
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

330

Manuscript received January 5, 2007

Manuscript revised January 25, 2007

ADO and ADO.NET Object Model Comparisons:
A Relational Perspective

Alfred J. Lendvai Hao Shi

School of Computer Science and Mathematics
Victoria University, Melbourne, Australia

Summary

Microsoft has, and still is, a significant contributor toward the
development and innovation of software technology. An
important aspect to any software technology is the creation,
storage, processing and transfer of data. This paper focuses on two
Microsoft data-access technologies, ADO and ADO.NET, the
later being the more recent technology. ADO is an acronym for
ActiveX Data Objects and though the literal ‘ADO’ is used in both,
ADO.NET is a part of the new .NET platform, a different
architecture to the one in which ADO was designed. ADO and
ADO.NET are part of two different Microsoft technology
infrastructure strategies.

Although .NET framework has been released by Microsoft for
more than five years, migrating from ADO to ADO.NET was
relative slow for the existing IT projects due to concerns
associated with .NET reliability and robustness. Many IT
companies started to adopt .NET as their future platform until the
release of .NET framework 3.0 in November 2006.

This paper aims to shed some insights for Microsoft web
developers to understand the two technologies in depth. An
overview of ADO and ADO.NET from a relational perspective is
presented, with particular emphasis on the ADO Recordset and the
ADO.NET Dataset objects. A comparative analysis is performed
providing an assessment of strengths and limitations of each
technology. Conclusions drawn show that ADO.NET presents
some significant advantages over its predecessor such as a
superior disconnected model with greater control over the update
process, improved management for multi-table processing, as well
as improved scalability and object model extensibility.
Key words:
ADO, ADO .NET, Recordset, DataSet, relational database,
scalability, extensibility.

1. Introduction

Access, transport, storage and manipulation of data are
fundamental and underlying processes at the heart of every
application/system. ADO and ADO.NET support these
same processes, albeit through different supporting
run-time platforms, infra-structures, classes, levels of

functionality and part of different Microsoft strategic
paradigms.

ADO is a data access technology that provides a high-level
easy-to-use interface to access relational data as well as
other types of data [1]. It is a programming and data-access
model that represents a framework in the form of an object
oriented programming interface. ADO is based on
Microsoft’s proprietary COM architecture, a building block
that evolved application systems from 2-tier, to N-tier, to
distributed computing frameworks and then to distributed
applications that incorporated the Internet. The COM
building block served as the mechanism by which
distributed COM (DCOM) evolved and services such as
COM+ developed [2].

ADO.NET is part of the .NET initiative introduced in June
2000 as a new strategy for the development, deployment
and execution of highly distributed applications referred to
as Web Services. A networking infrastructure is provided
that is layered on the Internet or Intranet. This infrastructure
is leveraged against technologies that are both ubiquitous
and nonproprietary, and built upon industry set standards
and protocols [3]. The .NET initiative provides a
completely new .NET platform – a new .NET Framework
development environment and a new Common Language
Runtime run-time environment. ADO.NET, by default,
derives many of the benefits of being part of the .NET
environment such as a foundation based on the acceptance
of an object-oriented approach, coupled with a new
self-describing component model – the .NET assembly.
Some important benefits include a rich class library that is
extensible and organised by namespace, a Common Type
System, managed execution of applications, language
interoperability, structured exception handling and simple
deployment [4].

The next two sections provide an overview of ADO and
ADO.NET object models. These are then used as a basis for
delivering comparisons and conclusions in Section 4 and 5,
respectively.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

331

2. ADO

ADO is a class set providing access to relational data [5]. It
provides transparency using a common interface to access
various data sources using a core set of objects such as
Connection, Command and Recordset. There is also
Parameter, Property, Field and Error, a set of subsidiary
objects that are accessed via Parameters, Properties, Fields
and Errors collections respectively. All of these objects and
collections have a Properties collection that holds property
objects. ADO objects feature properties, methods and
events to be able to manipulate the object and its contents.
The ADO object model is diagrammatically represented in
Fig. 1.

