potential denial-of-service attack. This scheme is very
lightweight, in total, (m + k log m) bits are used to mange
the m most recent cookies over the last k days.

Fig. 9 Access Control Entry in M/K Scheme.

Fig. 10 Authentication Cookie in M/K Scheme.

In the M/K scheme, the access control entry is constructed
as shown in Figure 9. It records the user name, the
timestamp when the entry is created (ctime), the most
recent time the entry is updated (mtime), the cookie states
vector (cstates), the current cookie id (ccid), and the
session counters (sessions). The cookie states vector
(cstates) is a m-bit array, each bit records the expiration
state of a cookie (1 for active, 0 for expired), so in total it
can keep a log for m authentication cookies. The current
cookie id (ccid) is an integer in the range of 0 to m-1, it
represents the cookie id to be used next by the
authentication server for cookie generation. The session
counters (sessions) is a k-cell array, it counts the number

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

325

of authentication cookie generation on a daily basis over a
k-day period. When the access control entry of a user is
initially generated, every field except for the user name
will be set to 0.

When the user executes the very first fresh sign-in, the
authentication server sets both the ctime and mtime to
current time t, sets ccid to 0, sets the first bit of cookie
state vector to 1 (cstates[ccid] = 1), and adds 1 to the first
cell in the session counters (sessions[1] = 1), as shown in
Figure 11. It then constructs an authentication cookie (see
Figure 10) in the following manner. First it builds a
message Msg consisting of the user name, the IP address
of the user's computer, the current time (t), and the cookie
id (cid = ccid). Then it computes a keyed MAC of Msg
using the server secret key Key. The authentication cookie
is the concatenation of the MAC code and the message
Msg. The authentication server then sends the
authentication cookie to the browser and redirects it to the
content server.

Fig. 11 Access Control Entry in the very first fresh sign-in.

When the user executes a fresh sign-in at other times, the
authentication server first sums up the k entries in the
cookie session counters to determine whether the total
number of sessions has exceeded the maximum cookies
limit (m). The session counters vector is implemented as a
shift register which is shifted one cell to the right every
day since creation. To do the shifting, the authentication
server first computes the days between the current time t
and the creation time ctime and let this number be cdays.
If cdays < k then no shifting is necessary. If cdays ≥ k the
server computes the days between t and the last
modification time mtime and let this number be mdays, it
then shifts the session counters vector mdays to the right.

If the sum of the cookie session counters j ≥ m then the
sign-in request is rejected (only m fresh sign-in sessions
are allowed within k days); if j < m, then the sign-in
request can be accommodated. The authentication server
first sets ccid = ccid + 1 mod m, it also sets the last
modification time to be the current time (mtime = t), and
sets the ccidth bit in the cookie states to 1 (cstates[ccid] =
1). Then it adds 1 to the cell in the session counters that
corresponds to the current date. This cell can be found by
using the current time, the creation timestamp (ctime), and
the last modification timestamp (mtime) in the following
way. First computes the days between the current time t

and ctime and let this number be cdays. If cdays < k, the
(cdays + 1)th cell (sessions[cdays + 1]) is returned; if
cdays ≥ k, the kth cell (sessions[k]) is returned. Finally, the
authentication server generates the authentication cookie
as described in the previous case where the user executes
the very first fresh sign-in, sends it to the browser, and
redirects the browser to the content server. An example of
the result of this procedure can be seen in Figure 12.

When the browser requests a protected document from the
content server, the content server first validates the cookie
using the MAC code. If successful then it compares the
timestamp of the cookie with the current time. The cookie
has to be issued in the last k days in order to be accepted,
otherwise the request is rejected and a fresh sign-in is
required. The content server then gets the id of the cookie
(cid) and looks up the cidth bit in the cookie states vector
(cstates), if the bit is 0 (which means this authentication
cookie has been expired) then the request will be rejected.
If the bit is 1, the content server will return the protected
document to the browser.

Fig. 12 Access Control Entry in a fresh sign-in.

When the browser sends a sign-out request to the content
server, the content server first validates the cookie with the
MAC code and verifies that it is issued in the last k days.
If successful the content server reads the id of the cookie
(cid) and looks up the cidth bit in the cookie states vector
(cstates) and sets it to 0. This prevents the cookie from
being replayed. Finally the content server completes the
sign-out process by sending the logout.html to the browser.