Fig. 1 The ADO object model

Using this set of objects, ADO provides flexibility in choice
as to how to access and update a data source from a client
application. For example, Recordset properties offer a
matrix of choices such as for Cursor Location (Client,
Server), Lock Type, (adLockReadOnly,
adLockBatchOptimistic, adLockOptimistic,
adLockReadOnly) and Cursor Type (Forward, Static,
Key-Set, Dynamic). The setting of these properties need to
include consideration of connected or disconnected states
and cache size. Not all combinations are possible e.g.
Pessimistic locking with a client-side cursor, Optimistic
lock type with a Dynamic cursor, or if the lock type is set to
ReadOnly, the Recordset is not updatable regardless of the
cursor type setting. Still, some combinations may be

appropriate but result in system resource wastage if not
used correctly e.g. using a client-side cursor with
adLockBatchOptimistic lock type and maintaining an open
connection.

The inherent ADO flexibility creates overlapping in the use
of some objects to perform the same action, or different
actions performed by the same object [6] e.g. sharing
common objects for different access/update approaches.
There is some potential to not select the optimal
combination for the desired purpose. For example, ADO
allows changes to be applied directly to a data source using
the following objects and methods:

• Connection object Execute method
• Command object Execute method
• Recordset object Open method

The generation and population of a Recordset may be
performed in a multitude of ways as listed below, as well as
by manual means.

• Recordset Open method
• Command Execute method
• Connection Execute method

Alternatively, updates may be performed using an
in-memory connected or disconnected Recordset object
using a server-side or client-side cursor, with read-only
(adLockReadOnly), pessimistic (adLockPessimistic), batch
optimistic (adLockBatchOptimistic) or optimistic
(adLockOptimistic) lock types. Cursor type is always
adOpenStaic if cursor location is client-side. A Recordset
with Batch optimistic locking allows changes to be applied
without any data source interaction, even if the Recordset
holds an active connection.

An optimistic locking Recordset allows Recordset rows,
individually or as batch, to be updated without holding a
lock on the corresponding record at the data source.
Success or failure in propagating a modified data row to the
data source depends entirely on whether another user has
since modified that same row. If a Recordset uses optimistic
locking (adLockBatchOptimistic or adLockOptimistic),
data access and updating is stateless. Choosing
adLockBatchOptimistic allows Recordset updating without
needing to use system resources to maintain a connection.
Alternatively ADO Recordset data access and updating
may be stateful when connected with a pessimistic lock.

A Recordset with a client-side or server-side
adLockOptimistic cursor allows a row that is pointed to by
the cursor to be updated or cancelled before proceeding to
another row. If the cursor is set to adLockBatchOptimistic,
changes may be made wholesale within the Recordset
without data source interaction. These changes may then be

ADO Client/Middle-tier Application

Connection

Error

Command

Recordset

Fields Field

Parameters Parameter

Errors

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

332

reconnected to, and updated against, the data source or
cleared from the Recordset.

The default mechanism of ADO is to use a connected
Recordset with server-side cursor. When performing a
Recordset update, there is no provision to customise the
updating logic. Sql statements are automatically generated,
and in comparison to ADO.NET there is no provision to be
able to choose stored-procedures to perform the updates of
changes made in a Recordset when it is used in a batch
mode.

3. ADO .NET

Whereas ADO provides a multi-faceted approach to data
handling, the ADO.NET model provides a philosophical
change in approach where its set of objects are functionally
optimised for specific tasks. ADO.NET data access is based
upon the Dataset and data provider that provides specific
access to a data source [7].

The Dataset is akin to a mini-relational database, but stored
in memory. It is composed of a core set of objects that
include its namesake, as well as the DataTable,
DataColumn, DataRow, DataView, DataRelation and
Constraint objects. The Dataset is equated with the
disconnected aspect of ADO.NET. The DataSet is a
standalone object existing independently of any data
source.

The data provider provides the means to communicate with
any data source. A .NET data provider provides a set of
objects that enable the connection to, data retrieval from,
data update to, and disconnection from, a data source. Each
data provider is for a specific data source. Each data
provider provides its own set of classes such as for SQL
Server .NET, OLE DB .NET or Oracle .NET. As an
example SQL Server .NET uses SqlConnection,
SqlCommand, SqlParameter, SqlDataReader,
SqlDataAdapter and SqlTransaction objects (located in
System.Data.SqlClient namespace) and OLE DB .NET data
providers use OleDbConnection, OleDbCommand,
OleDbParameter, OleDbDataReader, OleDbDataAdapter
and OleDbTransaction (located in System.Data.OleDb
namespace).

The ADO.NET model introduces a level of abstraction
where there is a separation between data and the process by
which data is retrieved and updated as shown in Fig. 2. The
centerpiece of this model is the data adapter. Each data
adapter has its own specific data provider. It is the bridge
between the DataSet and the data source. It is the
coordination layer between the in-memory DataSet and the
permanent sources of data access through the data provider.

Fig. 2 ADO.NET abstractions

The data adapter uses the data reader of the same data
provider to populate a Dataset using the Fill method. The
data adapter uses four instances of the Command object:
SelectCommnand, InsertCommand, UpdateCommand and
DeleteCommand, to propagate, via the Update method, the
changes of the same type in a Dataset to a data source e.g.
an inserted row in the Dataset is used with the
InsertCommand. It does not automatically include this logic.
The filling of a single DataSet may be performed using
multiple data adapters. The population of a Dataset is not
limited only to data providers but may be sourced from user
input, programmatically or XML input. The data adapter
does not interact directly with the connection object but
indirectly through its set of four command objects. The data
adapter always leaves the state of a connection as it was,
that is opened or closed, after executing. This is a default
process that supports the disconnected paradigm of the
ADO.NET model. [8] describes the various overloaded
forms of the data adapter Update method. The Connection
object provides access to a data source either to retrieve
data, or to provide the pipeline for applying data changes to
a data source.

.NET provides data providers. These are also referred to as
managed providers such as OLE DB .NET and SQL
Server .NET. The OLE DB .NET managed provider
provides access to various data sources requiring COM
interoperability services of the .NET Framework to access
OLE DB functionality. A managed provider such as SQL
Server .NET provides a more efficient, direct and
streamlined access to the API of the database, in
comparison to the OLE DB provider. For example, the SQL
Server .NET managed provider uses SqlDataReader. which
uses its own Tabular Data Stream protocol. This protocol is
managed by the CLR to access data where SQL Server
exposes its data types to conform to the .NET Framework
types as well as being able to expose its data in native
format. That is, when retrieving results from a managed

Data provider Dataset
DataTables

Data
Adapter

Permanent
Data Source

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

333

DataReader such as SqlDataReader, columns are retrieved
in their native data type form without requiring expensive
conversions.
Managed providers as part of the object-oriented
framework provide opportunity for extensibility [9].

SQL Server .NET data provider excels in performance, but
there are benefits in using the OLE DB route to access data.
OLE DB for Sql Server is slower, due to the requirement of
COM communication, but provides greater functionality -
SQL Server .NET provider uses only a subset of the
functionality. There are other circumstances for using OLE
DB such as the reliance of SQL server on OLE DB to
manage joins across heterogeneous data sources [10].

4. ADO and ADO.NET Comparisons

Both ADO and ADO.NET provide similarities with their
command objects allowing retrieval from, and update of, a
data source. However as noted above, ADO provides
multiple ways to update a data source directly, whereas
using ADO.NET, the only way to update a data source
directly is by using the command object of a data provider.
ADO.NET provides alignment of Command object
methods to the type of result returned. The methods offered
include ExecuteReader, ExecuteNonQuery, ExecuteScalar
and ExecuteXmlReader. This compares to the ADO
Command object where only one method, the Execute
method, is used, and where the CommandType property
determines the type of result expected. The CommandType
property may be assigned an enumerated value representing
values such as a stored procedure, table name or Sql query.

ADO.NET command types may be text i.e. an SQL string, a
parameterised stored procedure with input or output
parameters or a table name(s). Additionally ADO provides
access to data from persisted files or data in semi-structured
form.

Furthermore, the Connection object is only associated with
the ADO.NET Command object whereas with ADO the
Connection object is associated with the ActiveConnection
property that is available to both the Recordset and
Command objects.

In ADO.NET, the Command object ExecuteReader method
may be used to return a result into the data providers data
reader object. In comparison, and as described earlier, ADO
may return a Recordset result set from a database using the
Recordset, Command or Connection objects.
The ADO.NET data reader object provides a fast-forward
read-only data stream that may be read to access row data
consecutively using the Read method. It cannot be
instantiated – it is always provided through the command

object interface. However it is limiting if random access is
required. It may instead be stored in an array or populated
into a Dataset using the data adapter. DataReader objects
are essentially the equivalent of the forward-only read-only
Recordset cursor of ADO.