By using the M/K scheme, the cookie session counters
(sessions) guarantees that a maximum of m fresh sign-in
sessions can be initiated within k days. During the k days,
the m-bit cookie states vector (cstates) records the valid
state of each cookie (1 or 0). The parameters m and k can
be adjusted according to the security requirement. For
example, in our implementation discussed in section 6, we
set k = 14 and m = 128, which allows an authentication
cookie to remain valid for at most 14 days, and a total of
128 fresh sign-in sessions are allowed.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

326

5.3 Security Analysis

The authentication cookie in our schemes is protected
from being tampered via a non-malleable MAC. The
secret key used to generate the MAC code is known to the
authentication server and the content server only.
Candidate algorithms include keyed hashes such as
HMAC-MD5 and HMAC-SHA1 [9]. To protect the
authentication cookie from eavesdropping attack, the
SECURE attribute of the cookie must be set so that SSL
tunneling is used to transmit the cookie between the
servers and the browser. Our schemes protects from replay
attacks that exploit the weakness of authentication
expiration mechanism, however, it does not protect against
replay attacks in general. To alleviate the threat from
replay attacks which do not depend on the authentication
expiration, we have put the client's IP address in the
authentication cookie. Although this does not solve the
problem completely (for instance, attacker from the same
segment of a LAN will have the same IP address), it does
make it more difficult to launch the replay attack.

To show that our authentication expiration schemes cannot
be exploited for replay attacks, we first consider the
simple scheme. Suppose the attacker gets an
authentication cookie (with timestamp t′) which is
associated with an authentication session that has already
been expired, then the content server must have updated
the timestamp t such that t ≥ t′. Therefore when the cookie
is replayed, the content server will reject the cookie.

For the security of the M/K scheme, we will prove the
following two theorems.

Theorem 1. In M/K scheme, any fresh sign-in will not
overwrite the cookie states vector entries (in the cstates
array) that associate with authentication sessions in the last
k days.

Proof. If the sign-in is the very first one, there is no
previous authentication session, so it will not overwrite the
access control entry, this is trivially true.

If the sign-in takes place at other times, then

∑
=

<
k

i
misessions

1
][, the sum of the cookie session counters

is less than m; otherwise sign-in is rejected. Therefore
there is at least one entry in the cookie states vector that is
not associated with any of the authentication sessions in
the last k days. Next we prove that cstates[ccid + 1 mod
m] is an unassociated entry that is not associated with any
of the authentication sessions in the last k days.

Because the only way to update cstates array pointer ccid
is through ccid = ccid + 1 mod m, which takes place every
time a fresh sign-in occurs, it follows that all the entries in
the cookie states vector that are associated with
authentication sessions in the last k days must be adjacent
to each other circularly to the left (see Figure 13).

Therefore, if cstates[ccid + 1 mod m] is associated with an
authentication session in the last k days, then cstates[ccid
+ 2 mod m], cstates[ccid + 3 mod m], …, cstates[ccid +
m mod m] (which is cstates[ccid]) are all associated with
authentication sessions in the last k days. This contradicts
with the fact that there is at lease one entry in the cookie
states vector that is not associated with any of the
authentication sessions in the last k days. Thus we prove
that cstates[ccid + 1 mod m] must be an unassociated
entry that is not associated with any of the authentication
sessions in the last k days.

Fig. 13 All entries in cookie states vector associated with authentication
sessions in the last k days are adjacent to each other circularly to the

left. Associated entry is indicated with an arrow.

When processing a fresh sign-in, cstates[ccid + 1 mod m]
is the only entry in the cookie states vector that is modified,
thus we prove that any fresh sign-in will not overwrite any
valid cookie states vector (cstates) entry that associates
with authentication sessions in the last k days. □

Theorem 2. In M/K scheme, any expired authentication
cookie will be rejected..

Proof. In M/K schemes, there are two cases in which an
authentication cookie is considered expired. First, the
cookie had been issued for more than k days. Second, the
cookie was issued in the last k days and was explicitly
expired by a sign-out event.

In the first case, the cookie will be rejected because the
content server only accepts cookies issued within the last k
days (by inspecting the cookie timestamp). In the second
case, if the cookie has been expired in the last k days, the
bit associated with this cookie must have been set to 0.
And from Theorem 1, this bit is not modified by any fresh
sign-in (only fresh sign-in sets the bits in cookie states

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

327

vector to 1). Therefore, the content server will reject the
cookie because its associated bit in the states vector is 0. □

5.4 Deployability

Both of our schemes require changes only at the server
side in the web authentication architecture; they are
transparent to the client. This makes the schemes easy to
deploy. The secret key used to provide non-malleability
for the authentication cookies is kept at the server only,
thus the server can re-key at its will. After the secret key is
changed, auto-login will fail and the users will be forced
to go through fresh sign-in before auto-login can be
resumed. In the M/K scheme, the server can save a copy of
the old key at a re-key event. The old key is saved for k
days so that when an auto sign-in request is made, both the
new key and the old key will be used to validate the
authentication cookie, this will help minimize the re-key
impact on the users.

Fig. 14 Single Sign-On Authentication Architecture.