.NET managed data providers use separate libraries and
classes for different data stores. ADO uses the same
Connection, Command and Recordset set of objects for
different data sources. This is in comparison to ADO.NET,
which provides a different group of objects for each data
provider. This means that using more than one data
provider requires more than a simple connection string
substitution the exception being OLE DB .NET data
provider.

ADO represents a single unified object model attempting to
be all encompassing for all data sources - ADO.NET does
not.

4.1 Recordset and Dataset Comparisons

Compared to the ADO.NET Dataset object, an intimate
understanding of the Recordset is required to obtain
maximum benefits when choosing between a server or
client located cursor, the degree of locking required and the
level of visibility desired to changes applied by other users
to the data source. The overlapping in usage of the
Recordset does not provide a clear delineation between
using disconnected and connected models. This provides
the potential to not attain optimal benefits when designing
access to, and update of, a data source.
Although the Recordset and Dataset provide similarities,
there are also some compelling differences [11]. The
DataSet may be identified with a Recordset that has a
client-side CursorLocation, a CursorType that is open static
and a LockType that is optimistic. However, the DataSet
extends the capabilities of the Recordset for managing
application data.
Both an ADO Recordset and an ADO.NET Dataset may be
created manually, implicitly or explicitly, from the
schematics of a database. Both in-memory models enable
the storage of tabular/relational type data and which may be
populated in various ways. ADO.NET provides the
DataView object which is based on a DataTable object.
Using the DataView object, data may be modified, sorted
and filtered with the capability to clear changes or to apply
changes permanently to a data source e.g. database. There is
no equivalent of this object in ADO. Both facilitate the
creation of a smaller Recordset or Dataset that is an
extraction containing only changes. This provides a lower
transmission load when transmitting changes across the
network to update a data source.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

334

In comparison to the Dataset, the Recordset is limited to a
single tabular result. The Dataset resembles a relational
database system i.e. it may have multiple tables,
relationships between tables through column associations,
primary and foreign key referencial integrity, update and
delete cascading control. Of course a DataTable may hold a
result set derived through a JOIN SELECT statement. This
may be appropriate at times when a non-hierarchical view
of data is sufficient, e.g. through a gridcontrol. A Recordset
that contains a SELECT JOIN result set is difficult to
synchronise [12].
The Dataset is completely data source agnostic, whereas the
Recordset is not. Once a Dataset is populated e.g. from a
data provider, it has no knowedge of where the data came
from - it has no direct interface with the Connection object.
This is in contrast to the Recordset object that has a
‘connection’ to a data source through the ActiveConnection
property. When using the DataSet, the connection is only
open when retrieving data from a source, or propagating
changes to a data source.
A Dataset may be typed or untyped. A typed Dataset
provides several advantages over the Recordset such as
providing compile-time checking, Intellisense, as well as
code that provides easier programming – it is more readable
and concise.

4.2 Table Relationships

The Recordset may be populated with a result set from an
SQL data source representing a single table (or subset of).
If only a single table is retrieved, the Recordset and Dataset
have much in common.
When there is a requirement to access data from two or
more tables, differences arise between the use of a Dataset
and a Recordset. If a Recordset receives a result set from a
join of two or more tables, two points of interest arise:

• The presence of duplicated data
• Ascertaining the source of the data is not

straightforward

Although reading and updating is straightforward, extra
programming effort is required to control the insertion and
deletion of Recordset rows against root tables. Base and
unique tables need to be established, otherwise undesirable
results may occur [13].

If multiple Recordsets are retrieved, one table per
Recordset, no data duplication is present. This may be
performed efficiently by using a stored procedure to return
multiple result sets in one round trip from a data source.
However for multiple Recordsets, programming overheads
are incurred in establishing relationships for navigational
purposes.

Extra care is required when updating a Dataset to a database.
The enforcement of constraints and cascading rules
supports the integrity of a Dataset, however diligent
management control is required in controlling and ensuring
relationally connected Datatable changes are applied
correctly to the data source. There is a possibility that the
order in which changes are applied to a Dataset with
multiple tables and relationships may not be applied
correctly, i.e. in the same sequence when updating a
database using a data adapter [13]. That is, the update may
produce incorrect results compromising the integrity of the
database. ADO.NET enables Datatable changes to be
isolated by type of change. Consideration of change type
and correct order of DataTable updates determined by
parent/child relationships, enables database updates to be
performed in the correct order.
The ADO.NET CommandBuilder provides an alternative,
but has limited control. There are no options to configure
the update process. It is useful for single table access and
updates [14].
To enable improved processing of Recordsets with
relationships, Recordset Data Shaping (MSDataShape
provider) based on the Recordset may be used. It is related
to the organisation, access, manipulation and display of
Recordsets. It provides the ability to embed Recordsets in
Recordsets, known as hierarchical Recordsets. It uses a
special query syntax that uses the SHAPE clause with
SELECT statements. It provides several alternative
representations of hierarchies including Relation,
Parameterised, Grouping and Hierarchy. These may be
combined with each other in various ways to form a
structure that facilitates drill-down search capability. A
Recordset is updateable at any level in the hierarchy and is
based on the use of optimistic or batch optimistic lock types.
The shaped Recordset provides certain advantages such as,
returning data that is less than from joined queries and
applying single table updates, however submitting pending
changes against multiple tables can be problematic. Data
shaping has further limitations: the query syntax is not easy
to follow, queries apply only to a single data source and
filtering is difficult [12].
The DataSet may contain one or more DataTable objects
that optionally have relationships between rows of the
tables, may have primary or foreign key constraints, as well
as cascading rules that operate against update and delete
operations. The Dataset provides management support of
its data through the use of collections e.g. DataRelation,
DataTableCollection, DataRowCollection,
DataRelationsCollection and DataColumnCollection. Data
relationships may be created, deleted and modified
dynamically. Data redundancy may be eliminated using
individual tables instead of SELECT JOINs. Hierarchically
related tables may be sourced from different data providers.
ADO.NET does not require an additional data provider to

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

335

support relationships between tables - the DataRelation
object is implicitly provided.
The rows of data in a DataTable may be accessed, searched
and modified and they may be the source of customised
views using DataView objects. The Dataset may be filtered
using the Select method to create an array of rows.
DataView objects may be sorted, filtered, searched and
bound to Web and Windows controls e.g. the DataView
object may be bound to ASP.NET Web Server controls
such as DataGrid, Repeater and DataList.
Compared to ADO, ADO.NET is more useful for
representing hierarchical or network relationships between
tables.

4.3 DataSet and Recordset Navigation

A difference between ADO and ADO.NET is navigational
access of Rows within a Recordset and a DataSet.
Navigation within a Recordset is sequentially based - rows
are accessed through the use of a cursor. The Recordset
provides a client-side cursor or a server-side cursor. Using
client-side cursors, updates are performed optimistically
against a data source. Using server-side cursors, updates are
performed either pessimistically or optimistically. The use
of a server-side pessimistic locking cursor provides greater
control and visibility to data changes applied by other users
at the data source.
There is no concept of an updateable server-side cursor in a
DataSet. The Dataset is completely independent of any data
source. The ADO.NET DataReader however does maintain
state on the server when reading the database data as a
stream.
Navigation within a DataTable occurs through the use of
indexing where DataRows may be accessed randomly as
well as sequentially. Navigation between DataTables is
supported with the Relations property of the Dataset,
ChildRelations and ParentRelations properties of the
DataTable, and GetChildRows and GetParentRows
methods of the DataRow. Each of these relation properties
contains a collection of DataRelations. Taken together, all
these relational representations between tables of a Dataset
provide for hierarchical and easy manipulation of
parent/child relationships.

4.4 Update Control

4.4.1 Batch Recordset and Dataset

This section performs comparisons in the update of
disconnected ADO.NET Datasets and batch optimistic
Recordsets (adLockBatchOptimistic) to a data source e.g.
database.
The update of an optimistic locking Recordset row, using
Update or BatchUpdate methods, implicitly generates an

SQL UPDATE, DELETE and INSERT statement. There is
no provision to control the generation of updating logic for
applying Recordset changes to a database.
This is in contrast to the capabilities of ADO.NET.
ADO.NET offers two new features:

• The ability to control the update process of a data
adapter object by assigning custom commands to
the action-based command properties of the data
adapter.