Our schemes can be deployed easily in the common web
authentication architecture described in section 3. In
section 5.1 and 5.2, we explain how the simple scheme
and M/K scheme work using an example of the web
authentication architecture where the authentication server
and the content server run jointly. Here we will describe
how the schemes can be deployed in an architecture where
the servers run separately. Such an example can be seen
mostly in a single sign-on system.

An example of the single sign-on (SSO) system is shown
in Figure 14. The SSO server provides authentication
service for multiple site servers, it shares a site specific
encryption key kenc and message authentication key kmac
with each of the site servers. The site server delegates all
fresh sign-in to the SSO server for authentication, and the
SSO server returns a site specific ticket (encrypted by kenc
and integrity protected by kmac) to the browser, which then
submits this ticket to the site server for authentication
purpose. Because each of the SSO server and the site
server has its own authentication credential for auto-login,
and the credential is stored as an authentication cookie,

therefore our schemes need to be deployed in both the
SSO server and the site server to prevent replay attacks on
either server.

Figure 15 shows the deployment on a single sign-on
architecture. The SSO server has a cookie state database,
and a secret key ksso which is used to generate message
authentication code (MAC) for SSO server cookies. The
site server has its own cookie state database as well, and a
secret key ks to generate MAC code for site server cookies.

Fig. 15 Single Sign-On Authentication Architecture (with cookie state
database).

In a fresh sign-in, the browser requests secret.html from
the site server (step 1) and is redirected to the SSO server
for authentication (step 2 and 3). The SSO server sets up
the access control entry in the cookie state database for the
user and returns the login.cgi (step 4). The user submits
the account name and password for authentication
verification (step 5). If the authentication verification is
successful, the SSO server updates the access control entry
and sends the SSO authentication cookie to the browser.
The SSO server also returns a site specific ticket
(encrypted by kenc and integrity protected by kmac) through
URL redirection (step 6). The ticket has to be sent in the
URL because the SSO server and the site server run in
different domains, the SSO server can not use cookie to
relay the ticket to the site server. The browser then follows
the redirection and submits the ticket to the site server
(step 7). Upon receiving the ticket, the site server sets up
the user's access control entry in its cookie state database,
updates the access control entry and generates a site-server
authentication cookie. Finally it sends the authentication
cookie and the secret.html document to the browser (step
8). After the cookie state databases are set up, the browser
can make auto-login and logout in the SSO system as
described in section 5.1 and 5.2.

After receiving the SSO server authentication cookie, the
user can start single sign-in sessions to other site servers
(see Figure 16). Initially the browser requests secret2.html
from the site server 2 (step 1) and is redirected to the SSO

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

328

server for authentication (step 2). The browser follows the
redirection (step 3) and sends the SSO authentication
cookie to the SSO server. The SSO server checks the
authenticator and returns a ticket for site server 2
(encrypted by k′enc and integrity protected by k′mac) through
URL redirection to the browser (step 4). The browser then
follows the redirection and submits the ticket to the site
server 2 (step 5). Upon receiving the ticket the site server
2 sets up the user's access control entry in its cookie state
database, it then updates the access control entry and
generates an authentication cookie. Finally it sends the
authentication cookie and the secret2.html document to the
browser (step 6).

Fig. 16 Single Sign-On Authentication Architecture (new SSO session).

6. Implementation and Performance

We implemented both the simple scheme and the M/K
scheme on Apache [13] web server. The authentication
module was implemented using an open source Apache
authentication module mod_auth_tkt [8], we used HMAC-
MD5 (128-bit key) to generate the MAC code of the
cookie. We tested our server implementation on a 2.6GHz
Celeron machine with 256MB of RAM which is running
Linux (Fedora Core 4 based on kernel 2.6.11), Apache
(HTTPD v2.0.55), and mod_auth_tkt (v2.0.0b6). We used
Lynx (v2.8.5) web browser to do the automated testing, as
the text based browser is easily integrated into our test
script, the client machine is a 377MHz Pentium III
machine with 128MB of RAM running the same Linux as
the server. The client and server are connected via a
100Mbps link in the same LAN segment.

For each user, we implemented the access control entry
discussed in section 5 as a separate file, so that when
multiple users are making fresh sign-in requests
concurrently, the synchronization access to the access
control file does not become a bottleneck of the system
performance. In the access control entry, the timestamp

takes 4 bytes. For the M/K scheme, we chose m = 128 and
k = 14 in our experiment, so the cookie states vector
(cstates) takes 16 bytes, the cookie session counters
(sessions) takes 14 bytes, and the current cookie id pointer
(ccid) takes 1 byte. In fact, both m and k can be set
according to the system requirements, once set, the cstates
vector takes m bits, the sessions array takes k log m bits,
and the ccid pointer takes log m bits.

Fig. 17 Average Response Time per 100 Requests.