• The ability to perform a stored procedure call to
update Dataset changes to a database. The
restriction in the use of Sql action statements is
lifted.

The first point above presents a new level of control when
performing data adapter updates of DataSets and
DataTables. The second point provides accessibility to
stored procedures providing performance advantages over
the use of Sql statements.

4.4.2 Manual Recordset and Dataset

A data adapter requires the explicit creation of three
action-based commands for its three command properties
i.e. InsertCommand, DeleteCommand and
UpdateCommand. These three commands are used to
perform data base updates against each inserted, deleted or
modified DataTable row. The commands are customised
and parameterised and having access to row columns, row
state (Added, Modified, Deleted, Unchanged) and row
version (Original, Current). The update of the database is
initiated with a single call to the data adapter Update
method. The update may be performed for a Dataset, a
DataTable(s), or user selected DataRows.
Alternatively, Dataset changes may be updated to a data
source without using a DataAdapter object. This requires
direct access to rows of a DataTable from a Dataset and the
use of Command objects. This approach requires direct and
iterative access to a row set e.g. a DataTable. As above,
each row provides access to row state, row version and
column values when executing the parameterised
Command objects. More programming effort is required to
perform updates manually compared to using the data
adapter Update method [11]
It is possible to perform a database update from a Recordset
without using the Recordset Update method. This provides
fine-grained control at the expense of a greater
programming effort. As per the Dataset, the Recordset may
be iterated through providing access to Field names,
Recordset EditMode property values (adEditDelete,
adEditAdd, adEditInProgress) and Field values
(OriginalValue, UnderlyingValue). Each command object
may use any number of parameters that may be specified
dynamically at run time. This may be straightforward for a

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

336

single table Recordset but becomes more complex when
multiple tables are involved

5. Conclusions and Recommendations

This paper presented a comparative analysis of two
Microsoft data access technology models: ADO and
ADO.NET. The comparative analysis focused on relational
aspects with particular attention to the ADO Recordset and
the ADO.NET Dataset objects.
Providing a simplistic feature-versus-feature comparison is
not totally realistic, however Table 1 (next page) attempts
to reflect in a summarised form the differences by grouping
similar features together.
Based on the table, it may be concluded that ADO is
beneficial in instances where:

• scalability, that is demand on resources, is not an
issue

• controlled access using persistent connections to
the database is a priority

• controlled visibility to changes made to a database
(using persistent connections) by other users is a
priority

ADO would not be beneficial in instances where
comprehensive support and ease of use is sought in
processing hierarchically related Recordsets.
ADO.NET provides benefits where

• there is a requirement for comprehensive
management and control in batch updates

• ease of use is a priority in the update of
disconnected data to a data source

• scalability is an issue
• the use of stored procedures in batch updating is

important.

References
1. Otey Michael, Conte Paul (2001): SQL Server 2000

Developers Guide, Osborne/McGraw-Hill.
2. Blexrud, C et al. (2000) Professional Windows DNA:

Building Distributed Web Applications with VB,
COM+, MSMQ, SOAP, and ASP, Wrox.

3. Bustos J. and Karli, W. (2002) Beginning .Net Web Services
with VB.NET, Worx.

4. Anderson Richard, Francis Brian, Homer Alex, Howard
Rob, Sussman Dave, Watson Karli (2002): Professional
ASP.NET 1.0, Wrox Press Ltd.

5. The Role of ADO in Universal Data Access, ADO
Programmer's Guide,
http://msdn.microsoft.com/library/en-us/ado270/htm/m
dconroleofadoinuda.asp, Viewed on 08 Dec 2004

6. MacDonald Rob (2000): Serious ADO: Universal Data
Access with Visual Basic, Apress.

7. .NET Framework Developers Guide – Accessing Data
with ADO.NET,
http://msdn.microsoft.com/library/en-us/cpguide/html/
cpconaccessingdatawithadonet.asp, last viewed on 18
Dec 2006.

8. .NET Framework Class Library –Class Library,
http://msdn.microsoft.com/library/en-us/cpref/html/cpr
ef_start.asp, last viewed on 18 Dec 2006.

9. McManus Jeffrey P., Goldstein Jackie, Price Kevin T.
(2003): Database Access with Visual Basic .NET (Third
Edition), Addison-Wesley.

10. Petroutsos Evangelos, Bilgin Asli (2002): Mastering
Visual.Basic .NET Database Programming, Sybex Inc.

11. Lendvai A J (2004): A Comparative Analysis of ADO
and ADO.NET, Minor Thesis, School of Computer
Science and Mathematics, Victoria University.

12. Sceppa David (2002): Microsoft ADO.NET, Microsoft
Press.

13. MacDonald Matthew (2002): The Complete Reference
ASP.NET, McGraw-Hill/Osborne.

14. McManus Jeffrey P., Kinsman Chris (2002): Visual
Basic .NET Developer’s Guide to ASP.NET, XML and
ADO.NET, Addison-Wesly.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007

337

Table 1: ADO and ADO.NET Comparisons

ADO ADO.NET
ADO Recordset is an all-purpose object. There is an overlap in
data access approaches.

ADO.NET provides greater alignment of objects and methods
with their intended purpose.

Direct updates may be performed with several different objects.

Direct update of source data may only be performed with
Command object.

Recordset may be populated from a database using several
different objects.

Dataset is populated from a data provider only through a single
DataAdapter object.

Provides a functionally rich connected data access model
(persistent connection and pessimistic concurrency)
Provides a limited disconnected data access model (optimistic
concurrency updating) that is less comprehensive.

Provides a functionally rich disconnected data access model
(optimistic concurrency updating). There is no concept of an
updateable server-side cursor in a DataSet.

The Recordset is directly linked to a data source (via the Source
property).

Once disconnected, the Dataset is completely data-source
agnostic.

The updating of a (default) Connected server-side cursor
Recordset absorbs resources in maintaining a persistent
connection – scalability is hampered.

The disconnected model places less demand on resources only
requiring connections to update to, or retrieve data from, a data
source. The default data model does not use a ‘live’ persistent
connection. This improves scalability. Connection pooling is
used.

Recordset access to a variety of data stores communicates
through the OLE DB interface (layer). COM (marshalling)
interoperability is required.

.NET Data Providers such as System.Data.SqlClient provides
great performance in communicating with the database directly
using its native TDS protocol.

Batch (optimistic) Recordset updating implicitly generates an
Sql action-query against each type of modified Recordset row.
There is no provision to control the update process.

The DataAdapter provides considerable flexibility to control and
manage the update process. There is full access to DataTable
row data, type of change and state information, and to database
row data. Stored procedures may be used.

The Recordset may be a container for either a single database
table or an SQL JOIN result set.

The Dataset provides a familiar data model based on relational
database functionality using tables, relationships, constraints
and cascading rules.

Processing an SQL JOIN Recordset (updating) is not simple.
Data Shaping (optimistic or batch optimistic lock types) provides
a solution for processing hierarchical (single table) Recordsets,
however updating can be problematic.

Manual control is required to ensure the sequence of Dataset
changes is maintained when updating the data source. Loss of
integrity is possible.

Alfred J. Lendvai received a M.S. degree
in Computer Science from Victoria
University in 2004. During 2003-2004, he
completed his Minor Thesis in the area of
Microsoft web technologies. He has worked
in the IT industry for many years providing
IT development/support, management and
consulting services to organizations in
manufacturing, education, government and
IT service sectors.

His current role is with the Environment Protection Authority
providing specialist IT services to support and upgrade their
business systems, as well as IT development practices.

Dr. Hao Shi obtained her BE in Electronics
Engineering from Shanghai Jiao Tong
University, China in 1986. She joined the
then Department of Electrical and
Electronic Engineering, Victoria University
as a Lecturer after completion of her PhD at
University of Wollongong in 1992 and was
promoted to a Senior Lecturer in 2001. She
joined School of

Computer Science and Mathematics in March 2003. She has been
actively engaged in R&D and external consultancy activities. Her
research interests include p2p Network, Location-Based Services,
Web Services, Computer/Robotics Vision, Visual
Communications, Internet and Multimedia Technologies.