To study the server performance, we first compare the
latency of the fresh sign-in with that of the auto login. The
latency is defined as the delay experienced by the browser
from the time it sends the request to the time when it
receives the response. We ran 1000 trials of the
experiment (see Figure 17). Each experiment consists of
100 requests of secret.html under each of the following
test scenarios. No auth is plain HTTPD without
authentication. Authtkt is the HTTPD with the original
mod_auth_tkt authentication that does not store cookie
state information on the server (this is used as the baseline
to compare the performance of our schemes). M/K and
Simple are the HTTPD with our modified versions of
mod_auth_tkt which implement the Simple and M/K
schemes.

Figure 17 shows that a request with an auto login takes
about the same time (0.14 second per 100 requests) as a
normal request without authentication. While a fresh sign-
in takes about twice as much time as it takes to do an auto
login. There is no significant difference in the latency
between the original mod_auth_tkt authentication and
either of our schemes.

Next we compare the concurrency performance of both of
our schemes, the HTTPD without authentication, and the
HTTPD with original mod_auth_tkt module. We launched
concurrent connections to the web server under each of the
above four configurations, increasing the number of

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

329

connections by 10 from 10 to 120 at each run, and
measured the time it takes for each run to finish. Figure 18
shows that under all four scenarios the latency increases
linearly. While the HTTPD without authentication takes
the least time, the performance for the other three
implementations is about the same.

Fig. 18 Average Concurrency Latency Comparison.

7. Conclusion

In this paper, we have studied the current web
authentication architecture and pointed out an oversight in
the design of its authentication expiration method, which
makes it susceptible to replay attacks using stolen cookies
from unreliable browsers. We proposed two authentication
expiration methods that can thwart this type of attack.
They are both effective and efficient, requiring minimal
storage on the server to store small amount of information
per user. Our experiment showed that neither of the
solutions would degrade the server performance. The
source code of our implementation can be downloaded at
http://www.ccs.neu.
edu/home/robbieye/authexp.tgz.

8. Acknowledgment

We would like to thank Simson Garfinkel and all the
anonymous reviewers for comments and suggestions on a
preliminary version of the paper.

References
[1] David Kormann, Aviel Rubin, Risks of the Passport Single

Signon Protocol, Computer Networks, Elsevier Science
Press, volume 33, pages 51-58, 2000.

[2] Charlie Kaufman, Radia Perlman, Mike Speciner, Network
Security, Private Communication in a Public World,
Prentice Hall, 2002.

[3] Kevin Fu, Emil Sit, Kendra Smith, Nick Feamster, Dos and
Don’ts of Client Authentication on the Web, Proceedings of
the 10th USENIX Security Symposium, August, 2001.

[4] Malicious HTML Tags Embedded in Client Web Requests,
CERT® Advisory CA-2000-02. http://www.cert.org/advisor
ies/CA-2000-02.html.

[5] Netscape: Persistent Client State HTTP Cookies
Preliminary Specification,
http://wp.netscape.com/newsref/std/cookie_sp ec.html.

[6] Hypertext Transfer Protocol, http://www.w3.org/Protocols/
HTTP.

[7] HTTP Authentication: Basic and Digest Access
Authentication, http://www.faqs.org/rfcs/rfc2617.html.

[8] Apache mod_auth_tkt, http://www.openfusion.com.au/labs/
mod_auth_tkt/.

[9] HMAC: Keyed-Hashing for Message Authentication,
http://www.faqs.org/rfcs/rfc2104.html.

[10] Microsoft: Microsoft .NET Passport Review Guide,
http://www.passport.net/.

[11] Kerberos: The Network Authentication Protocol,
http://web.mit.edu/kerberos/www/.

[12] Ron Kohavi, Rajesh Parekh, Ten Supplementary Analyses
to Improve E-commerce Web Sites, 5th Workshop on
Knowledge Discovery in the Web, WebKDD 2003.

[13] Apache HTTP Server Project, http://httpd.apache.org/.
[14] Bruce Schneier, Authentication and Expiration. IEEE

Security & Privacy, February, 2005.
[15] Stuart G. Stubblebine, Recent-Secure Authentication:

Enforcing Revocation in Distributed Systems, IEEE
Symposium on Security and Privacy, 1995.

[16] Fritz Onion, Essential ASP.NET With Examples in C#,
Addison-Wesley, 1st edition, 2003.

[17] Joon S. Park, Ravi Sandhu, Secure Cookies on the Web,
IEEE Internet Computing, Vol 4, No. 4, July/August 2000.

[18] V. Khu-smith, Chris Mitchell, Enhancing the Security of
Cookies, ICICS 2001, LNCS 2288, pp. 132-145, 2002

[19] Alex X. Liu, Jason M. Kovacs, Chin-Tser Huang, Mohamed
G. Gouda, A Secure Cookie Protocol, Proceedings of the
14th IEEE International Conference on Computer
Communications and Networks, 2005.

